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Multi-omic approaches offer an unprecedented overview of the development, plasticity,
and resistance of cancer. However, the translation from anti-cancer compounds identified
in vitro to clinically active drugs have a notoriously low success rate. Here, we review how
technical advances in cell culture, robotics, computational biology, and development of
reporter systems have transformed drug discovery, enabling screening approaches
tailored to clinically relevant functional readouts (e.g., bypassing drug resistance).
Illustrating with selected examples of “success stories,” we describe the process of
phenotype-based high-throughput drug screening to target malignant cells or the
immune system. Second, we describe computational approaches that link
transcriptomic profiling of cancers with existing pharmaceutical compounds to
accelerate drug repurposing. Finally, we review how CRISPR-based screening can be
applied for the discovery of mechanisms of drug resistance and sensitization. Overall, we
explore how the complementary strengths of each of these approaches allow them to
transform the paradigm of pre-clinical drug development.

Keywords: HTS screening, fluorescence-based assay, immunomodulatory compounds, anti-cancer therapeutics,
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INTRODUCTION

The systematic analysis of cancer genomes has led to the identification of recurrently mutated drivers
and, on a fundamental level, to a greater understanding of the diverse mechanisms of oncogenesis
(Bailey et al., 2018). Clinically, this genetic characterization has further refined the classification of
tumors, led to personalized treatment strategies, and guided pharmacological innovation (Liu et al.,
2018). Successful examples include the development of inhibitors targeting the tyrosine kinases BCR-
ABL in chronic myeloid leukemia (Druker, 2008) and ALK in a subset of lung cancers (Gristina et al.,
2020).

Unfortunately, several challenges persist in the clinical translation of cancer genetic information.
Importantly, several cancer alleles lead to loss of function that cannot be directly rescued by
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pharmacological means. In addition, the net phenotypic result of
complex genetic interactions may be difficult to predict. Further,
targeted inhibition of single biological pathways in malignant
cells often leads to resistance that operates at several levels:
outgrowth of genetically distinct subclones (Ding et al., 2012),
epigenetic rewiring (Rathert et al., 2015), transcriptional
heterogeneity (van Galen et al., 2019), metabolic adaptations
(Stevens et al., 2020), and post-translational feedback
mechanisms (Bertacchini et al., 2014). Finally, tumor extrinsic
factors, such as microenvironmental cues and the immune
response (Dao et al., 2021), lead to heterogeneous behavior of
genetically similar cancers among patients. The identification of
the functional adaptations of tumors driving resistance to therapy
has led to a crucial need for potent and specific pharmacological
inhibitors.

Transcending the mutational profile of cancer, screening
approaches that focus on functional surrogates of biological
activity, such as changes in cellular phenotype, gene, or
protein expression, directly assess the link between
perturbagen and desired clinical effect. Such screening
strategies do not require prior understanding of the molecular
target of the disease, nor of the mechanism of action of the
compound. Instead, the process of phenotypic screening directly
converges on biological effect. phenotypic screens can accelerate
the identification of compounds targeting these adaptations, thus
facilitating the bi-directional feedback between drug design and
clinical observations. Complementing this approach, novel
bioinformatic strategies can discover relationships between
chemical compounds, molecular targets, and biological
pathways, and genetic perturbation screens can identify drivers
of resistance. In this review, we describe how these technological
advances operate and how they have transformed cancer drug
development.

HIGH-THROUGHPUT SCREENING ASSAYS
FOR THE DISCOVERY OF ANTI-CANCER
COMPOUNDS
HTS assays offer the potential to accelerate the discovery and
development of new pharmacological compounds for various
types of medical indications (Abbott, 2003). In fact, many anti-
cancer, anti-glycemic or cardiovascular drugs found on the
market nowadays were initially identified via this strategy
(Macarron et al., 2011). In addition, technological
advancements have largely facilitated the way that HTS is
conducted. For instance, large libraries can be easily and
rapidly screened due to customizable robotic installations,
enhanced read-out technologies as well as the ability to
miniaturize assays (Liu et al., 2004).

Biochemical and Phenotypic Assays
Biochemical assays aim to detect, quantify, or study the activity of a
biological molecule in a given pathway. These would include for
example, activity assays such as the colorimetric mitochondrial
metabolic activity test (Mosmann, 1983), fluorescent-based assays
(Titus et al., 2012; Fouda et al., 2017), receptor-binding assays

(Takenaka, 2001) or disease-related assays (Ramaekers and
Bosman, 2004; Zock, 2009). As the name implies, biochemical or
target-based assays require prior knowledge of the desired target.
Once several hits are identified using such HTS screens, the drugs’
mechanism of action are already known as they interfere with the
reaction consisting of two major players (A+ B → C). This is the
main strength of this type of screening and can simplify or accelerate
the ability to design analogs and/or pre-clinical drug development.
For example, in a sophisticated study, Z. Chen et al. (2012). designed
a luminescence-based assay to screen for potential inhibitors of
Giardia lamblia carbamate kinase, a crucial enzyme for the
metabolism of this parasite. In fact, carbamate kinase converts
carbamoyl phosphate into several products including ATP. The
resulting ATP is then used by the luciferase luminescent enzyme to
generate light. Therefore, a greater light production correlates with
higher carbamate kinase’s activity. Screening almost 4,100
compounds, this assay identified enzyme inhibitors that could
potentially serve as drugs against the targeted pathogen. Although
biochemical screens succeed in identifying target-specific
compounds, many complex biological processes induced by the
drugs screened will be omitted, such as unexpected activities,
toxicities or responses (Zheng et al., 2013). For instance, if the
objective consists of developing an agonist molecule capable of
binding a specific receptor, then an assay based on ligand-
receptor binding may not be suitable as it cannot differentiate
between agonist and antagonist ligands during the screening
process since the effect of the ligand on signaling is not directly
assessed (Zheng et al., 2013).

Despite the importance of target-based assays in drug
development, phenotypic screening or ‘‘forward
pharmacology’’ has contributed to the discovery of most FDA-
approved drugs between 1999 and 2008, emphasizing its major
role in drug discovery (Swinney and Anthony, 2011). Phenotypic
screens are designed according to a disease’s characteristic, after
which compounds are screened for their ability to improve the
illness’s phenotype. Furthermore, prior knowledge of the drug’s
mode of action is not required, while still testing its activity and
efficacy. Nonetheless, the identification of the drug’s target later
becomes challenging. This would also limit one’s ability to
optimize the compound’s properties or develop series of
analogs prior to understanding the drug’s exact mode of
action. (Swinney and Anthony, 2011). Going back to the
previously described example, Z. Chen et al. (2011). have also
conducted a phenotypic viability assay to screen for several
compounds in a HTS. The cells were treated with the
compounds or control, after which the ATP levels were
measured using a commercially available kit based on the
luciferase activity. A greater light signal is associated with
more viable cells and therefore, a less efficient drug (Chen
et al., 2011). Interestingly, 28 hits in the target-based assay
were inactive in the viability screen, probably because of: 1)
difficulty crossing the cell membrane, or 2) the compounds
were converted by the parasite’s metabolism into inactive
products. This elegant example demonstrates that phenotypic
screens can detect physiologically active compounds, while being
more sensitive to the drugs’ pharmacokinetic properties and
without knowledge of the compounds’ targets (Chen et al., 2011).
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To sum up, both assays intend to provide different data related
to drug discovery. As biochemical assays identify compounds
hitting a specific target under study, phenotypic screens can pick-
out small molecules inducing a desired change in the phenotype
of the cell.

Discovery of Compounds Targeting
Identified Molecular Pathways in Cancer
While earlier versions of phenotypic HTS identified
chemotherapeutic compounds through direct cytotoxic or
growth-arresting effect on cancer cell lines, several of these
compounds have dose-limiting toxicities on normal tissues
intrinsically linked to their mechanism (such as DNA damage
or inhibition of cell division). A better characterization of
molecular pathways in cancer (Hanahan and Weinberg, 2000)
has inspired the search for less toxic compounds specifically
targeting these.

For example, in an elegant study, Sykes et al. (2016).
conducted a fluorescence-based differentiation screen in
acute myeloid leukemia (AML). The homeobox factor
HOXA9, normally downregulated in myeloid cells, is
expressed in the majority of AML, resulting in
differentiation arrest (Kroon et al., 1998). An estrogen
receptor-HoxA9 fusion protein was used to immortalize
cultures of murine bone marrow from a reporter mouse
with GFP-knocked into the lysozyme locus. Since lysozyme
is a granule protein expressed in differentiated cells, the
GFP expression allowed to screen for molecules capable of
triggering myeloid differentiation (Faust et al., 2000). In
this system, they screened 330,000 small molecules within
the NIH library and identified inhibition of dihydroorotate
dehydrogenase (DHODH) as a potent pro-differentiation
agent. This study has sparked an interest in testing
DHODH inhibitors in AML and other cancers.

Similarly, knowledge of molecular pathways that are
dysregulated in cancer can inform the development of
reporter cell lines in which the activity of the pathway is
coupled with expression of a reporter (fluorescence or
bioluminescence) amenable to HTS, a concept previously
termed “mechanism-informed phenotypic drug discovery”
(MIPDD) (Moffat et al., 2014). Wnt signaling is one of the
key regulatory pathways of cell development and stemness
and its dysregulation has been highly associated with cancer
growth, particularly in colorectal cancer, but also in many
more tumor entities (Zhan et al., 2017). Wnt ligands activate
a β–catenin/T-cell factor (TCF)-dependent transcription
program. Ewan et al. ran a cell-based assay to identify
compounds that could inhibit Wnt-dependent
transcription (Ewan et al., 2010). The screen used a
HEK293-based reporter cell line, coding for luciferase and
GFP under the control of a TCF-binding promoter. The
HEK293 cells could inducibly activate Wnt through a
Disheveled-estrogen receptor fusion (Dvl2-ER). As
estradiol levels triggered Dvl2 activity and increased the
amount of intracellular β–catenin, clones displaying TCF-
dependent transcription were selected by FACS sorting for

the screen. Out of the 63,040 compounds screened, 9 of those
who operated at the TCF-dependent pathway were selected
for further studies. While an exhaustive list of all anti-cancer
drugs discovered through phenotypic screens is beyond the
scope of this article, other notable examples include the use of
luciferase reporters of androgen receptor or sonic hedgehog
signaling to identify the inhibitor enzalutamide (Tran et al.,
2009)and vismodegib (Moffat et al., 2014), respectively. An
excellent review by Moffat and colleagues (Moffat et al., 2014)
demonstrates that 17 of the 48 FDA cancer drugs approved
between 1999 and 2013 were identified with the help of
phenotypic screens.

FIGURE 1 | CRISPR-Cas9 and RNA-seq to complement HTS
screening as means to highlight the drug’s potential target or biological
pathway.
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Discovery of Compounds Targeting the
Immune System
We recently described a fluorescence-based lymphocyte assay
designed as a tool to screen for immunomodulatory compounds
(Liu and Wang, 2012). This assay required a commercially
available mouse model containing a bacterial artificial
chromosome in which the Nur77 promoter is cloned upstream
of the green fluorescent protein (GFP) (Fouda et al., 2017). As a
result, engagement of the T-cell receptor (TCR) or the B-cell
receptor (BCR) triggers the Nur77 immediate early response gene
(within 3 h), which would turn on GFP expression in parallel
(Ashouri and Weiss, 2017). We thus exploited this system to
design a phenotypic screen centered on inhibiting T-cell
activation using GFP as a surrogate marker (Figure 1) (Fouda
et al., 2017). The system was then tested using a representative
library containing 4,398 small molecules (chemotypes selected
based on a common core structures). The primary screen led to
the discovery of 160 potential hits exhibiting immunomodulatory
activity. After validation, two compounds with anti-cancer
properties were identified: InhiTinib and TACIMA-218.
Although InhiTinib exhibited powerful suppressive activity on
activated CD8 T cells, this sulfonyl-containing compound could
also induce the production of reactive oxygen species (ROS) in
several murine and human cancer cell lines consequently
resulting in their cell death by apoptosis. Furthermore,
administration of InhiTinib to mice with large, pre-established
tumors significantly prolonged their survival (El-Kadiry et al.,
2020). Despite differences in its molecular structure, TACIMA-
218 triggered similar effects on various cancer cell lines
irrespective of their p53 status, with the exception that it
mainly targeted mitochondrial activity (Abusarah et al., 2021).

Limitations of Phenotypic HTS
In 2015, Vincent et al. formulated a “rule of 3” for phenotypic
screening with three criteria to assess the relevance of phenotypic
assays: 1) “System” to assess how representative of the disease is
the cellular assay; 2) “Stimulus” to assess how well can the
experimental conditions reproduce the cellular response to
study (e.g., inflammation). 3) “Readout” to assess the
relationship between the assay readout and the clinical end
point. From a technical standpoint, to properly identify
inhibitors or activators for a given molecular target or cellular
function, the quality of the assay should be first established to
ensure reproducibility and the ease in quantifying its triggered
signal (luminescence, fluorescence, or radioactivity). (Vincent
et al., 2015).

Although phenotypic screens enabled the discovery of several
first-in-class cancer drugs, they do not allow to elucidate the exact
mode of action and/or molecular targets. Therefore, the use of
other complementary strategies such as biochemical screening,
RNA-seq and CRISPR-Cas9 screening can complement HTS
findings, as they may easily narrow down the list of plausible
targets.

Additionally, significant efforts are being made to account for
the genetic heterogeneity found within human cancers and
identify pharmaceutical compounds whose efficacy is tied to a

specific genotype. In the case of RAS-mutant cancer, several
comparative HTS screens could identify bioactive compounds
tied to this genotype (Moffat et al., 2014). In addition, recent
advances in the ability to propagate, ex vivo, cancer stem cells
derived from patients with glioma or AML, allow to correlate
genotype with drug susceptibility. The Leucegene project is an
example of phenopytic HTS performed on arrays of patient-
derived samples in acute myeloid leukemia (Baccelli et al., 2019).

As traditional HTS relies on the use of in vitro models, its
efficacy in identifying drugs modulating interactions between
cancer cells and their microenvironment remains limited. In fact,
the tumor’s microenvironment interacts with the tumor itself,
altering its response to treatments (Whiteside, 2008). Three
dimensional models, or organoids, mimic better the tumor’s
complexity in vivo. In a study by Hou et al. (2018),
bioprinting-based 3D models were developed for HTS
screening. This assay led to the discovery of potent anti-
pancreatic cancer compounds against solid tumors, such as
bortezomib, a proteasome inhibitor. Most of the drugs tested
showed lower activity on the 3D models, compared to the 2D
models. Yet, some showed preference in hitting the 3D model,
such as disulfiram. Future HTS systems in vitro will likely
incorporate microenvironmental interactions and
multiparametric measurements of cellular response.

TRANSCRIPTOMICS

A crucial strategy in drug development requires the identification
of a cellular target that is functionally involved in the molecular
pathogenesis of a disease (Zheng et al., 2006). Although
traditional approaches are aimed to tune drugs against a
single-target (enzyme, receptor, etc.) or better known as the
“on-target” effect, it is now accepted that several complex
pathways dictate the mechanism of action of a given drug,
suggesting that “off-targets” with different biological
interpretations could explain the high attrition rates when it
comes to clinical trials (Waring et al., 2015). Failures due to lack
of efficacy or toxicity concerns highlighted the importance of
shifting towards a “one-size-does-not-fit-all” paradigm in
patients’ cohorts, and consequently a routine profiling for
genetic alterations is finding its way into clinical trials.

The Era of “Big Data” and Systems Biology
In the past decade, substantial technical advances in high
throughput molecular technologies, at the DNA, RNA and
protein levels illuminated on the complexity of human biology
and created unprecedented levels of datasets (Chen and Butte,
2016). This in turn has revolutionized another parallel discipline
that combines computational methods and machine learning
techniques with molecular information from multiple
biological and chemical databases, to better understand the
drug’s mechanism of action and link to molecular mechanisms
underlying complex diseases and clinicopathological effects
(Vamathevan et al., 2019).

Among the multiomics-driven molecular profiles (genomics,
transcriptomics, and proteomics), genomics has enabled the first
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attempts to discover new druggable targets in the human genome
through the analysis of genome wide association studies (GWAS),
opening a new era for human genetics to inform new therapies
(Visscher et al., 2017). A popular example is the “human
knockout” of PCSK9 gene (proprotein convertase subtilisin/
kexin type 9). Individuals with inactivating mutations in this
gene are protected against coronary diseases and show very low
levels of LDL cholesterol, which led to the development of PCSK9
inhibitors for the treatment of patients with genetic forms of
hypercholesterolemia (Khera and Ridker, 2017). GWAS studies
have been very useful in the context of cancer and have identified
novel cancer-susceptibility loci. Earlier studies have focused on
high penetrance genes (BRCA1/BRCA2) which warrant
surveillance at the population level. A first meta-analysis of 9
GWAS studies associated 27 commonly inherited loci in 10,052
breast cancer cases to an increased risk of developing breast
cancer (Michailidou et al., 2013). A recent study identified
subtype-specific susceptibility loci in 133,384 breast cancer
cases which informs that predisposition alleles have likely
differential impact across breast cancer-subtypes and suggested
novel drug targets with genetic evidence (Zhang et al., 2020).

GWAS from the United Kingdom Biobank (48,961 cancer
cases) and the Kaiser Permanente Genetic Epidemiology
Research on Adult Health and Aging cohorts (16,001 cancer
cases) also provided insights from pan cancer studies and have
detected 21 genome-wide significant associations that could
identify deregulated targets and carcinogenesis mechanisms
across tissue-types (Rashkin et al., 2020). United Kingdom
Biobank present a unique opportunity to identify novel
pharmacogenes and putative drug-targets for several complex
diseases (Bycroft et al., 2018).

One of the prominent applications of GWAS is
pharmacogenomics (Giacomini et al., 2012). The latter studies
the relationship between genetic variations observed in thousands
of individuals and corresponding drug response or metabolism.
Identified genetic variations/loci (aka pharmacogenomic
biomarkers) can serve as putative drug targets or risk loci
when assessing drug efficacy and safety (Abbott, 2003;
Karczewski et al., 2012). Bioinformatic approaches have
changed the landscape of pharmacogenomic research,
especially in cancer drug development (Iorio et al., 2016).

Initially, much of the pharmacogenomic (PGx) discovery was
carried out in the laboratory setting through cell line resources
such as the Cancer Cell Line Encyclopedia (CCLE) and the
Genomics of Drug Sensitivity in Cancer (GDSC) (Barretina
et al., 2012; Yang et al., 2013). PGx findings are aggregated by
PharmGKB, a public interactive tool for researchers investigating
how genetic variation affects drug response (Barretina et al.,
2012). As described previously, genetic association studies and
DNA sequencing capture the variation across the human genome
and propose loss or gain-of-function hypotheses. Yet, they cannot
elucidate the downstream or upstream effects underlying
complex pathways. In contrast to DNA driven approaches,
genome-wide transcriptional profiling (transcriptomics) can be
seen as a proxy source of information for the understanding of the
cellular changes under different treatments (drug vs. DMSO) or
conditions (cancer vs. healthy).

Systems biology approaches using transcriptomic data from
mRNA-sequencing and microarrays have been extensively used
to understand perturbations caused by drug or chemical
treatments to infer novel drug-targets, mechanism of action
and repurposing avenues for old and existing drugs (Barretina
et al., 2012). Public transcriptome databases can be leveraged to
inform target selection and validation. Functional hypotheses can
be interrogated from high throughput experiments such as
mRNA expression in normal tissues (GTEX), cancer patients
from The Cancer Genome Atlas (TCGA), or databases spanning
a wide range of diseases, model organisms and multiple tissue
types, such as the Gene Expression Omnibus (GEO) repository
and the ArrayExpress Archive of Functional Genomics Data
(Barrett et al., 2013; Cancer Genome Atlas Research Network
et al., 2013; GTEx Consortium, 2015). More recently, machine
learning and deep learning algorithms have used CRISPR-Cas9
genetic perturbation and transcriptomic data from thousands of
cancer cell lines to predict biomarkers of drug response and
cancer dependencies.

The following section will discuss the use of transcriptomics to
connect or cluster similar drugs, infer novel drug-target
predictions and identify novel drugs that could reverse
molecular states (aka drug repositioning) as a cost-effective
alternative to the classical drug discovery pipeline.

Drug-Induced Transcriptomics Provide
Insights Into the Changes Within Molecular
Pathways and a Better Understanding of
Drugs’ MoA
In 2006, the connectivity map (CMap) pioneered the concept that
commonalities in drug mechanism of action can be inferred from
similar transcriptional responses upon treating cancer cells with
1,309 bioactive compounds (Lamb et al., 2006). It was superseded
by the LINCS dataset expanding to over 1 million gene expression
profiles spanning ~20,000 chemical perturbations. The idea can
be summarized as follows: 1) Identifying a new chemical/drug of
interest with unknown property or MoA; 2) Experimental design
consisting of drug-treated cells vs. untreated or vehicle controls
(can be in vitro and in vivo); 3) Extraction of mRNA and
capturing global molecular perturbations via RNA-seq or
microarray assays; 4) Applying bioinformatic methods (e.g,
differential gene expression analysis) to extract a robust drug
induced gene expression signature that discriminate treated
groups at different dose levels and time points; 5) Applying
statistical algorithms (e.g, connectivity mapping) to score up
and down-regulated genes with respect to similar expression
patterns induced by reference compounds in the
connectivity map.

This “guilt by association” concept generates new hypotheses
for uncharacterized compounds. This approach has been applied
successfully to understand the MoA of celastrol, a natural herbal
compound (Engerström, 1990). Celastrol’s gene expression
mimicked HSP90 inhibitors and its activity on reducing the
androgen receptor-HSP90 interaction has been experimentally
validated in the LNCaP prostate cancer cell line (Hieronymus
et al., 2006). Although celastrol shared a low chemical similarity
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with these HSP90 inhibitors, it was intriguing how similarity in
transcriptional profiles can be independent of chemical structure
(Chen et al., 2015).

Given that structural andmolecular layers are complementary,
several recent studies have used integrative computational
approaches to elucidate drug MoA and propose new
repurposing avenues. A versatile method known as Drug
Network Fusion (DNF), has fused drug-centric networks
relying only on basic drug characteristics such as structural
information from pubchem and NCI60, and drug-induced
perturbation profiles from LINCS and CMap (Shoemaker,
2006; Subramanian et al., 2017; Kim et al., 2019). DNF
taxonomy identified most of the known drug communities,
was able to capture on and off-target effects and demonstrated
the scalability of unsupervised network methods in the context of
drug repurposing (Koleti et al., 2018).

Applications of Drugs- and shRNA-Induced
Transcriptomics to Identify Potential
Drug-Target Interactions
The LINCS database contains both gene expression profiles of
~20,000 chemical treatments and ~13,000 shRNAs targeting
3,800 genes across 9 cell lines (El-Hachem et al., 2017a;
Subramanian et al., 2017; Koleti et al., 2018) . This setting can
be used to infer novel drug-target interactions by correlating
expression profiles from a specific gene knock down (KD) with
drug-induced expression profiles. Pabon et al. (2018). have
trained a random forest classifier (RF) on a set of 29 FDA
drugs and found that this machine learning algorithm
correctly identified the target in the top 100 for 16 out of 29
FDA approved drugs (55%). They also found that for some
compounds such as proteasome inhibitors, chemical-induced
perturbations correlated well with the corresponding gene KD
(e.g, PSMA1). From a target-centric perspective, and using the RF
predictive algorithm, they identified phloretin and RS-39604 as
potential inhibitors of HRAS/KRAS respectively and validated
their activity at μM concentrations. They further showed that
wortmannin, a PI3K inhibitor, binds PDK1. This has been
validated by a model of wortmannin bound to the PDK1
catalytic domain and assessed with a PDK1-PIP3 interaction-
displacement assay which resulted in a decreased PIP3 interaction
with increasing concentrations of wortmannin. In contrast to
other classical methods that rely on chemical similarity, methods
based on drug-induced molecular perturbations provide an
unprecedented opportunity for polypharmacological therapies
and repurposing by identifying key pathological pathways
shared by multiple disease modules and prioritizing drug
targets that can lead to novel therapeutic alternatives (El-
Hachem et al., 2017b; Peyvandipour et al., 2018; Chan et al.,
2019).

Applications of Drug-Induced
Transcriptomics for Drug Repurposing
Since the creation of the earlier version of the connectivity map
(CMap), drugs that induce an anticorrelated expression profile

with respect to a given disease expression signature could be
considered as therapeutic agents. Using this algorithmic
technique, it was hypothesized that in a given “disease state,” a
set of perturbed gene sets or biological pathways can return to a
baseline or “normal state” following an effective drug treatment.
Sirota et al. (2011), showed that the antiulcer drug cimetidine
reduced tumor formation in lung adenocarcinoma using mouse
xenograft models. Chen et al. (2017a). identified anthelmintic
drugs as potential therapeutic candidates in hepatocellular
carcinoma (HCC). The disease signature was built by
contrasting gene expression profiles from cancer patients and
normal liver tissue from TCGA (Cancer Genome Atlas Research
Network et al., 2013). Among the tested FDA-approved drugs,
niclosamide showed strong reversal of the gene expression
signature in HCC and its efficacy was confirmed in vitro, in
patient derived xenografts and in genetic engineered models of
HCC. Interestingly, the measured reversal of expression by a
compound correlates with its efficacy in the tested cell lines. This
systems pharmacology approach is gaining popularity for
precision medicine applications (Chen et al., 2017b).

Gene expression (microarray and RNA-sequencing) has been
widely harnessed to understand drug-induced transcriptional
perturbations and how it implicates drug repurposing, target
and biomarker identification. Still, CRISPR/Cas9 functional
genomic assays are now powerful tools to identify context
dependent drug-targets; its combination with transcriptomics
could offer a path forward in drug discovery and development.

GENETIC PERTURBATION SCREENS

The most common approaches to study the causal link between
genes and cellular responses involve perturbing normal gene
expression using techniques that either: 1) alter the DNA
sequence of a gene to inactivate it (e.g., Cas9 or Cas12); 2)
alter levels of expression (inactive Cas9 fused with
transcriptional activators or repressors, or 3) repress a gene by
targeting mRNA transcripts for degradation (shRNAs). The
advantages of both CRISPR and shRNA screening technologies
are their scalability and flexibility. Using simple rules for the
design of gene targeting sequences, most protein-coding genes in
the genome can be efficiently perturbed. Thousands of shRNA
and CRISPR screens have been reported at the scale of the
genome in various contexts, ranging from identifying genes
that are essential in malignant cells, to those that mediate
resistance to chemotherapy or promote immune responses in
vivo (Zuber et al., 2011; Tzelepis et al., 2016; Manguso et al., 2017;
Wang et al., 2017; Dong et al., 2019).

In their simplest form, genetic perturbation screens can be
performed to identify genes that are essential for cellular growth
(Aguirre et al., 2016; Munoz et al., 2016; Tsherniak et al., 2017).
The Cancer Dependency Map (https://depmap.org/portal/) is a
collaboration between the Broad Institute and the Wellcome
Sanger institute (Aguirre et al., 2016; Munoz et al., 2016),
which screened the genome of more than a thousand cancer
cell lines. The screening of many cancer cell lines from different
tissues has enabled the identification of genes that are specifically
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essential depending on the tissue of origin or mutated oncogenic
driver. For example, comparisons of screening results between
RAS-mutated and RAS-wild-type leukemic cells identified
essential partners of oncogenic RAS(75).

Pharmacogenomic Screens
Since pharmaceutical compounds elicit a cellular response
characterized by coordinated gene expression programs,
genetic perturbation screens performed in the presence of
compounds can identify which genes are essential to such
responses (Colic and Hart, 2019).

CRISPR-based pharmacogenomic screens are widely used to help
identify drug targets and characterize mechanisms of therapeutic
resistance or sensitivity. In recent years, genome-wide CRISPR-Cas9
screens have successfully been used to identify candidate targets
across diverse cell types. In 2017, a screen by Hou et al. found that
loss of the genes SPRY3 and GSK3 drives resistance to FLT3-
inhibition in acute myeloid leukemia (AML) (Hou et al., 2017).
FLT3-inhibitors are currently in clinical trials as a monotherapy and
in combination with chemotherapy for the treatment of AML.
However, many patients ultimately develop resistance. Hou et al.
(2017). further demonstrated that SPRY3 and GSK3 expression
correlates with clinical resistance to the FLT3-inhibitor Quizartinib
in primary human AML samples, and inhibition of their
downstream pathways re-sensitizes AML cells to Quizartinib
in vitro. In addition to providing a novel resistance mechanism
to FLT3-inhibition in AML, these hits offered a strategy for targeting
of new pathways to lessen resistance.

Dr. Daniel Durocher’s group in Toronto have similarly used
genome wide CRISPR screening to study genes driving sensitivity

to PARP inhibition in human cancer cell lines. In 2018,
Zimmermann et al. (2018). published a series of CRISPR
screens demonstrating that loss of the genes coding for RNase
H2, an enzyme complex not previously linked to response to
PARP-inhibition, is synergistically lethal with PARP-inhibitors
(Zimmermann et al., 2018). The authors performed an initial set
of CRISPR screens to identify the RNASEH2 genes as powerful
sensitizers to PARP-inhibition, followed by a second set of
screens in RNase H2-KO cell lines to examine the
mechanisms underlying this result. This work demonstrated
that deficient RNase H2 activity impairs ribonucleotide
excision repair, producing PARP-trapping lesions and causing
genomic damage.

Experimental Considerations
Figure 2 demonstrates a typical workflow for CRISPR
pharmacogenomic screening. Pooled genetic screens involve
transducing cells with a pool of diverse shRNA or sgRNA
sequences, targeting a group of genes simultaneously, then
measuring their relative abundances over time using next-
generation sequencing. When shRNA or sgRNA sequences are
delivered within the cells using lentiviruses, the sequences
integrate in the genome and are propagated to daughter cells.
By counting the abundance of these sequences over time in the
population, it is possible to infer their biological effect in various
conditions, based on a fixed stoichiometry between shRNA or
CRISPR sequences and dividing cells due to lentiviral integration.
The optimal experimental design of a pooled genetic perturbation
screen aims to minimize stochastic changes in sgRNA abundance
due to cell culture or passaging, while maximizing the statistical

FIGURE 2 | Example of CRISPR or shRNA pharmacogenomic screen. Sequence A targets a gene essential to cell survival; B, D, E, F are biologically
neutral; G promotes drug resistance and C and H promote drug sensitivity. PCR: polymerase chain reaction, NGS: next-generation sequencing.
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power to detect biologically meaningful effects. Some important
experimental concepts are defined in Table 1.

Methods for CRISPR genetic screening have rapidly improved
and new tools and applications are continuously published. Using
data from previous genome-wide CRISPR screens, linear
regression models and deep learning algorithms have been
produced to improve the design of sgRNAs and reduce the
potential for off-target effects (Wang D. et al., 2019). Online
tools with these models are now available to help predict the on-
target activity of the user’s sgRNAs and select sgRNAs for Cas9
enzymes binding a variety of PAM sequences. The selection of
sgRNAs with fewer off-target effects considerably improves the
coverage of sgRNA libraries and reduces the potential of false
positive results. Several validated human genome-wide libraries,
such as the GeCKO v2 (Sanjana et al., 2014), Toronto KnockOut
(Hart et al., 2017), and Broad Brunello libraries (Doench et al.,
2016), have been made publicly available to increase the
accessibility of CRISPR screening.

From the standpoint of genetic perturbation screening, it is
important to consider the different effects of CRISPR and shRNA
on gene expression. CRISPR often leads to bi-allelic gene
knockout through the introduction of small insertions or
deletion. Consequently, if a given gene, involved in the
response of a cell to a pharmaceutical compound, is also
essential to survival of the cell, it will likely not be identifiable
in a pharmacogenomic CRISPR screen. In contrast, shRNAs have
a partial and varied effect on mRNA transcript abundance, so
theymight be better suited for the study of the subset of genes that
are essential to survival of the cell. However, a significant
drawback for shRNA screening is the greater occurrence of
“off-target” effects with shRNA: the targeting sequence of
shRNAs may affect other non-intended mRNA transcripts,
thus affecting the interpretation of some experimental results.
To circumvent this issue, the CRISPR system can be repurposed
to transiently enhance or repress gene expression instead of
producing a gene knockout (Maeder et al., 2013; Qi et al.,
2013). The CRISPR activation (CRISPRa) system involves the
fusion of deactivated Cas9 to a transcriptional activator domain.
The deactivated Cas9 no longer cleaves the DNA; instead, the
activator domain recruits the transcriptional machinery to

enhance expression of the target gene (Maeder et al., 2013).
Similarly, CRISPR interference (CRISPRi) is comprised of
inactive Cas9 fused to a repressor domain which acts to
temporarily reduce gene expression (Qi et al., 2013). In some
cases, CRISPRi may be preferable to the traditional CRISPR
system which can generate multiple DNA breaks and induce a
DNA damage response (Haapaniemi et al., 2018).

Computational Pipelines
A variety of publicly available resources exist for the analysis of
CRISPR screening data. The complete analysis of CRISPR-Cas9
screens requires multiple steps after NGS, including data
normalization, quality control, and identification of positively
or negatively selected genes and relevant biological pathways (Li
et al., 2014). Some of the most commonly used computational
tools for CRISPR data analysis are the MAGeCK, BAGEL,
CERES, and drugZ algorithms. These methods are based on
different statistical approaches and are each suited to specific
experimental designs.

The MAGeCK (Model-based Analysis of Genome-wide
CRISPR-Cas9 Knockout) algorithm was published in 2014 and
is one of the most popular comprehensive methods for analyzing
CRISPR data. MAGeCK uses a negative binomial model to test
whether sgRNAs differ significantly between conditions and
produces a list of FDR-adjusted hits (Li et al., 2014). Two
updated versions of MAGeCK, MAGeCK-VISPR and
MAGeCK-Flute, were released in 2015 and 2019 by the same
group (Li et al., 2015; Wang B. et al., 2019). The MAGeCK-Flute
package adopts the MAGeCK version suitable for the selected
experimental design and offers pathway enrichment analysis and
data visualization functions (Wang B. et al., 2019).

The BAGEL (Bayesian Analysis of Gene EssentiaLity) pipeline
was developed to leverage data from previous CRISPR screens.
BAGEL uses essential and non-essential reference gene sets to
identify novel essential genes in a screen and provides a Bayes
factor for each gene (Hart and Moffat, 2016). Although the
BAGEL algorithm is highly sensitive, the reference gene list
requirement limits its use.

Many cancer cell lines show high copy number variation
(CNVs). In CRISPR-cas9 screening, this presents an issue as

TABLE 1 | Frequently used concepts in CRISPR screening.

Concept Definition

Coverage Average number of cells infected by each sgRNA or shRNA. Calculated by dividing the total number of cells by the total
number of sgRNA or shRNA in the library. Example: “cells were propagated at a minimum coverage of 200x”

Sequencing depth The number of next-generation sequencing (NGS) reads mapped to sgRNA or shRNA sequences
Recovery The fraction of the library for which a sgRNA or shRNA is detected in the NGS data x number of times. Example: “80% of the

library was recovered at least 5 times”
Log2 fold-change (Log2FC) Change in abundance of individual sgRNA- or shRNA-infected cells, normalized for sequencing depth, between two

conditions, Log2-transformed. Example: Log2FC of 3 = 8-fold increase in abundance
Z-score Number of standard deviations below or above the mean of a given Log2FC in comparison to the distribution of all Log2FC

values. It is often used to report the effect of perturbing individual genes by integrating the Log2FC values for all sequences
targeting the gene

Dropout Loss of representation of a sgRNA or shRNA among the library recovered by NGS, either due to a biological effect or
stochasticity

Bottleneck effect Random dropout of sgRNA- or shRNA- infected cells from a population due to sampling of a small number of cells, for
example during passaging with high dilution
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sgRNA targets within high CNV regions may cause multiple
DNA double-stranded breaks and cell death independent of gene
essentiality (Meyers et al., 2017). CERES was designed to
compensate for this phenomenon by normalizing changes
specific to a cancer cell line. This reduces the number of false
positives; however, the algorithm requires CNV profiles from
multiple cell lines which may not be available for all screens
(Meyers et al., 2017).

The drugZ algorithm was developed specifically for the
analysis of pharmacogenomic CRISPR screens. DrugZ
calculates gene-level normalized Z-scores and FDR values, and
can be applied to identify genes involved in conferring drug
resistance and sensitivity (Colic et al., 2019).

Though widely used, a shortcoming of the described packages
is the required programming knowledge. More recently tools
such as Cas-analyzer and PinAPL-Py have been published to
provide complete web-based CRISPR analysis pipelines for
researchers with less computational experience (Park et al.,
2017; Spahn et al., 2017).

In Vivo Screens
Although the majority of CRISPR-Cas9 screens are performed
in vitro, the technology has also been adapted for in vivo use
(Chow and Chen, 2018). In vivo screening provides a better
disease model in contrast to in vitro cultures and more accurately
recapitulates the microenvironment of the chosen cell type.
Advanced forms of in vivo screening involve the use of Cas9
transgenic animals. In these screens, the sgRNAs are
intravenously injected or directly administered to the target site
within the animal and act directly within the chosen tissue (Chow
and Chen, 2018). In immunocompetent animals, this system also
mimics the immune involvement of the target site. However, this
method has the significant challenge of achieving the desired
number of transfected cells, sgRNA coverage and MOI within the
chosen tissue which may be poorly accessible (Chow and Chen,
2018). Another method of in vivo screening is the use of indirect or
transplant screens, which are performed by transplanting knockout
cells generated in vitro. Transplant screens similarly involve the
target site microenvironment; however, the engraftment rates of the
transplanted cells are highly variable, and some models may require
large numbers of cells to be successful. Indirect screens also often
require immune deficient hosts which less faithfully reflects the
tissue microenvironment and disease pathogenesis (Chow and
Chen, 2018).

CONCLUSION

The accumulated knowledge gained on disease
pathophysiology combined to the urgent need for new small
molecules with outstanding therapeutic potential highlight the
importance and potential of HTS. Although biochemical-based
HTS allow the discovery of chemotypes with known mode of
action or target, phenotypic screening provides a list of

compounds displaying a desired biological effect in the
absence of target(s) knowledge. Besides, the identification of
genes or phenotypes through pharmacogenomic or phenotypic
screens do not always provide information concerning the
pharmacological properties of the identified/lead compound.
Thus, phenotypic screening requires almost always
complementary biochemical approaches to fully characterize
the molecular target binding and MoA of the compound of
interest. A possible combinatory strategy or alternative would
consist of designing a library of competitive antagonists or
negative allosteric modulators prior to their screening in a
phenotypic assay. The latter approach is particularly interesting
as negative allosteric modulators are usually known for their
higher target selectivity compared to competitive antagonists.
This would then result in better selectivity and less side effects
while exhibiting the desired biological effect (Ni et al., 2019;
Slosky et al., 2021). Simultaneously, advancements in the field
of systems biology have led to the development of various
strategies capable of linking chemotypes with modulated
target(s), whereas CRISPR and shRNA pharmacogenomic
screens can identify genes essential to the pharmacological
property of the compound. CRISPR and shRNA screens
performed in the context of drug exposure are especially
useful to identify biological pathways in cellulo that
modulate sensitivity or resistance, which can inform
predictive models of patient response (when gene expression
data is available) or the development of pharmacological
synergies (when “druggable” targets are identified).These
powerful and synergistic approaches have led to the
approval of several new drugs and herald a bright future for
cancer drug development (Moffat et al., 2014).
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GLOSSARY

AML acute myeloid leukemia

BAGEL bayesian analysis of gene essentiality

BCR B-cell receptor

CCLE cancer cell encyclopedia

CMap connectivity map

CNV copy number variation

CRISPR clustered regularly interspaced short palindromic repeats

CRISPRa CRISPR activation

CRISPRi CRISPR interference

DNF drug network fusion

GDSC genomics of drug sensitivity in cancer

GEO gene expression omnibus

GFP green fluorescent protein

GWAS genome wide association studies

HCC hepatocellular carcinoma

HTS high-throughput screening

KD knock down

LDL low-density lipoproteins

MAGeCK model-based analysis of genome-wide CRISPR-Cas9

MIPDD mechanism-informed phenotypic drug discovery

MOI multiplicity of infection

NGS next generation sequencing

PAM protospacer adjacent motif

PCR polymerase chain reaction

PCSK9 proprotein convertase subtilisin/kexin type 9

PGx pharmacogenomics

RF random forest classifier

ROS reactive oxygen species

sgRNA single guide RNA

TCF β–catenin/T-cell factor

TCGA the cancer genome atlas

TCR T-cell receptor

UKB United Kingdom biobank
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