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Abstract: The accurate determination of nitrite in food samples is of great significance for ensuring
people’s health and safety. Herein, a rapid and low-cost detection method was developed for highly
sensitive and selective detection of nitrite based on a surface-enhanced Raman scattering (SERS) sen-
sor combined with electrochemical technology and diazo reaction. In this work, a gold nanoparticle
(AuNP)/indium tin oxide (ITO) chip as a superior SERS substrate was obtained by electrochemical
self-assembled AuNPs on ITO with the advantages of good uniformity, high reproducibility, and
long-time stability. The azo compounds generated from the diazotization-coupling reaction between
nitrite, 4-aminothiophenol (4-ATP), and N-(1-naphthyl) ethylenediamine dihydrochloride (NED) in
acid condition were further assembled on the surface of AuNP/ITO. The detection of nitrite was
realized using a portable Raman spectrometer based on the significant SERS enhancement of azo
compounds assembled on the AuNP/ITO chip. Many experimental conditions were optimized such
as the time of electrochemical self-assembly and the concentration of HAuCl4. Under the optimal
conditions, the designed SERS sensor could detect nitride in a large linear range from 1.0 × 10−6

to 1.0 × 10−3 mol L−1 with a low limit of detection of 0.33 µmol L−1. Additionally, nitrite in real
samples was further analyzed with a recovery of 95.1−109.7%. Therefore, the proposed SERS method
has shown potential application in the detection of nitrite in complex food samples.

Keywords: surface-enhanced Raman scattering (SERS); self-assembled AuNPs; electrochemical
deposition; diazo reaction; nitrite

1. Introduction

Nitrite, as a common food preservative and color retention agent as well as the main
component of fertilizers, exists widely in the foodstuffs and environment [1]. For example,
nitrite can maintain the red-pinkish color of the meat and prevent the risk of Clostridium
botulinum contamination in cured meat products [2]. However, when excessive nitrite is
taken into the blood, it will interfere with the oxygen transport system and cause irreversible
conversion of hemoglobin to methemoglobin in the human body, by which the ability of
hemoglobin to exchange oxygen is severely damaged [3,4]. Nitrite can also react with
secondary amines and amides to form the carcinogenic compounds of nitrosamines, which
can easily cause gastric and esophagus cancer [5,6]. Because of the toxicity of nitrite, the
maximum allowable content of nitrite in drinking water recommend by the Environmental
Protection Agency (EPA) is 1 ppm (71.4 µM) [7]. Hence, a rapid and sensitive detection
technique developed for the measurement of nitrite is of crucial significance.

To date, numerous routine methods for the detection of nitrite have been reported
such as spectrophotometry [8], chemiluminescence [9,10], capillary electrophoresis [11,12],
chromatography [13–15], fluorescence [16–19], electrochemical methods [20–22], and col-
orimetric assay [23]. Most of the traditional methods offer a reliable detection platform for
nitrite, but they also suffer from shortcomings such as multiple pretreatment procedures,
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long operating times, expensive instrumentation, and low sensitivity and selectivity, which
limit the application of these methods in the detection of nitrite in practical food samples.
Therefore, a convenient, highly sensitive, and selective analytical procedure should be
developed for the determination of nitrite in complicated matrices.

Surface-enhanced Raman scattering (SERS) technology has been widely used in the
detection of trace amounts of substances in recent decades due to its competitive merits
such as high sensitivity and rapid detection of low concentration analytes, high specificity
due to rich vibration fingerprint information with narrow Raman peaks, and simplicity and
practicability with portable instrument [24–26]. For the better application of SERS technique,
an important requirement is to fabricate highly stable, reliable, and reproducible metallic
nanostructures substrates, which can generate intensively localized electromagnetic fields
at gaps between plasmonic nanostructures [27–29]. Wang et al. [30] prepared an Au@Ag
nanoparticle array sandwiched between the adhesive acrylic polymer tape and polyethene
terephthalate (PET) film (T/Au@Ag/PET) as a high-performance SERS chip to detect
thiram on fruit peels. Noble metal-based SERS has been widely used as a powerful
analytical technique in the food detection field due to the giant signal enhancement of
Raman molecules on metallic surfaces [31,32]. However, some metal nanoparticle substrate-
based SERS methods need to synthesize the metal nanoparticles in solution first [1,33].
While the synthesis of gold nanoparticles (AuNPs) can be performed based on classical
method developed by Turkevich et al. [34], deviations from the methodology may lead to
significant nanoparticle size variation and size non-homogeneity. Furthermore, during the
detection process, the nanoparticles often need to be adhered on a solid surface, which easily
causes non-controlled agglomeration of the nanoparticles onto substrates for SERS and
often leads to decreased signal. In contrast, the SERS substrate based on electrochemical in
situ self-assembled metal nanoparticles shows enhanced uniformity, good reproducibility,
and stability.

In this research, a SERS-based sensing technique combined with an electrochemical
in situ self-assembled method was developed to detect nitrite in foodstuffs. AuNPs were
first deposited on the clean ITO glass by the electrochemical self-assembled method. This
uniform, dense, and stable SERS substrate presented extremely higher reproducibility
and stability. The azo compounds generated from the diazotization reaction between
nitrite, 4-aminothiophenol, and N-(1-naphthyl) ethylenediamine dihydrochloride in an
acid condition were further assembled on the surface of AuNP/ITO. The intensities of
three newly-observed SERS peaks, which were assigned to the formed azo compounds,
were directly related to the concentration of nitrite ions. The designed SERS sensor has
been demonstrated to possess high sensitivity, perfect specificity, and reproducibility for
the detection of nitrite. It was further successfully applied to determine nitrite in food
samples without complicated sample pretreatment, which has potential applications for
the detection of trace contaminants in foodstuffs.

2. Experimental Methods
2.1. Reagents and Materials

Indium tin oxide (ITO) glasses were purchased from Shenzhen Hua-nan Technology
Co., Ltd., (Shenzhen, China). Tetrachloroauric(III) acid tetrahydrate (HAuCl4, 99.9%),
sodium nitrite (NaNO2, ≥99.0%), N-(1-Naphthyl) ethylenediamine dihydrohloride (NED,
C12H14N2·2HCl, ≥97.0%), absolute ethanol, hydrochloric acid (HCl, 36–38%), and sul-
furic acid (H2SO4, 98.08%) were obtained from Sinopharm Chemical Reagent Co., Ltd.,
(Shanghai, China). 4-aminothiophenol (4-ATP, 97%) was purchased from Macklin Reagent
Co., Ltd., (Shanghai, China). All chemicals were of analytical grade and used without
further purification.
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2.2. Apparatus

SERS measurements were performed on a handheld Raman spectrometer (HRS-5A;
American Ocean optics Co., Ltd., San Diego, CA, USA) equipped with a 785 nm wavelength
incident laser light. The morphologies and sizes of the AuNPs/ITO were observed by a
field-emission scanning electron microscopy (FEI Quanta 250 FEG; Field Electron and Ion
Ltd., Hillsboro, OR, USA). The UV-Vis absorption spectra of chips were measured by UV-Vis
spectrophotometer (UV-1601; Beijing Ruili Analytical Instrument Ltd., Beijing, China).

2.3. Preparation of AuNPs/ITO Chip

Before the electrodeposition, ITO glass was ultrasonically cleaned for 15 min in each
of the following solvents: acetone, alcohol, and Milli-Q water, and then dried in N2. The
deposition area of the ITO glass was 7 × 10 mm2. The area measured in a single experiment
was about 100 × 200 µm2. The AuNPs were deposited on cleaned ITO glass using an
electrochemical workstation (CHI660D; Shanghai Chenhua Instrument Co., Ltd., Shanghai,
China). A conventional three-electrode system was employed with ITO glass as the work
electrode, platinum wire as the auxiliary electrode, and a saturated calomel electrode as the
reference electrode. The electrodeposition of AuNPs was conducted at room temperature
in the aqueous electrolyte including 5 mM HAuCl4 and 0.5 M H2SO4 and the potentials
were set to be −0.6 V for 10 min. After deposition, the AuNPs/ITO chip was washed with
ultrapure water and stored in ultrapure water.

2.4. Determination of Nitrite by the SERS Sensor

First, 0.05 mol L−1 HCl solution was obtained by diluting concentrated hydrochloric
acid solution with ultrapure water. Then, 0.1 mol L−1 4-ATP stock solution was made by
dissolving in ethanol and further diluted with HCl solution, and NED stock solution was
dissolved in water under heating conditions and diluted with water. Nitrite solutions with
concentrations of 1.0 × 10−6, 3.0 × 10−6, 1.0 × 10−5, 3.0 × 10−5, 1.0 × 10−4, 3.0 × 10−4 and
1.0 × 10−3 mol L−1 were prepared. Afterward, 500 µL 4-ATP (1.0 × 10−4 mol L−1) was
added into a 10 mL beaker containing 1 mL nitrite solution for the diazotization reaction.
Then, the diazonium salts were mixed with 400 µL of NED, and the color of the azo dyes
changed to purple-red. Finally, the mixtures were transferred into a 5 mL centrifuge tube
and the AuNP/ITO substrates were immersed into 1 mL target solutions for 30 min. After
being picked out from the solution, the substrates were rinsed with water three times, and
then blown dry with nitrogen for SERS measurement. The SERS spectra were recorded
under a 785 nm laser excitation and each sample measurement was recorded as an average
of five times scans. The baseline intensity was subtracted from the peak intensity of the
characteristic peak of each line to obtain the required Raman signal intensity.

2.5. Determination of Nitrite in Real Samples

The minced ham sausage and fresh pork were dissolved in water, then heated and
stirred to dissolve the nitrite. After centrifugation, the supernatant was filtered, and then
spiked with desired concentrations of nitride. For the subsequent diazo reaction, 500 µL
4-ATP was first added to 1.0 mL of the above solution and followed by the addition of
400 µL NED. Then, the AuNP/ITO chip was immersed in the solution of azo compounds
generated by the above diazotization–coupling reaction and finally, SERS spectra were
recorded. For the spectrophotometric method, the ham sausage and fresh pork were
minced, and then saturated borax solution, potassium hexacyanoferrate solution, and zinc
acetate solution were added in sequence. The supernatant was filtered and 40 mL of the
above filtrate was transferred into a 50 mL colorimetric tube. Then, 2 mL sulfanilic acid
solution was added to the tube, followed by the addition of 1 mL NED solution. The
absorbance was measured at a wavelength of 538 nm.
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3. Results and Discussion
3.1. Detection Principle of Nitrite by the Designed SERS Sensor

The SERS sensor for the quantitative detection of nitrite was fabricated by utilizing
the AuNP/ITO chip as a SERS active substrate. The schematic representation of the
developed SERS sensor platform is shown in Scheme 1. AuNP/ITO chip as a superior
SERS substrate was obtained by electrochemical in situ self-assembled AuNPs on ITO.
Then, the AuNP/ITO chip was immersed in the solution of azo compounds generated by
the reaction of acid 4-ATP, NED, and nitrite to form self-assembled monolayers, which
generated strong SERS signals through the SERS amplification effect. The SERS spectra
for different substrates (blank AuNPs/ITO film, 4-ATP adsorbed on AuNPs/ITO film,
4-ATP and nitrite adsorbed on AuNPs/ITO film, 4-ATP and NED adsorbed on AuNPs/ITO
film and azo compounds on AuNPs/ITO film) were studied. As shown in Figure 1A, the
blank AuNPs on the ITO electrode surface did not present any Raman signal, which gave
a “clean” Raman background, indicating that it was very suitable as the SERS substrate
for further testing. As shown in cure c of Figure 1A, Raman spectrum of 4–ATP + nitrite
showed a weak peak at 1430 cm−1, which was similar with the peak at 1432 cm−1 in a
previous report [35]. There was no obvious change in the Raman spectrum of curve c
compared with curve b because the amino group of 4–ATP was converted to diazo by
nitrite in acid condition, forming unstable diazonium salts and showing weak Raman
signals. NED and 4–ATP without nitrite adsorbed on the AuNP/ITO film exhibited weak
SERS signals (Figure 1A, curve d). However, upon the addition of nitrite, several new
peaks at the wavelengths of 1139 cm−1, 1283 cm−1, 1333 cm−1, 1382 cm−1, and 1416 cm−1

immediately appeared (Figure 1A, curve e), which were similar with the previous report of
azo compounds generated by the diazotization reaction between nitrite, 4-ATP, and NED
in an acid condition [7,25]. At this experiment, three typical peaks at 1139 cm−1, 1382 cm−1,
and 1416 cm−1 were selected as characteristic peaks for the detection of nitrite.
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Figure 1. (A) SERS spectra of (a) blank AuNP/ITO chip, and (b) 4-ATP, (c) 4-ATP+ nitrite, (d) 4-ATP
+ NED, and (e) azo compounds on AuNP/ITO chip; (B) UV-Vis absorption spectra of (a) bare ITO
and (b) AuNP/ITO film, the insert was the photos of their corresponding chips.

3.2. Optimization and Characterization of the Designed AuNPs/ITO Chip

As stated in the experimental section, the AuNP/ITO chip was prepared by the
electrochemical in situ self-assembled method by using HAuCl4 and 0.5 mol L−1 H2SO4
as the electrolyte. In the process of electrochemical self-assembly, the metal atoms of Au
gradually assembled on the surface of ITO with the advantages of good uniformity, high
reproducibility, and long-time stability. UV-Vis absorption spectra in Figure 1B show that
AuNP/ITO (curve b) showed a surface plasmon resonance peak at 528 nm compared with
bare ITO (curve a), which was consistent with the UV-Vis absorption peak of the AuNPs.

In order to fabricate the best SERS substrate, the electrodeposition time and concentra-
tion of HAuCl4 were optimized. Figure 2 shows the morphological evolution of the AuNPs
in varying electrodeposition time. It was found that the electroplating time had an influence
on the size of the AuNPs and the density of the coatings on the surface of ITO. When the
deposition time was 0.5 min, there were lots of highly monodisperse Au nanostructures
electrodeposited on the ITO electrode surface with small size and little bumps (Figure 2A).
With the increase in reaction time, these gold particles grew bigger and significantly dense,
and the surfaces of the AuNP/ITO chips gradually became rough. However, when the time
was over 10 min, there were a few tremendous nanoparticles (Figure 2E,F). As shown in
Figure 2G, the SERS signal first increased as the time of electro-deposition increased from
0.5 to 10 min, followed by a decrease in the range of 10 to 20 min. These extremely large
nanoparticle structures could not stick to the ITO substrate firmly, causing the decline in the
SERS peaks (Figure 2G). Consequently, the well-defined AuNP/ITO chips were obtained
when the deposition time reached 10 min.

The concentration of HAuCl4 was also investigated to control the synthesis of the
gold nanostructures on the ITO chip. As shown in Figure 3, the thickness of the gold
nanoparticles increased and the size of the gold nanostructures grew bigger accordingly,
with the concentration of HAuCl4 increasing from 1 to 15 mmol L−1. Obviously, the
uniform and dense AuNP/ITO chips were obtained when the concentration of HAuCl4
was 5 mmol L−1. As shown in Figure 3E, the gold nanoparticles grew close to each other,
this nanostructure of gold film was supposed to be the highly sensitive SERS substrate
based on the electromagnetic enhancement mechanism. If HAuCl4 concentration was over
5 mM, there was abnormal grain growth phenomenon of AuNPs (Figure 3F,G). As shown
in Figure 3H, The SERS signal increased greatly as the concentration of HAuCl4 changed
from 1 to 5 mmol L−1, followed by a remarkable decrease in the concentration range of 5
to 15 mmol L−1. These gold nanoparticles got thicker, and the nanogap increased when
the concentration increased from 5 to 15 mmol L−1, thereby the SERS intensity decreased
sharply. Therefore, in our experiment, 5 mmol L−1 was chosen as the optimal concentration
of HAuCl4 for the construction of the AuNPs/ITO chip.
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solution; (G) effect of deposition times on the SERS intensity. The error bars were derived from the
relative standard deviation (RSD) of five measurements.

3.3. Optimization of Experimental Conditions for the Detection of Nitrite

To obtain the optimal analytical performance of the SERS sensors for nitrite detection,
the concentrations of HCl, 4-ATP, and NED were investigated. First, HCl plays a decisive
role in diazo reaction, thereby the concentration of HCl was optimized. As shown in
Figure 4A, the best detection effect of nitrite was achieved when the concentration of HCl
was 0.05 mol L−1. Next, the concentration and volume of 4-ATP were optimized. As shown
in Figure 4B, the SERS signal first increased as the concentration of 4-ATP increased from
10−5 to 10−4 mol L−1, followed by decreasing in the range of 10−4 to 5 × 10−3 mol L−1 due
to the chemical reaction kinetics. Moreover, SERS signal reached the maximum when the
volume of 4-ATP increased to 500 µL (Figure 4C). Therefore, the optimal concentration and
volume of 4-ATP were selected at 1 µM and 500 µL, respectively. Additionally, the effect
of concentration of NED on the SERS sensor response was investigated in the range of
1.0 × 10−4 to 5.0 × 10−2 mol L−1. As shown in Figure 4D, the SERS signal increased greatly
as the concentration of NED changed from 1.0 × 10−4 to 1.0 × 10−2 mol L−1, followed
by a remarkable decrease in the concentration range of 1.0 × 10−2 to 5.0 × 10−2 mol L−1.
Hence, the optimal concentration of NED was chosen at 1.0 × 10−2 mol L−1.
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3.4. SERS Sensing of Nitrite Based on the Designed AuNPs/ITO Chip

Under the optimal experimental conditions, the SERS sensor exhibited sensitive re-
sponse to nitrite based on AuNP/ITO chip. The results of the Raman spectroscopy are
shown in Figure 5A. When the concentration of nitrite was increased, the Raman intensities
of the characteristic peaks at 1139, 1382, and 1416 cm−1 were gradually increased. The
intensity of the designed SERS sensor was proportional to the logarithmic value of the
nitrite concentration ranging from 1.0 × 10−6 to 1.0 × 10−3 mol L−1 (Figure 5B). The limit
of detection for nitrite concentration was calculated to be 0.33 × 10−6 mol L−1 at 3σ, which
was lower than that of 0.23 µg mL−1 at the green carbon dots based fluorescence method for
the detection of nitrite [17], and 2.11 µmol L−1 at electrochemical sensor for the detection
of nitrite based on the CoPc/MWCNT electrode [36]. The detailed comparison with other
methods is shown in Table 1. Clearly, the proposed electrochemical in situ self-assembled
AuNP/ITO based SERS sensor for nitrite detection exhibited an excellent performance to
determine trace nitrite. The results showed that the designed SERS sensor for the detection
nitrite had a lower limit of detection and a wider detection range, indicating that this
method would have a good application in nitrite detection.
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(d) 1.0 × 10−5, (e) 3.0 × 10−5, (f) 1.0 × 10−4, (g) 3.0 × 10−4, (h) 1.0 × 10−3 mol L−1; (B) the
correlation between SERS intensity and logarithmic value of the nitrite concentration at the bands of
1139, 1382, and 1416 cm−1 on AuNP/ITO chip.

Table 1. Comparison of the developed SERS method with the reported literatures for the detection
of nitrite.

Technique Nano Substrate Linear Range LOD Ref.

SERS Colloidal AuNPs 0.5–17 µg/mL 0.21 µg/mL [1]
Electrochemistry PMel 1/GCE 10–400 µM 1.86 µM [6]

Fluorescence Green carbon dots 0.4–20 µg/mL 0.23 µg/mL [17]
Electrochemistry AuNPs/MoS2 5.0–2.78 × 104 µM 1.67 µM [22]
Electrochemistry CoPc 2/MWCNTs/GCE 10–1.05 × 106 µM 2.11 µM [36]

SERS in-situ assembled AuNPs/ITO 1.0–1.0 × 103 µM 0.33 µM This work
1 PMel: Poly melamine; 2 CoPc: cobalt (II) phthalocyanine.

3.5. Uniformity, Reproducibility, Stability, and Specificity of SERS Sensor

The uniformity and reproducibility of the substrate are important factors for the
SERS quantitative detection. As shown in Figure 6A, the Raman spectra were recorded by
randomly selecting eleven different areas on a chip with the relative standard deviation
(RSD) of 3.29%, illustrating homogeneity of SERS signals on the AuNP/ITO chip. The
reproducibility of the AuNP/ITO films was investigated by the SERS spectra on 13 batches
of the AuNP/ITO substrates prepared under the optimal conditions with the RSD below
4.42% (Figure 6B). In addition, the stability of Raman signal was evaluated on the basis of
long-term SERS research within 12 weeks storage. As shown in Figure 6C, the decrease of
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SERS intensity was within 10% even when the storage time was 12 weeks. These results
confirmed the excellent long-term stability of AuNP/ITO chip. Hence, the SERS substrates
with good uniformity, reproducibility, and stability were successfully fabricated for the
quantitative detection of nitrite.
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To evaluate the specificity of the proposed SERS method, higher concentration
(1.0 × 10−3 mol L−1) of interfering agents such as SO4

2−, Cl−, Na+, Cu2+, NO3−, CO3
2−,

OH−, and Ca2+ were introduced in the nitrite sensing system under the optimum ex-
perimental conditions. The concentration of nitrite used in the interference studies was
1.0 × 10−5 mol L−1. The results of the specificity analysis are shown in Figure 6D. The
observation demonstrated that the designed SERS sensor could be used to detect nitrite in
the presence of other potentially interfering ions. Additionally, regeneration experiment of
the self-assembled AuNP/ITO substrate by the hydrogen peroxide to cleave the gold-sulfur
bond was conducted. After regeneration, the Raman signal of the designed SERS sensor
could still attain 94.3% of the original response.

3.6. Analysis of Nitrite in Real Samples by the SERS Sensor

To further investigate the reliability and application potential for the actual sample
detection of the AuNP/ITO film-based SERS sensor, the standard spiking method [3] was
applied for nitrite determination using three different samples including ham sausage,
fresh pork, and tap water. As shown in Table 2, the recoveries of standard additions for
nitrite in the spiked samples were in the range of 95.1−109.7% with the RSD of 1.33−8.24%.
The above results demonstrated that the developed SERS sensor was provided with high
accuracy and satisfactory application potential, and it could be applied for the detection of
nitrite in the field of food monitoring.
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Table 2. The result of nitrite determination in real samples by developed SERS sensor.

Samples Nitrite Added
(µmol·L−1)

Nitrite Found
(µmol·L−1)

Spectrophotometry
(µmol·L−1)

Recovery
(%)

RSD
(%)

Ham sausage
0 0.728 0.742 - 4.49
1 1.726 1.712 99.8 2.67

10 11.615 11.138 108.9 1.38

Fresh pork
0 0.324 0.395 - 8.24
1 1.334 1.435 101.0 4.51

10 11.290 11.000 109.7 1.59

Tap water
0 0 0 - -
1 0.951 1.088 95.1 1.33

10 10.412 10.445 104.1 1.50

4. Conclusions

A novel SERS sensing strategy based on electrochemical self-assembled AuNP/ITO
chip for rapid and sensitive determination of nitrite has been successfully designed and
demonstrated. AuNPs are first deposited on the ITO glass by the electrochemical in
situ self-assembled method to obtain the SERS substrate of AuNP/ITO, which presents
good reproducibility and stability. The azo compounds produced by the diazotization
reaction between nitrite, 4-ATP, and NED in an acid condition are then assembled on
the surface of the AuNP/ITO chip. The detection of nitrite was realized based on the
significant SERS enhancement of azo compounds assembled on the AuNP/ITO chip. SEM
and UV-Vis were further used to characterize the self-assembled AuNP/ITO chip, and
many experimental conditions were optimized such as the time of electrochemical self-
assembly, the concentration of HAuCl4, and so on. The designed SERS sensor could detect
nitride in a large linear range from 1.0 × 10−6 to 1.0 × 10−3 mol L−1 with a low limit of
detection of 0.33 µmol L−1. This facile SERS sensor for the detection of nitrite has been
demonstrated to possess high sensitivity, perfect specificity, and reproducibility. In addition,
the designed SERS sensor was successfully applied to determine nitrite in food samples
without complicated sample pretreatment, and thus could potentially become a promising
technique for the assay of other trace contaminants in foodstuffs.
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