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Abstract

Recently it has been observed that cancer tissue is characterised by an increased variability in DNA methylation patterns.
However, how the correlative patterns in genome-wide DNA methylation change during the carcinogenic progress has not
yet been explored. Here we study genome-wide inter-CpG correlations in DNA methylation, in addition to single site
variability, during cervical carcinogenesis. We demonstrate how the study of changes in DNA methylation covariation
patterns across normal, intra-epithelial neoplasia and invasive cancer allows the identification of CpG sites that indicate the
risk of neoplastic transformation in stages prior to neoplasia. Importantly, we show that the covariation in DNA methylation
at these risk CpG loci is maximal immediately prior to the onset of cancer, supporting the view that high epigenetic diversity
in normal cells increases the risk of cancer. Consistent with this, we observe that invasive cancers exhibit increased
covariation in DNA methylation at the risk CpG sites relative to normal tissue, but lower levels relative to pre-cancerous
lesions. We further show that the identified risk CpG sites undergo preferential DNA methylation changes in relation to
human papilloma virus infection and age. Results are validated in independent data including prospectively collected
samples prior to neoplastic transformation. Our data are consistent with a phase transition model of carcinogenesis, in
which epigenetic diversity is maximal prior to the onset of cancer. The model and algorithm proposed here may allow, in
future, network biomarkers predicting the risk of neoplastic transformation to be identified.
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Introduction

Cancer exhibits widespread DNA methylation (DNAm) changes

compared to normal tissue [1–7]. As demonstrated by a number of

studies, genomic sites undergoing DNA methylation changes in

invasive cancers are already seen to accumulate changes in normal

tissue as a function of age [8–11]. All these observations have been

derived by analysing the changes in mean DNA methylation levels

at specific genomic sites. More recently, studies have begun to

explore and demonstrate the importance of DNA methylation

variability in cancer and other complex diseases [11–15]. As

shown by Hansen et al, cancer tissue is characterised not only by

changes in mean levels of DNA methylation, but importantly also

by increases in DNA methylation variability [12]. This increased

variability is seen at specific genomic regions, both spatially within

the region and the given sample, as well as across samples. This

latter inter-sample variability suggests that the variation may be

due to increased stochasticity [12,13,16]. The importance of

considering DNA methylation variability across samples was

subsequently demonstrated in the context of a prospective study

in cervical cancer: it was shown that cytologically normal samples,

collected three years in advance of neoplastic transformation,

exhibited increased levels of inter-sample DNA methylation

variation compared to age-matched normal samples which did

not progress to neoplasia [13]. Furthermore, by developing a novel

statistical algorithm called EVORA (Epigenetic Variable Outlier

for Risk Prediction Analysis), it was shown that differential DNAm

variability could identify risk markers more robustly than statistical

measures based on differences in mean DNAm levels [17]. This

result was attributed to the risk CpG markers exhibiting outlier

DNAm profiles, in which only a small subgroup of samples exhibit

aberrant DNA methylation. This again supports the view that

DNAm changes arising before the onset of cancer are, in part,

heterogeneous and stochastic [13,17].

From a statistical perspective, all studies so far have only

explored the dynamic changes in the mean and variance of DNA

methylation during carcinogenesis. As yet, no study has fully

explored the changes in DNA methylation correlations that
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accompany the neoplastic process. We refer to the study of

correlations between molecular features and their variance as

‘‘covariation’’.

Here, we decided to explore the dynamic changes in genome-

wide DNA methylation covariation patterns that happen during

the carcinogenic process. We hypothesized that dynamic changes

in the DNAm correlation patterns could shed further light on the

carcinogenic process itself. Specifically, we sought to determine if

the covariation in DNAm progresses in a linear fashion with a

maximum in the invasive cancer stage (as hinted by a previous

study [12]), or if instead, the covariation exhibits a non-linear

dynamics. By using genome-wide DNA methylation data from the

main stages in cervical carcinogenesis, we here demonstrate the

existence of CpG loci whose covariation in DNAm progresses in a

non-linear fashion, exhibiting a maximum in a disease stage prior to

the onset of cancer. This non-linear dynamics is reminiscent of an

underlying phase transition model of disease progression [18],

which we adapt to the epigenetics context and then validate in

independent cohorts, including prospectively collected samples.

Importantly, we demonstrate how the proposed model allows

identification of a network biomarker able to predict the risk of

neoplastic transformation three years in advance of transforma-

tion.

Results

The Dynamical Network Biomarker (DNB) algorithm
We decided to explore the dynamic changes in DNA

methylation covariation patterns during carcinogenesis in the

context of cervical cancer, since for this cancer the cell of origin is

known and is easily accessible in advance of neoplastic transfor-

mation as part of large routine screening programs and clinical

trials (e.g. the ARTISTIC trial) [13,19]. However, even for

cervical cancer, two major obstacles emerge. First, the analysis of

dynamic changes requires extensive time-course data from the

same individual prior to and subsequent to disease diagnosis, yet

such extensive time-course data is not available. Second,

measuring the methylation state of say *14,000 gene promoters

translates into the need to analyze well over 9 million pairwise

correlations, which is a computationally demanding task.

To overcome these challenges, we adapted a physical model of

disease progression, first proposed by Chen et al [18], to the DNA

methylation context (Materials and Methods). Briefly, the

model assumes that disease progresses through a series of physical

phase transitions and that those molecular features (i.e. in our

context these are CpGs) exhibiting a phase transition type

behaviour may be particular important for the progression of that

specific disease. By phase transition behaviour we mean an abrupt

increase and subsequent decrease in the covariation strength of a

set of CpGs which coincides with the transition between two

successive disease stages. Importantly however the model is

otherwise relatively assumption-free, and provides a numerical

prescription, called the Dynamical Network Biomarker (DNB)

algorithm, to identify sets of CpGs, called CpG-modules, which

may exhibit phase-transition like behaviours between progressive

disease stages. A module that does exhibit a non-linear phase-

transition like pattern is called a Dynamical Network Biomarker

(DNB) and here we wanted to assess the possibility that such a

module could be used to indicate the risk of disease progression.

The DNB algorithm circumvents the problem of temporal data

by approximating the unobserved temporal correlations in DNA

methylation between CpGs within a sample by non-temporal

correlations estimated over independent samples, i.e. from

different individuals but crucially all representing the same disease

stage [18] (Materials and Methods). This approximation

assumes that independently collected samples within a disease

stage represent slightly different time points of disease progression

of one representative individual within that same disease stage. To

justify the approximation, we conducted a detailed simulation

study, generating temporal DNA methylation data for a number of

CpGs and individuals and then subsampling one time point for

each individual (Materials and Methods). DNAm profiles of

CpGs making up artificial DNBs were generated according to a

phase transition type model in which the variation and co-

variation in DNAm increases and becomes maximal just before

the transition point (e.g. the onset of neoplasia) is reached

(Materials and Methods). We note that such a model is

consistent with the view that epigenetic plasticity may be highest in

stages prior to the onset of neoplastic transformation (Fig. 1). As

observed across a number of different individuals this means that

epigenetic profiles may be least predictable (i.e appear most

stochastic) in the stage just prior to neoplasia and cancer. Applying

the DNB algorithm to the simulated data revealed sensitivity

values around 0.5, indicating that the non-temporal approxima-

tion may be able to capture DNBs in real data (Fig. S1 in Text
S1). Thus, based on this simulated data, it is therefore possible to

apply the DNB algorithm on real data using a coarse-grained time

variable with as many time points as there are disease stages.

The DNB algorithm also circumvents the problem posed by the

high-dimensional correlation space (w9 million correlations), since

it uses a semi-supervised clustering approach to perform dimen-

sional reduction, whereby the salient dynamical changes are

captured by a relatively small number of ‘‘gene-modules’’ (in our

context ‘‘CpG-modules’’) (Materials and Methods). Thus, for

each data set representing a given disease stage, the DNB

algorithm infers a number of CpG-modules (Materials and
Methods). For each of these inferred CpG-modules and in each

disease stage, one then computes a ‘‘relevance score’’ which

measures the amount of DNAm variation and the strength of

DNAm covariation of the CpG-module members. Specifically, the

score for a given module m in disease stage t is estimated by the

formula

Author Summary

DNA methylation is a covalent modification of DNA which
can regulate how active genes are. DNA methylation is
altered at many genomic loci in cancer cells, leading to
widespread functional disruption. Importantly, DNA meth-
ylation alterations across the genome are seen even in
early carcinogenesis. Although the pattern of DNA
methylation change during carcinogenesis has been
studied at individual genomic loci, no study has yet
analysed how these patterns change at a systems-level,
specifically how do DNA methylation patterns at pairs of
genomic sites change during disease progression. Doing
so can shed light on how the epigenetic diversity of cell
populations changes during the carcinogenic process. This
study performs a systems-level analysis of the dynamic
changes in DNA methylation correlation pattern during
cervical carcinogenesis, demonstrating that epigenetic
diversity is maximal just prior to the onset of cancer.
Importantly, this supports the view that the risk of cancer
development is closely related to an increase in epigenetic
diversity in apparently healthy cells. In addition, the study
provides a computational algorithm which successfully
identifies the altered genomic sites confering the risk of
cervical cancer.

Dynamics of Epigenetic Diversity in Carcinogenesis
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Smt~SDmt|
PCCmt

PCC
(o)
mt

ð1Þ

where SDmt is the average standard deviation of the DNA

methylation profiles of the CpGs making up the module as

assessed over samples within disease stage t, PCCmt denotes their

average pairwise Pearson correlation coefficient, and PCC
(o)
mt

denotes the average Pearson correlation between the module

features and their complement, i.e. all other non-module CpGs

(Materials and Methods). As shown by Chen et al, this

heuristic score can be motivated solely on theoretical principles

[18] (see also Materials and Methods). However, as we argue

next, it can also be motivated biologically (Fig. 1). Specifically, we

seek groups of CpGs with large co-variability in specific disease

stages, which means high variability and absolute pairwise

correlations. Thus, the relevance score should be proportional to

SDmt, since this represents the average variability in DNAm of

these CpGs in a given disease stage t. Similarly, the score should

be proportional to the ratio PCCmt=PCC
(o)
mt , since this measures

the coherence of the module CpG’s DNAm correlations relative to

the rest of the assayed CpGs (Fig. 1A–B). Thus, for a given fixed

module m, studying how the score Smt changes as a function of

disease stage t will inform us about the dynamic changes in DNAm

covariation patterns that the module CpGs/genes incur during

carcinogenesis. By construction, this score is likely to be maximal

for the disease stage in which the module was inferred. However,

for the same module, the score it obtains in other disease stages

will provide highly non-trivial information about the underlying

dynamics and biological relevance of its member CpGs/genes

Figure 1. The dynamics of DNA methylation in carcinogenesis. A) Progressive changes in DNA methylation are shown for a number of cells
and for three disease stages, as shown. For each cell we only depict 6 CpG sites, which are assumed to map to high-CpG dense promoters and thus
most start out as unmethylated (yellow colour). With time, some of these CpGs acquire methylation (blue) and once aquired these are relatively
stable marks. However, at the cellular population level, the hypothesis is that DNA methylation patterns become least predictable, i.e become most
stochastic and diverse, in stages just prior to the onset of neoplasia. Measured in time, covariances in DNA methylation will be maximal in this high
risk stage because no dominant subclone exists. Consistent with observations, CpG sites become more homogeneously methylated (more
predictable) once the cancer has developed. B) Upper panel: Hypothesized pattern of variation of the average DNA methylation as measured over a
population of cells in each disease stage. Depicted are the patterns for 6 hypothetical CpGs. Observe how the variability in DNA methylation for
certain CpGs would be maximal in the high-risk stage, due to temporal variations in the dominating subclone population. Lower panel: Relevance
network representation of the correlation strengths with disease stage with thick edges representing strong correlations. CpGs exhibiting maximal
variation (SD) and covariation (PCC), but low correlation to other CpGs (PCCo), at the transition point to neoplasia define a Dynamic Network
Biomarker (DNB).
doi:10.1371/journal.pcbi.1003709.g001
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during carcinogenesis. We can further use independent data from

similar or other disease stages to validate the score predictions of

the modules derived from the training data.

The dynamics of DNA methylation covariation patterns in
cervical carcinogenesis

In order to test the DNB algorithm in the DNA methylation

context, we collected DNA methylation data from six progressive

stages in cervical carcinogenesis, all generated using the same

Illumina Infinium 27k platform [20], which measures DNA

methylation at over 27,000 CpG sites (*14,000 gene promoters).

Because infection by the human papilloma virus (HPV) is a

necessary, but not sufficient, factor for cervical cancer [19],

normal samples were stratified according to HPV status (if

known). Thus, the six disease stages were HPV2 normal cells,

HPV+ normal cells, HPV2 normal cells which become a cervical

intraepithelial neoplasia of grade 2 or higher (CIN2+) three years

later (‘‘CIN2+ precursor cells’’), HPV+ CIN2+ precursor cells,

CIN2+ cells and invasive cervical cancer (Fig. 2A). The DNA

methylation data was drawn from a total of four different studies,

abbreviated as ART, LBC1, LBC2 and CC (Fig. 2A). The ART

data set consists of 152 samples, encompassing the first four

disease stages. To clarify, these 152 samples are all cytologically

normal, yet 75 of these became CIN2+ after 3 years and are thus

denoted ‘‘precursor CIN2+’’. Data sets LBC1 and LBC2 are

similar in that they both contain CIN2+ samples, yet only LBC1

contains normal HPV2 samples, whilst the normal samples in

LBC2 were HPV+ (Fig. 2A). Finally, data set CC contains

invasive cervical cancers in addition to normal cervical samples

(presumed HPV2).

To infer modules of CpGs and to investigate their broad

dynamic changes in DNAm covariation, we first focused on

samples from only the 3 main stages: HPV2 normal cells, CIN2+
cells, and invasive cancer. These samples were drawn from data

sets LBC1 and CC, which constitute our training data (Figs. 2A–
B). Application of the DNB algorithm to these two data sets

resulted in four distinct CpG modules called LBC1-A, LBC1-B,

CC-A and CC-B, the terminology reflecting the data set which

they were derived from (Fig. S2 in Text S1). To clarify, we note

that inference of CpG modules via the DNB algorithm requires

samples which represent a normal reference (Materials and
Methods). Thus, in deriving LBC1-A and LBC1-B we used as

reference the normal samples of data set LBC1, whereas for CC-A

and CC-B we used the normal samples of data set CC. This

strategy ensures that results are not confounded by study-specific

effects.

Estimation of the relevance (i.e. covariation strength) scores of

these four modules in each of the 3 main disease stages revealed

highly distinctive dynamical behaviour, with LBC1-B and CC-A

modules exhibiting sharp increases specific to their disease stage

(Fig. 3). Curiously, module LBC1-B, in contrast to LBC1-A,

exhibited a clear maximum in the CIN2+ disease stage, i.e prior

to invasive cancer. To demonstrate that this is not an artefact of

the module construction and score estimation procedure, we

evaluated the relevance score of this same module in an

independent data set encompassing CIN2+ samples (LBC2 set,

Fig. 2). The score value attained by the LBC1-B module in this

independent set was highly concordant with that in the training

data, a result which was also true for the other inferred modules

(Fig. 3). Thus, the sharp maximum exhibited by the LBC1-B

module in the CIN2+ disease stage is a biological feature of the

CpG sites making up the module and not the result of

overfitting.

Non-linear dynamics of DNAm covariation patterns
signals the transition to neoplasia

The non-linear dynamics with the sharp maximum exhibited by

the LBC1-B module is reminiscent of an underlying phase

transition model, and thus we posited that these specific CpGs

could be specially important for cervical carcinogenesis. Indeed,

we posited that the relevance score of these sites may already show

increases in disease stages that precede CIN2+ and could thus be

used for risk prediction. To test this, we computed the relevance

score of the LBC1-B module CpGs in independent samples

representing HPV+ normal cells, as well as HPV2 and HPV+
precsursor CIN2+ cells. These precursor samples represent

cytologically normal samples at measurement, but which 3 years

later became CIN2+ and were drawn from the ART data set

(Fig. 2, [13]). Remarkably, the relevance score of the LBC1-B

module estimated in these independent samples representing these

intermediate disease stages were also intermediate, lying in

between those of normal HPV2 cells and CIN2+ samples

(Fig. 4). In fact, the relevance score of the LBC1-B module

exhibited a gradual monotonic increase from normal HPV2 cells

to normal HPV+ cells, to precursor HPV2 and HPV+ CIN2+
cells and finally to the CIN2+ stage (Fig. 4). In order to further

test the robustness of the data, we also recomputed the relevance

score of this module for invasive cervical cancers stratified

according to their stages, and these were never higher than for

the CIN2+ disease stage (Fig. 4). We also computed the relevance

scores of the other 3 modules in these independent samples, and

interestingly, none of the other 3 modules exhibited a maximum

prior to the onset of invasive cancer (Fig. S3 in Text S1). Thus,

this highlights the distinctive nature of the LBC1-B module.

To test if the LBC1-B module can predict the risk of neoplastic

transformation, we first asked if the CpGs making up the LBC1-B

module overlapped with the 140 risk-associated CpGs previously

derived using the EVORA algorithm [13]. We observed that the

LBC1-B module, consisting of 91 CpG markers, exhibited a strong

overlap (33/91, Pv10{16, Fig. 5A–B) with the 140 risk CpGs

reported in [13]. This is remarkable given that the LBC1-B

module and the 140 risk CpGs were derived from independent

data sets and different disease stages (LBC1 and ART, respec-

tively). Not surprisingly, the LBC1-B markers were highly enriched

for PolyComb Group Target genes (PCGTs) [21] (Fisher test,

Benjamini Hochberg adjusted Pv10{10), in line with the

observed strong PCGT enrichment of the 140 risk CpG sites

[13]. Importantly none of the other modules exhibited an overlap

with the 140 risk CpG sites as strong as our candidate DNB

(Fig. 5A).

To formally demonstrate that the inferred LBC1-B module can

predict the risk of neoplasia we computed an average methylation

risk score over the 91 CpG markers for each sample in the ART

set (see Fig. 2A, [13]). This risk score was predictive of prospective

CIN2+ status with an AUC = 0.62 (P~0:005, Fig. 5C), similar to

the AUC of the 140 risk CpGs reported in [13] and higher than

that of the other inferred modules (Fig. 5C). Thus, LBC1-B is a

candidate dynamical network biomarker (DNB), signaling the

transition to a neoplastic state.

Increased covariance of risk CpG sites prior to CIN2+ is
followed by homogenization in invasive cancers

That the relevance score of the LBC1-B/DNB module reaches

a maximum in the CIN2+ stage, with a subsequent decline

observed in invasive cancer indicates that for these particular CpG

sites there is a reduction in the DNAm covariances as evaluated

across the cancers. To understand why DNAm covariances in

Dynamics of Epigenetic Diversity in Carcinogenesis
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cancer may be reduced, we generated heatmaps of DNA

methylation for the 91 DNB CpGs across all major disease stages

ranking samples within each disease stage according to the fraction

of methylated sites (using a relaxed bw0:2 threshold) (Fig. 6).

This fractional methylation score exhibited a striking bi-modality

within the CIN2+ disease stage, with some CIN2+ samples

exhibiting high methylation fractions and others exhibiting much

lower levels (Fig. 6). Remarkably, almost all 91 CpGs acquired

extensive methylation in the great majority of invasive cancers.

Thus, this clearly demonstrates that CpG sites already undergoing

changes before morphological transformation, continue to under-

go further DNAm modification in CIN2+ and cancer cells. The

observation that samples are particularly diverse and bi-modal in

the CIN2+ stage suggests that epigenetic diversity may be highest

in this disease stage, with those CIN2+ samples exhibiting the

methylator phenotype (i.e. a high methylation fraction) being on

course to becoming invasive cancers.

Risk CpGs are specially associated with HPV status and
age

Many of the risk CpGs making up the DNB module exhibit

significant methylation increases in CIN2+ cells, since they were

selected by comparing DNAm levels between CIN2+ and normal

cells. Based on the observed gradual increase in the relevance

score of the DNB from normal HPV2 to normal HPV+, to

precursor CIN2+ HPV2 and subsequently to precursor CIN2+

Figure 2. Datasets and analysis strategy used. A) Distribution of samples according to dataset (LBC1, CC, ART, LBC2) and disease stage in
cervical carcinogenesis. Datasets LBC1 and CC were used for training, i.e. the DNB algorithm was applied to these sets only to infer candidate DNB
modules. Datasets ART and LBC2 were used to test the predictions of the module scores obtained in the training data. B) The overall analysis strategy
was to use LBC1 and CC as training sets, to infer candidate DNB modules across the 3 main stages of cervical carcinogenesis: normal, CIN2+ (cervical
intraepithelial neoplasia of grade 2 or higher) and invasive cervical cancer, as shown. After computation of the relevance scores, measuring the
strength of covariation in DNAm, of the inferred modules, we identified a candidate DNB(s) as the one exhibiting a maximum in the score in a stage
(CIN2+) prior to invasive cancer. Finally, for this DNB module, we compute its score in independent data sets profiling samples from a previously
considered disease stage (i.e. LBC2 for CIN2+) or from other intermediate disease stages (e.g. ART for normal HPV2, normal HPV+, precursor CIN2+
HPV2 and precursor CIN2+ HPV+ cells). Prediction is that the scores in the CIN2+ LBC2 samples should agree with those of the CIN2+ LBC1 samples,
and that the score values in disease stages N(HPV+), pre-CIN2+(HPV2) and pre-CIN2+(HPV+) should be intermediate between N(HPV2) and CIN2+.
doi:10.1371/journal.pcbi.1003709.g002

Dynamics of Epigenetic Diversity in Carcinogenesis
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HPV+ cells, we argued that the CpGs making up the DNB module

would also be associated with HPV status. Averaging the methyl-

ation values over the 91 DNB CpGs for each sample in the ART

dataset (Fig. 2A) confirmed a significant increase in the HPV+
precursor CIN2+ cells compared to their HPV2 counterparts

(Fig. S4 in Text S1). To further confirm this association with HPV

status, we investigated the DNA methylation profiles of these 91

CpGs in head & neck cancer [22], another cancer for which HPV is

a risk factor: we observed that these CpGs were overwhelmingly

hypermethylated in HPV+ head & neck cancers compared to their

Figure 3. Broad dynamic changes of inferred CpG-modules. The changes in the relevance score as a function of main disease stage (as
indicated) for each of the inferred modules. LBC1-A and LBC1-B were derived from comparing CIN2+ to normals (HPV2 normals) in set LBC1, while
modules CC-A and CC-B were derived by comparing cervical cancers (CC) to HPV2 normal cervical tissue in data set CC. The stages shown are
N(HPV2), CIN2+, and cervical cancer (CC). In red, we show the relevance score attained by these same modules in an independent test data set
consisting of CIN2+ samples (LBC2 set).
doi:10.1371/journal.pcbi.1003709.g003

Figure 4. Dynamical Network Biomarker (DNB) in cervical carcinogenesis. The changes in the relevance score of the LBC1-B CpG module,
termed a DNB, as a function of disease stage: the stages shown are N(HPV2), N(HPV+), preCIN2(HPV2), preCIN2(HPV+), CIN2+, CC stages 1,2 and 3.
Note that the samples from stages N(HPV+), preCIN2(HPV2) and preCIN2(HPV+) were drawn from completely independent test sets and that these
samples exhibit relevance scores which are intermediate between N(HPV2) and CIN2+, in line with their disease stage. Darkred dashed line indicates
hypothetical switching point in the transition from cytologically normal cells at risk of CIN2+ to CIN2+. (Abbrev: N = Normal, preCIN2+: precursor
CIN2+ cells, CIN2+ = cervical intraepithelial neoplasia of grade 2 or higher, CC = cervical cancer).
doi:10.1371/journal.pcbi.1003709.g004

Dynamics of Epigenetic Diversity in Carcinogenesis
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HPV2 counterparts (Fig. S5 in Text S1). We also asked if the

average methylation over the 91 CpGs would correlate with age,

another risk factor for CIN2+. Interestingly, this was indeed the case

and it did so independently of HPV status and prospective CIN2+
status (Fig. S4 in Text S1). To further assess the biological

significance of these 91 CpGs, we randomly selected another 91

Figure 5. DNB module predicts risk of neoplastic transformation. A) Fractional overlaps of the four inferred modules with the 140 risk CpG
set identified using EVORA [13] in the ART cohort. B) Statistically significant overlap of the 91 DNB module CpGs with the 140 risk CpGs. Note that by
construction, none of the CpG markers in module LBC1-A overlap with those in the DNB (LBC1-B). C) ROC AUC analysis for the average methylation
risk score for the DNB (LBC1-B) module. We provide the AUC and associated P-values of significance for LBC1-B (in red), and for the other 3 modules
(in black).
doi:10.1371/journal.pcbi.1003709.g005

Figure 6. DNA methylation changes of DNB markers during cervical carcinogenesis. Heatmap depicts the DNAm levels of the 91 CpGs
making up the DNB module (LBC1-B) across six stagtes in cervical carcinogenesis, as indicated. In each disease stage, samples have been ordered
according to the average fraction of the 91 CpGs that exhibit a methylation beta-value larger than 0.2 (see upper panel).
doi:10.1371/journal.pcbi.1003709.g006

Dynamics of Epigenetic Diversity in Carcinogenesis
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CpGs from the same dataset, and recomputed the association

between average methylation and HPV status or age. In only 2 of

10,000 random selections of 91 CpGs, did we observe discriminatory

P-values as extreme as the ones for the actual 91 LBC1-B CpGs (Fig.
S4 in Text S1, FDR v0:001 for both age and HPV status). Thus,

this shows that these particular CpG sites undergo preferential

methylation increases in normal tissue as a function of age and in

pre-neoplastic lesions as a function of current HPV status.

Discussion

To the best of our knowledge, this is the first study to analyse

patterns of DNAm covariation during carcinogenesis. We used

cervical cancer as our model since for this cancer it is possible to

acquire relatively large numbers of samples prior to neoplastic

transformation, thus allowing the stages prior to neoplasia and

cancer to be assessed. From a computational perspective,

analysing pairwise correlations in DNAm of ,27,000 CpGs is

technically very demanding, due to the need to analyse millions of

pairwise correlations. To circumvent this problem, we used a

statistical algorithm, grounded on physical principles [18,23], to

allow us to identify CpG modules exhibiting interesting dynamical

changes in DNAm covariation patterns.

By applying this algorithm to only three disease stages of

cervical carcinogenesis (normal, CIN2+, cancer), we identified one

CpG module, called a dynamical network biomarker (DNB),

whose covariation exhibited a non-linear pattern with maximal

covariation during the CIN2+ disease stage, i.e. a stage prior to

invasive cancer. By using DNAm data from independent CIN2+
samples and other disease stages we further validated this result,

thus demonstrating the biological and statistical significance of the

non-linear dynamics exhibited by this specific CpG module. The

non-linear dynamics of the module’s covariation strength is

reminiscent of a phase transition model, suggesting that the CpGs

making up this module may be of particular biological

significance. Confirming this, the DNB module exhibited a very

strong overlap with 140 risk CpG sites which we identified

previously using independent samples prior to neoplastic trans-

formation [13]. We stress again that this overlap was highly

statistically significant and non-trivial given that the two sets of

CpGs were derived from entirely different data sets. This strong

overlap meant that the DNB could predict the prospective risk of

CIN2+ in cytologically normal cells 3 years in advance of

morphological transformation with a statistically significant AUC

value of 0.62 (P~0:005). Confirming the role of the DNB CpGs as

risk indicators of prospective CIN2+ status, we found that they

were strongly associated with HPV status in cells of normal

cytology. Moreover, the same CpGs were also associated with

HPV status in head & neck cancer. Importantly, the other

modules which the algorithm inferred did not exhibit maximal

covariation prior to cancer, and these modules were on the whole

also less interesting, exhibiting significantly lower overlaps with the

previously identified 140 risk CpG sites.

In order to understand the biological significance of these

findings, we generated heatmaps of the DNAm patterns of the

DNB CpGs across all disease stages. This showed that these

particular CpG sites exhibited a striking bi-modality, specifically

within the CIN2+ stage, with some CIN2+ samples exhibiting

hypermethylation at most of these sites, whilst other CIN2+
samples showed hypermethylation at only far fewer CpGs. This bi-

modality is therefore a major driver of the increase in DNAm

covariation at these CpG sites. In the invasive cancer stage, all of

these CpG sites become hypermethylated in effectively all cancers,

thus lowering the covariation. Biologically, this suggests that the

emergence of an invasive cancer requires most of these CpG sites

to become methylated. The observed bi-modality in the CIN2+
stage further suggests that some CIN2+ samples are much closer to

the invasive cancer stage than others. This indicates that CIN2+ is

a stage where epigenetic diversity across samples is maximal or

near-maximal, meaning that a sample’s epigenetic profile is least

predictable (i.e. most stochastic). It is entirely plausible that this

maximum in inter-sample epigenetic diversity reflects a disease

stage where epigenetic mosaicism is also highest within individual

tissue samples, consistent with the hypothesis put forward by

Feinberg and colleagues that epigenetic diversity is a driver of the

carcinogenic process [2]. Indeed, since the DNAm measurements

considered here were taken in samples that consist of whole cell

populations, a likely interpretation of the observed phase transition

dynamics is a concomitant increase in epigenetic plasticity within

individual samples, i.e. an increase in the number of distinct

epigenetic subclones [11,24]. This increase in epigenetic mosai-

cism then leads to a substantial increase in the risk of a cancer cell

emerging. The subsequent decrease in variability and co-

variability observed in invasive and highly proliferative cervical

cancer (Fig. 4) may reflect either the emergence of a dominant

tumour subclone or evolutionary convergence of tumour sub-

clones. Thus, the heterogeneity or diversity in DNA methylation

patterns undergoes an abrupt increase at the onset of neoplasia

with more homogeneous profiles before and after this epigenetic

switching point. Importantly, the variability and heterogeneity in

DNAm profiles remains higher in cancer compared to normal cells

(Fig. 4), consistent with previous observations [12].

The non-linear phase transition dynamics behaviour of the

DNB module could have deep practical implications. In fact, given

that the DNB was identified from only 3 stages in carcinogenesis

(normal cells, CIN2+ and invasive cancer), this raises the exciting

possibility that risk biomarkers could be identified from multi-stage

non-prospective data, although validation will require prospective

samples, as done here.

It is also important to discuss the potential merits of the phase

transition DNB framework for risk prediction, in comparison to

the EVORA (Epigenetic Variable Outliers for Risk prediction

Analysis) algorithm [13], specially since both are able to predict

prospective CIN2+ status with similar AUC values. First of all,

EVORA is a univariate feature selection method that aims to

identify methylation outliers, in contrast to the DNB framework

which performs feature selection in a multivariate fashion relying

heavily on the dynamic changes in DNA methylation covariation

patterns. Hence, the DNB formalism does not rely on the existence

of methylation outliers. This is an important point, because as

shown by us previously, methylation outliers may not be as

prominent in other more heterogeneous tissue types such as blood

[17], whence why EVORA may not be applicable to prospective

studies conducted in blood tissue or in surrogate tissues unrelated

to the cell of origin of the cancer. Thus, the DNB framework may

provide a more general mathematical framework for identifying

risk biomarkers from epigenetic profiles in a wider range of tissues.

Secondly, if DNA methylation changes are highly variable and

dynamic in cell populations predisposed to neoplasia, then

methylation levels per se may be less useful as risk biomarkers.

Consistent with this, differential methylation statistics were less

sensitive to identify risk markers in the prospective setting [13,17].

Instead, the strong correlations between highly dynamic markers

would provide a more stable, network-based, risk biomarker [18].

Thirdly, we have seen that the DNB formalism can identify disease

risk biomarkers from non-prospective multi-stage data. Indeed, the

DNB module was identified by comparing normal to CIN2+ cells

and by further observing the dramatic increase in the DNB score
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between normal and CIN2+ cells and the subsequent drop in

invasive cancer. In contrast, EVORA appears to be less useful to

identify risk biomarkers from disease stages where cells have

already undergone neoplastic transformation [17].

Finally, it is also important to discuss the observations made

here in the context of the original dynamic system-omic model of

Chen et al [18]. Even though the DNB algorithm can be

motivated purely on biological grounds, without the need to

invoke large dynamic changes in DNAm, the original algorithm

was derived from an underlying dynamic model which assumes

that DNA methylation levels may be highly variable on time-

scales relevant to disease progression. Although at the single cell

level, DNA methylation is a relatively stable and mitotically

heritable mark, in rapidly proliferating cells DNAm replication

errors can occur [25]. Most importantly, at the population level

of thousands of cells, recent work has shown that DNA

methylation can indeed be highly variable in time [26]. In fact,

DNAm polymorphisms and stochastic variation has been

observed in time course in-vitro studies of relatively large normal

cell populations [26]. It is therefore plausible that in cells which

are predisposed to neoplastic transformation, that DNA methyl-

ation changes are less stable, particularly, when measured across

a population of cells, since specific subclones may outcompete

others for a period of time, with other subclones characterised by

a different DNAm profile taking over at a later stage. Supporting

the view that DNAm levels can be dynamic in carcinogenic cells,

we recently observed such dynamic changes in a time course

Illumina 450k DNAm profiling experiment covering 480,000

CpG sites in glioma and normal neural stem cells, both treated at

baseline with a BMP (bone morphogenetic protein) differentiation

inducing factor (BMP4), and followed up for a maximum of 64

days, with measurements taken at baseline, 8, 16, 32, 48 and 64

days. Specifically, we identified a non-negligible fraction of

CpGs that acquired significant hypermethylation (Dbw0:2)

during the time course, but which subsequently lost methylation

(Dbv{0:2) at a later time point, independently of passage

number, and with more pronounced changes observed in one

glioma stem cell line (Fig. S6 in Text S1). Thus, these data show

that a proportion of DNA methylation changes in a cell

population are not retained and are thus variable in time.

Hence, it is equally plausible that some of the DNAm changes

occuring in preneoplastic and neoplastic tissues could have a

dynamic component which could indicate a particular pheno-

typic state of the underlying tissue.

In summary, our results are consistent with a model in which

the variability and co-variability in DNA methylation increases

significantly as cells approach a ‘‘switching point’’ between normal

cytology and neoplasia. We propose that the ‘‘system-omics’’ DNB

framework presented here should be explored further as a means

of identifying disease risk biomarkers from multi-stage DNA

methylation data, or from fully prospective studies profiling

samples from easily accessible tissues such as blood or buccal cells

collected years in advance of diagnosis. In these studies the time of

sampling to disease diagnosis is variable between individuals.

Hence, with sufficient numbers of individuals, the framework

presented here could be exploited to identify epigenetically

changing modules which could provide more robust markers of

disease risk.

Materials and Methods

Data
The main DNA methylation data sets used in this work were all

generated with Illumina Infinium 27k beadchips, have all been

published previously [13,17] and are publicly available from GEO

(www.ncbi.nlm.nih.gov/geo/). See references for GEO accession

numbers. The distribution of samples in each data set according

to disease stage is provided in Figure 2.

Brief review of the Dynamical Network Biomarker (DNB)
algorithm

The original DNB algorithm is grounded on a dynamic

‘‘system-omic’’ model as described in detail in [18]. Although

there the application was to gene expression data, here we adapt

the formalism to the epigenetics context, and specifically to DNA

methylation data. Thus, we assume that we have DNA methyl-

ation profiles across tens of thousands of CpGs and for a number

of samples representing different progressive disease stages.

Although the original theoretical model describes dynamic

changes in time, happening in one individual, we shall consider

a surrogate approach (see next subsection for justification) in which

time is replaced by disease stage. Specifically, we assume that there

are a number of progressive disease stages, labeled by R, and we

assume that there are nR independent samples in disease stage R.

Furthermore, we assume that the transitions between specific

disease stages, which we here call ‘‘switching points’’, can be

modelled as fold-bifurcations [18]. A theorem in dynamical

systems theory, as applied to omic data, then states that a module

of CpGs exists satisfying the following properties as the switching

point is approached [18]:

N The variance in methylation of the module CpGs increases.

N The correlation in methylation between the module CpGs

increases.

N The correlation between module CpGs and other measured

CpGs decreases.

We stress that these are theoretical predictions which follow

from a minimal set of fairly realistic assumptions [18]. Thus, for a

given set/module M of CpGs in a disease stage R, it was proposed

that a score, SMR be computed as

SMR~SDMR

PCCMR

PCCo,MR

ð2Þ

where SDMR is the average standard deviation of the DNA

methylation profiles of the CpGs making up the module M across

the nR samples in disease stage R, PCCMR denotes their average

pairwise Pearson correlation coefficient as estimated across the nR

samples, and PCCo,MR denotes the average Pearson correlation

between the modules CpGs and their complement, i.e. all other

CpGs not in the module M. Thus, the score SMR becomes

maximal as the switching point is approached and would drop in

value beyond this point.

It is important to note that, of course, not all CpG modules one

may define or construct would exhibit an increase in this score as a

switching point is approached. However, those modules which do

show dramatic increases in the score between two successive

disease stages are of particular interest, since the associated CpGs

could then be used as disease risk indicators. These modules are

called Dynamical Network Biomarkers, and hence refered to as

‘‘DNB modules’’ [18].

Dynamic DNA methylation simulation model
Since acquiring dynamical genomic data from single patients is

at present impractical, we propose to explore correlations in

molecular profiles cross-sectionally, i.e. by taking single time point
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measurements (‘‘snapshots’’) of a sufficient number of different

patients, all with the same stage of disease. To demonstrate that

this cross-sectional approach is feasible and that computation of

correlations over snapshot samples can capture dynamical network

biomarkers (DNBs), we devised a simulation model. Without loss

of generality, we let the simulation represent a scaled-down version

of real data. Thus, we shall assume that we can measure the level

of some molecular entity (here DNA methylation of a CpG site) at

500 sites (‘‘CpGs’’) in a genome, and for each of 25 patients. We

shall further assume unobserved time-course molecular profiles for

each of these patients (with &100 equidistant time points). Each

patient is assumed to be in the same pre-disease stage, so that as

time goes on, each patient approaches the critical transition point,

characterised by the onset of disease. According to the theoretical

framework in [18], a DNB marker exists for each of the patients

and we assume that this DNB could in principle be detected by

measuring the molecular profiles. The DNB itself consists of a set

of highly correlated (or anticorrelated) CpGs each of which

exhibits an increase in methylation variance as time approaches

the critical point. At earlier time points the correlation of the DNB

genes is either absent or is masked by other sources of variation.

The precise DNB is allowed to vary from patient to patient, but we

also allow for some overlap. This is biologically justified since we

know that particular genes are more likely to be targets for

differential methylation or differential expression in early stage

disease. For instance, the importance in cancer of PolyComb Group

Target genes (PCGTs), which account roughly for over 1500 genes in

the human genome is undisputed [4,5] and further evidence for their

role in preneoplastic disease was presented in [13]. Thus, we assume

that the specific DNBs in each patient are drawn from a common

pool of 50 ‘‘risk-PCGTs’’, i.e 10% of the 500 features, which is

roughly the proportion of PCGT genes to all genes in the human

genome. However, we want the patient-specific DNBs to vary from

patient to patient, so the CpG (or gene) set for each patient-specific

DNB is constructed by randomly sampling 20 of the 50 CpGs. Thus,

the expected overlap of any two patient-specific DNBs is small and on

the order of 8 CpGs. This again is similar to the inter-sample overlap

of risk-CpGs observed in [13]. For each of the 25 patients we thus

construct a hypothetical time course of molecular profiles over 500

CpGs and 100 time points. For the 20 DNB CpGs selected from the

pool of 50 risk PCGT CpGs, we take their methylation values to vary

in time according to

bgs(t)~m(t)zvm(m(t))zvN (t) ð3Þ

where bgs(t) denotes the methylation b -value at CpG site

g[DNBs in individual s at time t (t[½0,1�), averaged over a large

number of cells making up the sample. In other words, the simulation

model is formulated not at the single cell level, but at the cellular

population level. We further note that the methylation b -value at

CpG g in sample s represents the fraction of cells that have that

particular CpG site methylated. Thus, this value is bounded

between 0 and 1, as one would expect for a random variable from

a beta distribution. Formulating the simulation model on this

scale has the advantage that the values are readily interpretable as

methylation fractions. In the above model, m(t) describes the

increase in the mean methylation level with time and we assume

this takes the form

m(t)~
1

2
ea(t{1) ð4Þ

with a parameter a, which we choose to be a~2:5. The exact

value of this parameter is not important, but we are implicitly

assuming (without loss of generality) that the CpG sites start out

unmethylated with b -values around 0.05. The maximum

attainable mean value is 0.5 corresponding to t~1. This

assumption too is not necessary but is convenient as explained

below. We point out that the non-linear increase in mean

methylation is also not essential and we could replace the above

exponential with a linear function of time. The second term in

equation 3 describes the increased variability in methylation as a

function of the mean methylation, whereas the third term

represents an intrinsic biological and technical noise which we

shall assume to be stationary so that vN (t)~vN .

Since, as explained above, methylation data is beta-

distributed we must reformulate the above in the logit-

transformed basis

ygs(t)~log
bgs(t)

1{bgs(t)
ð5Þ

in order to correctly incorporate the noise term which is

Gaussian in the logit basis, i.e.

ygs(t)~�yy(t)zs�yy(�yy(t))zsN (t) ð6Þ

where sN (t) denotes random normal deviates. Specifically, we

assume that [27]

s�yy(�yy(t))*N (0,
1

D�yy(t)Dgzc
)

sN (t)*N (0,sN )

where N (0,s) denotes a normal deviate of mean zero and

standard deviation s, and g and c are parameters that we take to

have values 1 and 0.8, respectively. These values are chosen to

generate realistic profiles. To justify the above model for the

variance, we first note that the DNA methylation measurements

are taken over large collections of cells. Thus, when the mean

methylation is 0.5, half of the cells have the particular CpG site

methylated (assuming a binary methylation state), while the

other half have this site unmethylated. Thus, at this point the

expected variability in methylation across the cell population is

maximal. With the above model, the variance in methylation is

indeed maximal at t~1 since m(1)~0:5 and �yy(1)~0. The above

model also ensures that the rate of variance increase grows as

the transition point is reached in line with previous models [27].

The constant value sN is chosen to be equal to (D�yy(0)Dgzc){1, as

required, since it should equal the intrinsic stochastic variation

at the initial time point.

For the 450 non-PCGT CpG sites we assume an uncorrelated

stationary pattern, i.e.

ygs(t)~sN V g =[DNBs ð7Þ

and so these features remain stably unmethylated.

Finally, to generate the methylation profiles on the appropriate

scale, we transform the ygs(t) values back into b -values using the

inverse of equation 5. We note again that since variability in DNA

methylation patterns is maximal at t~1, we consider t~1 the

transition or switching point representing the onset of a new

disease stage, e.g. neoplasia.
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Having generated hypothetical time course molecular profiles

bgs(t), we next sample for each individual s a random time point

t[½0,1�, thus defining a 500625 ‘‘static snapshot’’ matrix mgs. This

data matrix represents what in practice would be the observed

data.

Identification of the DNB in the simulated data
Given this observed data matrix, the question is now

whether clustering over the genes can identify a module of

CpGs which captures a ‘‘consensus’’ DNB across all the

considered patients. This consensus DNB should consist of the

selected 50 risk ‘‘PCGT’’ CpG sites. To test this we first

compute from mgs, the corresponding correlation matrix

between the CpGs. Next, from this correlation matrix we

construct an unweighted adjacency matrix with edges repre-

senting significant pairwise correlations, and finally use the

spectral decomposition algorithm [28] to identify modules (i.e.

communities of relative large edge density) in the resulting

graph. Next, we select the module with the largest variance in

methylation (here we average the standard deviation in

methylation of the constituent module CpGs) across samples

and declared this to be the candidate DNB. Sensitivity and

positive predictive values (PPV) are then calculated and

significance P-values of overlap between the true 50 DNB

markers (i.e the 50 risk PCGT CpGs) and those found in the

candidate DNB are estimated using a binomial test. A total of

100 different Monte Carlo runs (in each run new time-course

DNA methylation profiles and a new observed data matrix is

generated) were performed to test for robustness.

Construction of candidate DNB modules in cervical
carcinogenesis

Candidate DNB modules were inferred by adapting a previous

procedure [18]. Briefly, we compared DNA methylation profiles

between the normal and CIN2+ samples of set LBC1 and the

normal and cervical cancer samples of set CC (see Fig. 2).

Specifically, we used a Bayesian shrinkage linear model (limma)

[29] to derive in each case a ranked list of top discriminative

CpGs. The list of CpGs was selected using a false discovery rate

cutoff of 0.05 and imposing a threshold on the standard deviation

in DNAm as measured across the CIN2+ or cancer samples,

respectively. The thresholds on the standard deviations were

chosen from density plots of the standard deviation across all

CpGs, which revealed clear boundaries where the density

dropped significantly. The resulting thresholds were in the range

0.05–0.1. However, in cases where too many CpGs passed this

threshold, we capped the number of CpGs at a maximum of

around 1000. To identify clusters/modules we then applied the

robust partitioning around medoids algorithm [30] with a

Pearson distance correlation metric and with the number of

clusters variable between 2 and 10. The optimal number of

clusters was estimated using the average silhouette width [30] and

was found to be two in both the LBC1 and CC data sets, resulting

in 4 modules in total, denoted as (LBC1-A, LBC1-B, CC-A,

CC-B).

Module score computation and identification of the DNB
in cervical carcinogenesis

For each of the four inferred modules, a module score was first

estimated in the two training data sets, i.e. LBC1 and CC (see

Fig. 2), according to the equation 2 above [18]. Briefly, the

estimation of the score also requires a normal reference. For each

disease stage we used as normal reference the phenotypically

normal specimens of the corresponding study profiling the

samples. For the CIN2+ (all HPV+) samples from LBC1 we used

the normal samples of that same study as reference. For the

cervical cancer samples we used as reference the 15 normal

tissue samples from the same study. Thus, for each CpG in a

module we first estimated the mean and standard deviation in

DNAm across the normal reference samples. The DNAm

profiles across the samples in the disease stage where then

renormalised relative to this reference, resulting in normalised

z-scores reflecting deviations from the normal reference. The

standard deviation of these z-scores across the samples in the

disease stage were then computed for each CpG in the module.

The average of these standard deviations defines the measure

SD in equation 2. The average of the absolute pairwise

Pearson correlations between the CpG DNAm profiles in the

module defines the measure PCC. To estimate the correlations

of the module CpGs to other CpGs not in the module, we

randomly selected CpGs in the complement, computing the

absolute correlations of the module CpGs with these and then

averaging. A global average was obtained by running this

randomisation procedure a total of 10 times, which resulted in

stable values. Finally, the score for a candidate DNB module

was computed as in equation 2.

To identify DNBs we then studied the profile of the scores for

each of the 4 modules (LBC1-A, LBC1-B, CC-A, CC-B) across the

3 main stages represented in the LBC1 and CC datasets, i.e.

normal cells, CIN2+ and invasive cervical cancer. A DNB is a

module exhibiting a characteristic dramatic increase in the score

(at CIN2+ stage) with a subsequent drop at a later stage (i.e.

invasive cancer).

Testing of the modules scores in independent data
In order to test reproducibility, the module scores of the four

modules were also estimated in an independent data set (LBC2)

consisting of normal cells and CIN2+ samples. Thus, this allowed the

reproducibility of the score values obtaining in the CIN2+ disease

stage of dataset LBC1 to be assessed in a completely independent set

(LBC2). In addition, module scores were also evaluated in another

independent dataset (ART), profiling normal HPV2, normal HPV+
and precursor CIN2+ cells (both HPV2 and HPV+). Because the

latter three stages are intermediate between normal HPV2 and

CIN2+, we can further validate the framework since the prediction is

that the values for the intermediate stages should also be

intermediate between those for the normal HPV2 and CIN2+
stages. We note that as normal reference in the score computation

we used the normal samples of LBC2 for the CIN2+ stage of LBC2,

and the normal HPV2 samples of ART for the other 3 stages of the

ART set. We remark that in the ART set we had many more

samples, allowing the normal HPV2 state to be considered separate

from the normal HPV+ state. However, results are unchanged if they

had been merged.
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