
Correspondence

Comment on: “Deep learning for pharmacovigilance:

recurrent neural network architectures for labeling

adverse drug reactions in Twitter posts”

Arjun Magge,1 Abeed Sarker,2 Azadeh Nikfarjam,2 and Graciela Gonzalez-Hernandez2

1College of Health Solutions, Arizona State University, Scottsdale, Arizona, USA, and 2Perelman School of Medicine, University of

Pennsylvania, Philadelphia, Pennsylvania, USA

Received 28 November 2018; Editorial Decision 20 December 2018; Accepted 21 January 2019

Dear Editor,

We read with great interest the article by Cocos et al.1 In it, the

authors use one of the datasets made public by our lab in parallel

with a publication in Journal of the American Medical Informatics

Association,2 referred to by them as the Twitter ADR Dataset (v1.0)

(henceforth the ADRMine Dataset). Cocos et al use state-of-the-art

recurrent neural network (RNN) models for extracting adverse drug

reaction (ADR) mentions in Twitter posts. We commend the authors

for their clear description of the workings of neural models, and on

their experiments on the use of fixed versus trainable embeddings,

which can be very valuable to the natural language processing

(NLP) research community. We believe that using deep learning

models offer greater opportunities for mining ADR posts on social

media.

However, there are key choices made by the authors that require

clarification to avoid a misunderstanding on the impact of their find-

ings. In a nutshell, because the authors did not use the ADRMine

Dataset in its entirety, discarding upfront all tweets with no human

annotations (ie, those that do not contain any ADRs), the resulting

train and test sets are biased toward the positive class. Thus, the per-

formance measures reported for the task in Cocos et al are not com-

parable to those reported in Nikfarjam et al,2 contrary to what the

manuscript reports.

After discarding tweets with no human annotation from the

ADRMine Dataset, the authors downloaded available tweets from

Twitter, and added a small set (203 tweets) to form the dataset used

for their experiments. While downloading from Twitter results in an

almost unavoidable reduction in the dataset size—as not all tweets

are available as time goes by—it would not generally affect the class

balance. The elimination of the tweets with no human annotations

from the ADRMine Dataset, however, is a choice that is not

discussed by Cocos et al, even though it severely impacts the

positive-to-negative class balance of the dataset, leaving it at the 95

to 5 that they report, and, as our experiments show, has a significant

impact on the reported performance. Our comparisons of ADRMine

with the system proposed by Cocos et al reveal that, actually, when

the two systems are employed on the dataset with the original bal-

ance, ADRMine2 performs significantly better than their proposed

approach (last two rows of Table 1). Thus, the claim in the Results

and Conclusion sections of Cocos et al that their model “represents

new state-of-the-art performance” and that “RNN models . . . estab-

lish new state-of-the-art performance by achieving statistically sig-

nificant superior F-measure performance compared to the CRF-

based model” is premature. We expand on these points next.

To give some context to the ADRMine dataset, it contains a set

of tweets collected on medication name as a keyword. Retweets

were removed, and tweets with a URL were omitted, given that our

analysis showed that they were mostly advertisements. To balance

the data in a way that reflected what was automatically possible at

the time, a binary classifier with precision around 0.4-0.5 was as-

sumed. Thus, negative (non-ADR) instances were kept at around

50%, down from approximately 89% non-ADR tweets that come

naturally when collecting on medication name as a keyword,2 a bal-

ance one would expect for this task utilizing state-of-the-art auto-

matic methods for classification before attempting extraction. It is

thus a realistic, justified, balance.

Regarding the Cocos et al approach, although controlled experi-

ments training with different ratios of class examples are not un-

usual in machine learning, results for different positive-to-negative

ratios are usually reported and are noted upfront. Cocos et al use a

95-to-5 positive-to-negative split, and only report on the perfor-

mance on this altered dataset, making no mention of the alteration

or class imbalance in the abstract. The statement in the abstract

summarizes their results as follows: “Our best-performing RNN

VC The Author(s) 2019. Published by Oxford University Press on behalf of the American Medical Informatics Association.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/),

which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact

journals.permissions@oup.com 577

Journal of the American Medical Informatics Association, 26(6), 2019, 577–579

doi: 10.1093/jamia/ocz013

Advance Access Publication Date: 11 April 2019

Correspondence

https://academic.oup.com/
https://academic.oup.com/


model . . . achieved an approximate match F-measure of 0.755 for

ADR identification on the dataset, compared to 0.631 for a baseline

lexicon system and 0.65 for the state-of-the-art conditional random

fields model.” Although further in the manuscript Cocos et al refer

to having implemented a CRF model “as described for previous

state-of-the-art results,” citing Nikfarjam et al,2 the statement in the

abstract could be misconstrued as directly comparing it to Nikfar-

jam et al, which is the state-of-the-art conditional random fields

(CRF) model. In reality, the results are not comparable, given the

changes to the dataset. Their implementation of a CRF model must

have been significantly different to ADRMine as described in Nik-

farjam et al, given that the reported performance in Cocos et al for a

CRF model (0.65) is much lower than when both systems are used

on the unaltered ADRMine Dataset, as our experiments show (last

two rows of Table 1).2 Please note that Cocos et al did not make

available their CRF model implementation, so any differences to the

ADRMine model could not be verified directly, only inferred from

the reported results. The binaries of ADRMine were available at the

time of publication, and we have since made available the full code

to facilitate reproducibility.a

In machine learning research, authors decide how the model is

trained and how the data are algorithmically filtered before training,

apply accepted practices for balancing the data, or include addi-

tional weakly supervised examples.3 However, such methods are ap-

plied to the training data only, leaving the evaluation data intact in

order to be able to compare approaches. By excluding tweets that

are negative for the presence of ADRs and other entities from their

training, the authors built a model that is biased to the positive class.

This might not be immediately obvious in Cocos et al, as the model

is evaluated against a similarly biased test set. However, when run

against the balanced test set, the problem becomes evident. The

authors do note this, stating that “including a significant number of

posts without ADRs in the training data produced relatively poor

results for both the RNN and baseline models,” but they did not in-

clude a report of these results or altered their experimental approach

to make this more evident.

To illustrate the impact of the dataset modifications on the over-

all results, we ran the training and evaluation experiments on the

ADRMine Dataset for tweets available as of October 2018 using the

authors’ publicly available implementationb and summarize the

results in Table 1. Under the same settings as Cocos et al (eliminat-

ing virtually all tweets in the negative class), the performance

reported (row 1) and our replication (row 2) can be considered a

match with a slight drop that could be attributed to fewer tweets

available as of October 2018 compared with when they ran it. How-

ever, evaluating the Cocos et al model on the balanced test set (row

3) shows a drop of 10 percentage points compared with evaluating

against the mostly positive set (row 2). Training on all available pos-

itive and negative tweets from the October 2018 set (row 4) leads to

an improved model but continues to show significantly lower per-

formance (0.64) with respect to when the same model is trained and

tested on the biased set (0.73 in row 2). Additionally, and to be able

to do a direct comparison, we trained and tested the Cocos et al sys-

tem as provided by them (except for the download script) on the

original, balanced, ADRMine Dataset containing 1784 tweets. We

found a mean performance of 0.67 over 10 runs (row 5), 5 points

lower than the 0.72 F1-score reported in Nikfarjam et al on the same

dataset (row 6).2

Furthermore, referring to the ADRMine Dataset,2 Cocos et al re-

port, “Of the 957 identifiers in the original dataset. . .,” which is in-

correct. The original dataset, publicly available and unchanged since

its first publication in 2015, contains a total of 1784 tweets (1340 in

the training set and 444 in the evaluation or test set). As of October

2018, 1012 of the 1784 original training set tweets were still avail-

able in Twitter (including 267 of the 444 original evaluation tweets).

Cocos et al do not mention the additional 827 tweets that were in

the ADRMine Dataset, even though many of them were still avail-

able at the time of their publication. They used only 149 tweets

from the 444 in the evaluation set. From our analysis, the 957 men-

tioned in Cocos et al correspond to the number of tweets in the

ADRMine Dataset that are manually annotated for the presence of

ADRs and other entities, such as indications, drug, and other (mis-

cellaneous) entities. The rest (827 tweets) mentioning medications

but with no other entities present, are discarded upfront, as can be

observed by running Cocos et al’s code, the download_tweets.py

script. Although the Cocos et al code points researchers to the origi-

nal site to download the ADRMine Dataset, once they move on to

the said script with that data, they lose all the unannotated negative

tweets. The authors do not discuss the rationale as to why the data-

set was modified in such a manner. From the time that Cocos et al

was published, subsequent papers have also used the 95-to-5 posi-

tive-to-negative split, presumably because they reuse the python

script.4–7 We have made available with this letter, a modification to

the download_tweets.py script that will keep previously discarded

tweets.c

In conclusion, the performance reported for the RNN model in

Cocos et al is not comparable to any prior published approach, and

Table 1. Performance comparison of NERs under different training and testing modes

Mode Dataset Size Precision Recall F1-score

Cocos et al on MostlyPos dataset as published 844 tweets 0.70 (0.66-0.74) 0.82 (0.76-0.89) 0.75 (0.74-0.76)

October 2018: train MostlyPos and test MostlyPos 526 tweets 0.76 (0.70-0.82) 0.72 (0.63-0.81) 0.73 (0.70-0.76)

October 2018: train MostlyPos and test Standard 644 tweets 0.60 (0.54-0.65) 0.70 (0.62-0.77) 0.63 (0.60-0.66)

October 2018: train Standard and test Standard 1012 tweets 0.73 (0.66-0.79) 0.60 (0.52-0.68) 0.64 (0.62-0.66)

Cocos et al on ADRMine Dataset 1784 tweets 0.68 (0.62-0.73) 0.69 (0.62-0.75) 0.67 (0.66-0.69)

ADRMine on ADRMine Dataset as published1 1784 tweets 0.76 0.68 0.72

Values are mean (95% confidence interval). Scores were achieved by each model over 10 training and evaluation rounds. MostlyPos refers to how the dataset is

used by Cocos et al (ie, removing tweets without span annotations), hence leaving mostly positive tweets. Standard refers to the dataset including a roughly 50-50

balance of positive to negative tweets as in Nikfarjam et al,2 and the balance of the ADRMine Dataset.

a https://github.com/azinik/ADRMine Accessed November 21, 2018.

b https://github.com/chop-dbhi/twitter-adr-blstm Accessed November

21, 2018.

c https://bitbucket.org/pennhlp/twitter-adr-blstm-download-tweets

Accessed November 21, 2018.
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in effect, when trained and tested with the full dataset, its perfor-

mance (0.64) is significantly lower than the state of the art for the

task (0.72).2 ADR mentions are very rare events on social media, as

has become evident through shared tasks on ADR detection in social

media. Even after three years, the best classifier reaches only a preci-

sion of 0.44, recall of 0.63, for an F-measure of 0.52.8 The upfront

stripping of negative examples, whereby 95% of the dataset con-

tains at least 1 ADR or indication mention, as done in Cocos et al,

results in an extremely biased dataset, which in turn results in a

model biased to the positive class that does not reflect any realistic

deployment of a solution to the original problem.
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