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Abstract

Background

This is an exploratory pilot study of novel technology enabling people with mobility disability

to walk with minimal effort, in the “sedentary range”. The study’s premise is that impairment

of the leading physical activity of daily living, walking, is a major contributor to a dysmeta-

bolic state driving many prevalent “civilization diseases” associated with insulin resistance.

Methods

We explore within-subject changes in standard oral glucose tolerance (OGT) tests including

metabotropic molecules after 22 twice-weekly, 30-minute bouts of weight-supported light-

moderate physical activity in 16 non-diabetic obese, otherwise healthy, reproductive-age,

volunteer women walking on an “anti-gravity” lower-body positive pressure (LBPP)

treadmill.

Results

Subjects had reference base-line fasting plasma glucose and triglycerides (TG) but 2-hr

OGT insulin levels of 467 ± 276 pmol • liter-1 (mean± S.D.) indicating nascent insulin resis-

tance, compared to post-study 308 ± 179 (p = 0.002). Fasting TG decreased from 0.80 ±
0.30 mmol • liter-1 to 0.71 ± 0.25 (p = 0.03). Concomitantly plasma total ghrelin decreased

from 69.6 ± 41.6 pmol • liter-1 to 56.0 ± 41.3 (p = 0.008). There were no statistically signifi-

cant changes in body weight or any correlations between weight change and cardiometa-

bolic markers. However, there were robust positive correlations between changes among

different classes of peptides including C-reactive protein–Interleukin 6, leptin–adiponectin,

β-endorphin–oxytocin and orexin A (r 2 = 0.48–0.88).
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Conclusion

We conclude that brief, low-dose physical activity, walking on an anti-gravity LBPP treadmill

may improve cardiometabolic risk, exhibiting favorable changes in neuro-regulatory pep-

tides without weight loss in people with problems walking.

Introduction

Mobility disability, the leading form of disability, is increasing in step with epidemic obesity

[1, 2]. Although life-style interventions require sustained moderate—high levels of physical

activity [3, 4], persons with overweight/obesity are physically impaired in their ability to walk,

the leading energy-consuming activity of daily living (ADL). Thus, life-style change regimens

with diet and exercise recommendations, the primary therapeutic and preventive interventions

for numerous degenerative diseases including obesity, osteoarthritis and cardio-pulmonary

insufficiency, are rarely maintained long enough to be effective over the long term [3, 5, 6]

owing to the fact that exercise is hard and painful.

Availability of a NASA developed anti-gravity treadmill offloading body weight using lower

body positive pressure (LBPP) [7], prompted us to test whether use of this treadmill would

engender known positive metabolic effects of increasing physical activity [8]. We recruited a

convenience sample of 16 sedentary, obese, non-diabetic, reproductive-age volunteer Black

women, culturally disinclined to lose weight [9]. Therefore we chose an activity level well

below life-style guidelines [10], enabling comfortable, safe ambulation according with ADL

levels of painless exertion within the “sedentary range” unlikely to cause weight loss [4; 11; 12;

13].

Most interventions are implemented late in cumulative disease processes when the magni-

tude and the rapidity of recommended interventions exceed the speed with which calories

have been stored [14; 15]. Such relatively large and rapid changes (low calorie diets, moderate-

high intensity exercise) cause counter-regulatory ‘stress’ as maladaptive non-homeostatic dys-

autonomic responses, similar to mechanisms of insulin resistance [16]. Whereas exercise

(exertion) is beneficial in physically fit individuals [17], dose-response levels are circumstantial

and highly variable owing to intrinsic and environmental influences.

Although the “sedentary range” demonstrates that increasing physical activity is uncoupled

from appetite, interpreted as “dysregulation of energy intake” supporting recommendations to

exceed the sedentary range [13], we posit that uncoupling of appetite and food intake from

exertion might be beneficial. Lower levels of physical activity within the sedentary range, by

being undetected, imperceptible or “dysregulated”, might expend sufficient energy without

exertion that challenges lean body mass [14] or sensitizes appetite [12;18;19]. At the same time,

accumulating evidence supports positive effects of low intensity activity [20–23]. Whereas

most guidelines propose moderate to high intensity exercise to lose weight, there is little

research investigating metabolic effects of lower levels of energy expenditure without weight

loss [13; 20, 21] and, to our knowledge, none on brief, low-amount, activity-of-daily living

level ambulation.

This pilot study implies that an investment of 30 minutes of lower-body pressure (weight-

offloading) walking twice weekly for 10–12 weeks is sufficient to significantly reduce nascent

insulin resistance independent of weight change in non-diabetic reproductive-age Black

women.
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Methods

Subjects

Volunteers among hospital employees and their families (not related to or supervised by the

investigators) were recruited through word-of-mouth at SUNY Downstate Medical Center, a

convenience sample. They were offered participation in a study of “metabolic fitness” defined

as “the ability of the body to use energy from dietary sugars and fats”. Eligible were otherwise

healthy overweight–obese (BMI 28–50; mean ± SD: 35 ± 7), weight-stable, untrained, non-dia-

betic, pre-menopausal Black women aged 18 to 56 years (40 ± 11) (S1 Table).

Participants were willing and able to commit to 2–3 times weekly 30-minute bouts of exer-

cise on the weight-supporting treadmill for 12 weeks (more than 20 bouts) comfortably and

painlessly using the treadmill. They were not compensated but received a thorough metabolic

work-up described below, signing consent forms covering all aspects of this study approved by

the Institutional Review Board of SUNY Downstate Medical Center specifically for this study

(IRB# 12–044). Investigators blinded to accrued phenotypic data performed all assays and

measurements, treadmill supervision and statistics.

Exclusion criteria were shift-work and strenuous work-related functions, participation in

dieting or exercise programs the previous 3 months, surgical treatment of obesity, being preg-

nant or planning pregnancy, being smokers, taking medications known to affect energy bal-

ance or having musculo-skeletal or other conditions incompatible with using the treadmill.

We excluded subjects with known diabetes, hypertension and dyslipidemia and those using

psychotropic medications potentially affecting appetite regulation, oral contraceptives or ste-

roids of any type. They consumed no or only minimal alcohol.

Baseline history, physical and activity assessment. A structured 45-50-minute interview

based on questionnaires exploring demographic and socio-economic factors, food insecurity,

household stressors and a thorough medical history was conducted. Anthropometric measures

included weight, height, BMI, waist and hip circumferences. Blood pressure and heart rate

were measured after subjects had been seated for 5 minutes. Taking into consideration the cul-

tural habits and beliefs of our population, there was no “weighing in” or mention of body

weight, diet or dieting during visits to the laboratory. Most subjects were administrators

engaged in typically sedentary work. Daily activity was exclusively measured pre- and post-

study using a wrist-worn Fit-Bit accelerometer for two 3-day periods one of which included

one non-working weekend day (S1 Methods).

Fasting morning blood and oral glucose tolerance tests

An in-dwelling ante-cubital venous catheter was placed with the patient seated in a comfort-

able recliner. At time 0 of a standard 75 g oral glucose tolerance test (OGTT) blood was drawn

for determination of glucose and insulin, HOMA-IR, GLP-1, GIP, free fatty acids (FFA),

C-peptide, fasting C-reactive peptide (CRP), Interleukin-6 (IL-6), TNFα, leptin, total ghrelin,

total adiponectin, GIP, glucagon, triglycerides (TG), HDL-cholesterol, oxytocin (OXT),

β-endorphin and orexin A (ORA). During OGTT at 15, 30, 60, 90 and 120 minutes blood was

drawn for glucose, insulin, C-peptide, GLP-1 and FFA, allowing calculations at 2 hours and

area under the curve (AUC). Blood chemistry details are provided in Supporting Methods (S2

Methods).

Weight-supporting treadmill

The lower-body positive pressure (LBPP) treadmill (AlterG) [24] consists of a stationary heavy

metal frame with a movable gantry that can be raised to the level of a user’s waist and is
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attached to an inflatable clear-plastic malleable “skirt” surrounding the electric treadmill. (S1

Fig) The waist of the skirt is encircled with one portion of a zipper corresponding to a zipper

around the waist of neoprene shorts, worn by the subject. The treadmill’s mechanism covertly

measures the person’s weight, enabling determination of a percentage of body weight to be

off-loaded by treadmill pump inflation increasing pressure on the lower body. The maximum

pressure exerted is equal to that of standing in water in a pool (~ 1 psi; 51.7 mmHg; 70 cm

H2O; 6.9 kPa) [25].

Treadmill protocol

Off-loading was set at 40% reduction of body weight, subjects thus walking on the treadmill at

60% of their weight throughout the study, a level approximating long-term weight loss after

successful metabolic surgery. Speed set by the subject, by adjusting treadmill speed on the

dashboard, allowed completion of a 30-minute session. Initial incline was set at 0˚. Subjects

were encouraged to increase the speed with time and staff gradually increased the incline every

3 sessions to 3, 5, 7, and a maximum of 10%. Time, distance, speed, treadmill incline and %

weight offloaded at the 25-minute mark was recorded after each session. After completion of

20–24 sessions OGTT with fasting blood tests, similar to before the exercise regimen, were per-

formed at least more than 24 hours after the last session, sufficient to rule out acute effects of

this brief (30-minute) low-intensity, infrequent (twice weekly) incremental exertion.

Energy expenditure. We calculated metabolic equivalents (METs) of energy expenditure

according to standard equations [26], but adjusted for weight in our study of weight-supported

ambulation. We used the Harris-Benedict Equation for RMR to improve the accuracy of MET

estimates to determine “corrected METs” when offloading body weight with the LBPP tread-

mill [27].

Corrected METs, kilocalories (kcal) and Watts (W) expended per session according to

ACSM formulas, total energy expended per week as MET minutes and kcal expenditure were

used to compare our effort intensity at 60% body weight with CDC and ACSM exercise recom-

mendations at full body weight [28] adding up total energy expended by each subject during

all sessions (S1 Methods).

Statistics

Data are expressed as means ± standard deviations (SD), except as noted. Within-subject dif-

ferences pre- and post-intervention were compared using paired sample t-tests or Wilcoxon’s

rank-sum tests based on a one-sample Kolmogorov-Smirnov test against a normal distribu-

tion. The exploratory nature of this pilot study with 16 subjects precluded co-varying for mul-

tiple variables in the pre-post intervention analyses. Similarly, we have not corrected for

multiple testing. We calculated Pearson correlation coefficients between relevant variables and

used Spearman correlations when relationships were not linear owing to the variance in this

relatively small population. Statistical analyses used SPSS version 23 (SPSS, Chicago, IL).

Results

Baseline characteristics and proteomics

According to our inclusion and exclusion criteria and the characterization in Methods, these

16 subjects were overweight/obese and sedentary but were not diabetic, dyslipidemic or hyper-

tensive. Mean weight was 93.9 ± 13.6 kg, waist circumference 108 ± 22 cm and blood pressure

113/74 mmHg (S1 Table). There were no statistically significant correlations between BMI and

baseline molecules. In addition to traditional diabetes and dyslipidemia biomarkers, we

Weight-supported walking in obese women

PLOS ONE | https://doi.org/10.1371/journal.pone.0211529 February 20, 2019 4 / 17

https://doi.org/10.1371/journal.pone.0211529


analyzed an array of incretins, inflammatory cytokines, adipokines and neurometabolic pep-

tides individually known to be responsive to exercise and lower-body positive-pressure. We

found several novel baseline correlations between these different classes of peptides, relevant

to our post-study outcomes (Table 1A and 1B).

Table 1. Baseline correlations of plasma A. cardio- and B. neuro-metabolic and appetitive molecules.

A
Glucose AUC� r p

Glucose, 2-hr + 0.648 0.007

Insulin AUC + 0.671 0.004

C-peptide, AUC + 0.800 0.0001

GIP 0.506 0.046

Ghrelin 0.675 0.004

Orexin-A -0.558 0.025

Oxytocin -0.527 0.036

Beta endorphin -0.504 0.047

Insulin
GLP-1 0.704 0.002

Glucagon 0.838 0.0001

GIP 0.581 0.018

Triglyceride 0.778 0.0001

GLP-1
Glucagon 0.802 0.0001

Interleukin-6
Insulin 0.574 0.020

C-Peptide 0.474 0.06

TNF-Alpha + 0.591 0.016

Triglyceride
TNF-Alpha 0.508 0.045

Interleukin-6 0.482 0.058

Glucagon 0.648 0.007

HDL-cholesterol
Ghrelin 0.621 0.01

Glucagon + 0.572 0.021

B
Leptin

Orexin A -0.512 0.042

Oxytocin -0.578 0.019

Beta endorphin -0.624 0.010

Ghrelin
Adiponectin + -0.453 0.078

Orexin A
Oxytocin 0.889 0.0001

Beta endorphin 0.705 0.002

Beta endorphin
Oxytocin 0.821 0.0001

�2-hr after oral glucose (OGTT); AUC: area under curve

�� Correlations are Pearson unless noted; + Spearman Correlation

https://doi.org/10.1371/journal.pone.0211529.t001
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Physical activity

Subjects ambulated for 30 minutes 2–3 times weekly (mean 2.2) for 11 weeks on the Alter-G

treadmill at 60% body weight without complications. They walked/jogged a mean distance of 2

miles (3.2 km) each session at a mean rate of 4.3 mph. The weekly addition of 4 miles corre-

sponded to a 19% increase in weekly ambulation from 21 to 25 miles. The average level of

intensity was 8.5 METs calculated as corrected METs at 60% body weight, representing the

lower end of recommended weekly expenditure (Table 2) [28].

Cardio- and neuro- metabolic changes

There were no statistically significant before-after mean differences in body weight, waist cir-

cumference or blood pressure. Eight subjects gained (range: 1.0–7.0 kg) and 6 lost weight

(range: 2.2–9.5 kg), two exhibiting no change. Subjects, who had lost weight, disclosed post hoc
during informal follow-up interviews that they had, on their own, dieted during and for several

months following the study, although instructed to “eat as usual”. Nevertheless, there were no

statistically significant differences in outcomes between those with weight loss and those with

weight gain. The mean duration between last exercise bout and blood testing was 9.8 days

(range 28 hours—44 days), with no statistically significant relationships between time post last

session and any outcome described in the following sections.

Dynamic Metabolic Testing (OGTT). After completion of the program, the 75-gram oral

glucose challenge showed statistically significant decreases in both 2-hour (Fig 1B) and incre-

mental insulin responses (34% [p = 0.002] and 15% [p = 0.022] respectively) concomitant with

a significant 15% decrease in 2-hour C-peptide (p = 0.033) and trend towards a 19% decrease

in 2-hour GLP-1 (p = 0.06;Table 3), together supporting reduced insulin resistance. There

were only marginal, not statistically significant decreases in fasting, 2-hour and incremental

glucose area.

Fasting cardiometabolic and inflammatory molecules. Several differences in fasting

plasma parameters were noted comparing before to after program completion. Glucose, in the

normal range decreased slightly (p = 0.17) while there was a 19% numerical, not statistically

significant reduction in fasting plasma insulin (p = 0.36) (Fig 1A). There were no statistically

significant changes in adiponectin which increased 2.6% (p = 0.61) or decreases in C-peptide,

GIP and glucagon (S2 Table), with no significant change in fasting GLP-1. There was a trend

toward increased leptin (12%; p = 0.084).

Triglycerides, not elevated in any subject at baseline, decreased 11% (p = 0.03) (S2A Fig)

with discordant changes in free fatty acids. HDL cholesterol increased minimally (S2 Table).

Changes in inflammatory cytokines varied between subjects according to base-line status,

undetectable in some, divergent in others. C-reactive protein (CRP) was elevated in 7 subjects

Table 2. Energy expenditure during twice-weekly LBPP treadmill sessions (mean ± SD).

Speed per session (mph) 4.3 ± 1.2

Distance per session (miles) 2.0 ± 0.55

Treadmill Grade (%) 6.4 ± 0.4

Days for completion of study 80 ± 28

Number of sessions 22 ± 2

Intensity (Corrected METs) 1 8.5 ± 2.8

Corrected MET1 minutes per week 512 ± 131

Total energy expended (MET minutes)1 5874 ± 1725

1at 60% of body weight (BW) [Ref. 27]

https://doi.org/10.1371/journal.pone.0211529.t002
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in whom it decreased by 25% (p = 0.052). TNFα levels decreased in 7 subjects with detectable

levels pre-exercise. Anti-inflammatory Interleukin-6, detectable at baseline in 8 subjects (mean

7.4 ± 4.9 pg/ml) increased 58%, not statistically significant post study (mean 11.6 ± 16.3;

p = 0.170).

Fasting neuropeptides. Plasma ghrelin had decreased by 20% at the end of the study

(p<0.008; S2B Fig) whereas there were no statistically significant changes in orexin A, which

increased numerically 25% (p = 0.169), oxytocin 27% (p = 0.348) and β-endorphin 24%

Fig 1. A. Fasting p-insulin. B. OGTT 2-hour p-insulin pre- and post- weight supported ambulation (n = 16;

mean ± s.e.m.).

https://doi.org/10.1371/journal.pone.0211529.g001

Table 3. Changes in plasma cardio-, neuro-metabolic and appetitive molecules before (Pre-) and after (Post-) bodyweight-supported walking (mean ± SD).

Pre Post Change P

2 Hour Post Oral Glucose (OGTT)

Glucose mmol.liter-1 6.4±2.2 6.0±1.4 -0.4±1.1 0.19

Insulin pmol.liter-1 467 ± 276 308 ± 179 -160 ± 174 0.002

C-Peptide nmol.liter-1 1.21 ± 0.46 1.03 ± 0.41 -0.18 ± 0.31 0.03

GLP-1 pmol.liter-1 12.57 ± 5.3 10.18 ± 5.1 -2.39 ± 4.7 0.06

Fasting

Glucose mmol.liter-1 5.0 ± 0.9 4.9 ± 0.9 -0.1 ± 0.5 0.17

Insulin pmol.liter-1 92 ± 59 76 ± 46 -17 ± 70 0.36

Triglyceride mmol.liter-1 0.80 ± 0.30 0.71 ± 0.25 -0.10 ± 0.16 0.03

Interleukin-6 pg.ml-1 7.37 ± 4.87 11.62 ± 16.27 4.30 ± 11.8 0.17

Adiponectin (total) µg.ml-1 11.7 ± 4.6 12.0 ± 5.1 0.3 ± 2.3 0.61

Leptin µg.liter-1 31.0 ± 14.1 34. 6 ± 12.8 3.57 ± 7.7 0.08

Ghrelin pmol.liter-1 69.65 ± 41.60 55.97 ± 41.27 -13.68 ± 18.0 0.008

Orexin-A pmol.liter-1 150 ± 42 187 ± 91 37 ± 110 0.20

Oxytocin pmol.liter-1 89.3 ± 37.2 113.3 ± 85.8 24.0 ± 99.1 0.35

Beta endorphin pmol.liter-1 103 ± 40 128 ± 58 25 ± 67 0.16

https://doi.org/10.1371/journal.pone.0211529.t003
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(p = 0.156). These relatively large within-subject numerical increases were statistically insignif-

icant by 2-tailed t-tests owing to the relatively small numbers of subjects.

Correlations between before-after changes. There were no statistically significant corre-

lations between body weight change or total energy expended (MET minutes) and decreases in

OGTT glucose, 2-hr insulin, C-peptide, fasting triglycerides or ghrelin. Significant correlations

were present between total MET minutes and decrease in glucoregulatory 2-hr GLP-1 (r = -

0.679; p = 0.004) and the numerically small (0.3 μg/ml) increase in adiponectin (r = 0.471;

p = 0.066). Changes in 2-hour GLP-1 were unrelated to changes in other appetitive peptides

(ghrelin, Orexin A, β-endorphin).

Although parametric statistical analyses did not detect significant before-after changes in

many peptides, the changes were remarkably highly and consistently correlated. Intercorrela-

tions between drops in gluco-regulatory 2-hr glucose, related to TNFα, and 2-hr insulin and

C-peptide were significant; 2-hr insulin, in turn was highly correlated with rises in β-endor-

phin, orexin A and oxytocin (Table 4). Baseline levels of leptin, marginally correlated with 2-hr

insulin (r = 0.38; p = 0.143), predicted the reduction in 2-hr insulin (r = 0.566; p = 0.022). Sig-

nificant correlation between increases in fasting leptin and adiponectin (r = 0.718; p = 0.002;

Fig 2) reflected improved insulin sensitivity concordant with significant reductions in insulin

and C-peptide. HDL-cholesterol change correlated with FFA AUC, leptin and adiponectin but

not with any inflammatory cytokines (Table 4).

We found previously not reported highly significant correlations between changes in

before-after exercise neuro-endocrine peptides in agreement with the pre-exercise correlations

and unrelated to total energy expended, weight changes or any phenotypic data (Table 4).

Altogether, these findings suggest before-after reductions in gluco-regulatory molecules

reflected in correlations between glucose, insulin, C-peptide and incretins during OGTT.

These reductions correlate with inflammatory markers, adipokines and neuroregulatory, appe-

titive peptides.

Discussion

Physical activity

Cardio-metabolic factors. The preliminary findings of this unique study challenge the

premise of the preponderance of studies and guidelines for treating and preventing diabesity,

namely that body weight is of primary importance for the disease and requires intermediate to

high levels of frequent physical activity to improve performance and to cause weight loss [29].

Our sedentary subjects did not lose weight from the low level of exertion in the sedentary

range and, indeed, there were no associations between energy expended or weight loss or gain

and improved cardio-metabolic metrics such as insulinemia, glucose tolerance markers and

plasma triglycerides earlier described in literature supporting diet and exercise guidelines.

Robust reductions in plasma triglycerides in the normal range in our Black subjects, nor-

mally with lower levels than those with other geographic ancestry [30,31], are significant in the

context of increased recognition of low-moderate triglyceride levels as cardio-metabolic risk

factors [32] furthermore supporting the need to redefine blood lipid standards for Black people

[31]. Hyperinsulinemia has long been known as a driver of hepatic triglyceride synthesis [33],

which accords with our present finding of concomitant reductions of OGTT insulin and fast-

ing plasma triglycerides after our low intensity ambulation which otherwise is found after

intensive exercise [34, 35]. Our related findings of correlations between fasting leptin and adi-

ponectin and reductions of 2-hr insulin and C-peptide reflecting improved insulin sensitivity

might imply less resistance of leptin receptor exposed to increased levels of leptin.
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Our findings regarding inflammatory markers are similar to those of other studies of obese

populations, although we generally excluded subjects with advanced disease sufficient to mani-

fest detectable elevations of cytokines measured by routine methods. Our subjects were hyper-

insulinemic, without impaired fasting glucose (with the exception of 3) or glucose tolerance, a

pre-cursor to pre-diabetes. Nevertheless 7 subjects had detectable elevated CRP and 7 had ele-

vated TNFα, all of whom reduced their levels post study, implying reduced inflammation asso-

ciated with adiposity Three subjects did have impaired glucose tolerance (IGT) which

Table 4. Correlations between changes in cardio- and neuro-metabolic molecules.

r p�

Glucose, 2-hr�

Insulin, 2-hr� 0.445 0.084

TNF α 0.631 0.009

Leptin 0.482 0.059

Ghrelin 0.457 0.076

Orexin A -0.502 0.048

Oxytocin -0.422 0.103

Beta Endorphin+ -0.517 0.037

Insulin, 2-hr�

C-Peptide, 2-hr+ 0.538 0.031

Triglyceride 0.357 0.174

Leptin 0.475 0.063

Orexin A -0.594 0.015

Oxytocin -0.690 0.003

Beta Endorphin -0.487 0.056

C-Peptide, 2-hr�

C-Reactive Protein 0.451 0.079

GLP-1, 2-hr�

Glucagon 0.555 0.026

IL-6 0.462 0.071

GIP

Glucagon 0.580 0.019

C-Reactive Protein 0.532 0.034

HDL

Leptin+ 0.547 0.033

Adiponectin+ 0.587 0.015

CRP

IL-6+ 0.689 0.003

Adiponectin

Leptin 0.719 0.002

Orexin A

Oxytocin 0.935 0.0001

Beta Endorphin 0.737 0.001

Oxytocin

Beta Endorphin 0.783 0.0001

� 2 hours after oral glucose tolerance test (OGTT)

AUC area under curve of OGTT
+ Spearman correlation; Pearson correlations unless noted

https://doi.org/10.1371/journal.pone.0211529.t004
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normalized post-study independent of weight changes. These three were among the subjects

that increased post-study levels of the anti-inflammatory IL-6, known to be beneficially ele-

vated by exercise [20, 36].

Neuro-endocrine peptides. Remarkably, the low amount of low intensity activity com-

bined with mild lower-body positive pressure was associated with effects on a wide array of

cholinergic regulatory central and peripheral peptides. There was a substantial statistically sig-

nificant reduction in fasting levels of orexigenic ghrelin, a rapid sensor of fluctuations in nutri-

ent stores that was not associated with statistically insignificant increases in ‘satiety’ peptides

leptin and β-endorphin or orexin A shown in exercise studies [37–41]. Owing to the large sta-

tistically insignificant related increases in plasma orexin A, oxytocin and β-endorphin in our

underpowered study, we performed a median split analysis, which exhibited statistically robust

differences (all p<0.01; not shown), consistent internally and with exercise and baro-physiol-

ogy literature. Since glucose is the primary substrate in brain, skeletal muscle and whole-body

metabolism our finding of a strong relationship between the reduction of glucose area under

the curve and ghrelin reduction (p<0.004) is interpreted as a primary response to ambulation

preceding transition to lipid and amino acid utilization in the sedentary range. In addition,

there were no relations between fasting plasma ghrelin and fasting and glucose-stimulated lev-

els of the pleiotropic neuro-endocrine brain-gut peptide GLP-1. Although it is synthesized in

the ileum and mediates incretin effects associated with insulinotropic pancreatic β-cell secre-

tion exhibited in this study, GLP-1 is also known for its central effects suppressing appetite

and increasing neurogenesis [20, 42], here demonstrating discordance between its peripheral

Fig 2. Pearson correlation of changes (Δ) in s-adiponectin and s-leptin, pre- and post- weight supported

ambulation. [Y = 0.47+0.21X; r = 0.719; p = 0.002. Fit line 95% CI for the mean. (n = 16)].

https://doi.org/10.1371/journal.pone.0211529.g002
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and central effects, possibly related to improved GLP-1 receptor function. Fasting and OGTT

2-hr GLP-1 have been shown by others to respond differentially to exercise [41].

The robust correlations between leptin and β-endorphin, orexin A and oxytocin and

among these latter peptides are intriguing, given their respective roles in energy balance, neu-

rogenesis and mood [43–46]. Although not the subject of this study, documented beneficial

effects of exercise on anxiety and mood disorders [21, 47, 48] might be expected, related to our

neuro-peptide changes after low-intensity exercise, especially in the absence of pain, a power-

ful mediator of mood. Informally all of our subjects have later spontaneously expressed their

enjoyment of this exercise, especially those with experience with conventional treadmills.

Given the problem of adherence to conventional exercise programs, it is conceivable that

LBPP activity might be useful in the context of neuro-psychiatric studies in subjects with

mobility disability [18]; the brain-gut peptides in this study participate in cholinergic circuits

that modulate appetite suppression on downstream targets in the hypothalamus [49] and affect

pancreatic structure, function and release of neurotrophic peptides other than GLP-1.

Our heterodox findings of improved glucoregulation with triglyceride decrease, mild effects

on cytokines and adipokines but a robust effect on the orexigenic peptide ghrelin in the

absence of weight loss accompanying brief, ambulation raises questions about putative mecha-

nisms. We speculate that improvements in substrate utilization such as glucose disposal, lipol-

ysis or “protein sparing” are not likely to be primary determinants, but rather synergistic with

autonomic nervous system activation/conditioning (“stress buffering”) [17] and/or release of

key molecules through mild compression and use of lower extremity muscles known to have

beneficial cardiovascular [50, 51], angiogenic and metabolic effects associated with restored

autonomic balance.

Baro-physiology

Standing, per se improves cardiometabolic risk when used as a break in sedentary activity [21,

52] as do exercise “snacks” [53]. The compression exerted by the lower-body positive pressure

treadmill during 40% off-loading is similar to standing in a swimming pool unrelated to mus-

cle use. We have demonstrated decreased heart rate during weight offloading during standing

[54], recently shown by others during increasing levels of exertion during LBPP [55]. We spec-

ulate that there is synergy between standing and positive lower body pressure which would

cause local hypoxia increasing muscle perfusion and oxygen uptake [56, 57] as in pre-condi-

tioning, thus potentiating the effects of the low intensity exercise improving mitochondrial

function. Together with the described effects on the different classes of peptides, we posit that

lower-body positive pressure increases parasympathetic tone in the cranio-sacral division of

the autonomic nervous system, also reducing dysautonomia. Although not studied in these

subjects ample evidence supports effects of LBPP on sympathetic tone, hemodynamics, oxy-

genation and metabotropic molecules [34, 38, 40, 41, 49, 50, 53, 56].

Public health perspective

A recent review of obesity identifies that “decreasing time spent in occupational physical activ-

ities and displacement of leisure-time physical activities with sedentary activities” contributes

to epidemic obesity. “Lack of effective and accessible life-style programs that can be adminis-

tered locally or remotely at low cost to diverse populations” explain why “only a fraction of

patients for whom treatments are indicated actually receive them” [3]. Among those that are

treated, only a minority complete programs and fewer still sustain benefits [5, 6].

Our findings imply that it is possible to improve metabolic fitness in underserved popula-

tions with high prevalence of diabesity, barriers to exercising and cultural resistance to losing
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weight. The study coincides with reports of adverse effects of outdoor exercise in inner-city

environments [58]. The indoor exercise in this study is provided by a safe and convenient

weight-supporting lower-body pressure treadmill proven effective for ambulation in orthope-

dic and neurologic rehabilitation.

Effects of this magnitude on hyperinsulinemia, plasma triglycerides and ghrelin are exhib-

ited after more time-consuming and intense volitional life-style changes or after metabolic

operations recommended for type 2 diabetes [59]. The cost of an anti-gravity treadmill is well

within the range of these modalities. This treadmill is safe and user-friendly and does not need

supervising staff. Furthermore, it requires substantially less personal investment of time to use

and is cost-effective since a single treadmill can be used by many subjects (e.g. in a family, ther-

apeutically or preventively) over a long period, thus providing return on the initial investment

regardless of payer.

Limitations

This within-subject before-after study has no controls. The premise for using a body

weight-supporting, lower-body positive pressure “anti-gravity” treadmill in people with

chronic obesity is that walking at a normative pace (for able-bodied women of the same

age) is painful and hard for obese subjects. They cannot and will not painlessly and effort-

lessly engage in walking on a conventional treadmill or, indeed, walking as an activity of

daily living, unless paid or convinced of the utility of doing so in conflict with their own

experiences (and extant published evidence). Recruiting such subjects is not ethically com-

patible with equipoise, where both investigator and subject are cognizant of the lack of effi-

cacy of the “control” condition.

Limitations are having a selected population of volunteering, obese, female hospital workers

of Caribbean-Black ancestry not allowing generalization to other populations with different

BMI standards and metabolic metrics. However, regardless of geographic heritage our subjects

are reproductive-age obese, relatively low socio-economic status (SES) women, representative

of a large stratum of prevalently obese populations. Nevertheless, we must emphasize that our

findings are limited to women, given well-documented sex differences in the proteomics. This

relatively small exploratory study of a convenience sample of volunteers will require replica-

tion in larger more diverse populations and in men.

Our variances are substantial, reflecting “real-world” clinical research in our environment

with significant confounders, yet achieve statistical significance with trends consistent with

exercise studies in very different populations and designs (from trained Caucasian male ath-

letes to exhaustive sub-maximal acute studies). We were unable to coordinate pre- and post-

exercise blood sampling with our subjects’ follicular phase, which likely also has contributed to

the variance. Time of day was variable for practical reasons. We did not detect any seasonality;

the exercise was performed in a temperature-controlled gait laboratory, but we did not mea-

sure body temperature.

By design we omitted metrics of diet (macronutrient distribution, 3-day diaries), appetite

(hunger ratings, taste preference), size and body composition (weight, BMI, lean body mass)

and physical performance (O2 consumption, lactate production) to avoid imposing biases and

leaving these metrics to future studies. There might have been changes in “dietary factors”

although we doubt that such changes would occur spontaneously within 11 weeks and with

only two 30-minute bouts/week walking 4 miles per hour [60].

We gave no dietary instructions or recommendations and when asked by subjects told

them to “continue as usual”, although as mentioned some volitionally restricted their intake

toward the end of the study and after completion.
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This is not a conventional exercise study designed to improve physical fitness/performance;

we did not collect such data. It is highly unlikely that 30 min of walking at a comfortable pace

without exertion twice weekly for 10–12 weeks would measurably change VO2 max (a max

performance test), just as it would not measurably change body composition, such as decreas-

ing body fat or increasing lean body mass sufficiently to explain improved glucose disposal or

decreased plasma triglycerides.

We have not included repeat post-study questionnaires given before to assess stress, sleep,

mood, quality of life etc. owing to the short duration of this pilot study seriously affecting re-

test reliability of instruments with significant variances requiring larger populations to detect

significant differences. However, as mentioned earlier all subjects spontaneously expressed

their enjoyment of this exercise, and have since volunteered for more studies.

The unique nature of this study, using a novel, thus uncommon, FDA approved publicly

available device by unsolicited volunteering, self-selected hospital employees from a special

inner-city population may be construed as reflecting “selection bias”. Therefore, we have taken

great pains to emphasize the pilot nature of this exploratory hypothesis-generating study

requiring replication in other more diverse populations and environments.

Conclusions

We conclude that weight-supported lower-body positive pressure enables low intensity walk-

ing in subjects otherwise not inclined to exercise who hereby experience beneficial cardio- and

neurometabolic effects without pain. This level of energy expenditure, in the sedentary range,

is unlikely to trigger known counter-regulatory mechanisms induced by glycogen depletion

common to moderate-high intensity exertion of longer duration recommended in public

health guidelines for weight loss and prevention of diabetes and co-morbidities. Amelioration

of the dysautonomia of allostatic load is an explanatory candidate mechanism, supported by

numerous pre-clinical and clinical studies of effects of exercise and lower-body pressure stimu-

lating the parasympathetic nervous system, modulating cardiac autonomic function [61], cen-

tral neurogenesis and cognitive function [62, 63] associated with mood.
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