
ORIGINAL RESEARCH
published: 24 August 2016

doi: 10.3389/fnbeh.2016.00162

Frontiers in Behavioral Neuroscience | www.frontiersin.org 1 August 2016 | Volume 10 | Article 162

Edited by:

Angela Roberts,

University of Cambridge, UK

Reviewed by:

Natalie Celia Tronson,

University of Michigan, USA

Anushka B. P. Fernando,

Imperial College London, UK

*Correspondence:

Raquel C. R. Martinez

quelmartinez@yahoo.com.br

†
These authors have contributed

equally to this work.

Received: 23 February 2016

Accepted: 08 August 2016

Published: 24 August 2016

Citation:

de Oliveira CC, Gouveia FV, de

Castro MC, Kuroki MA, dos

Santos LCT, Fonoff ET, Teixeira MJ,

Otoch JP and Martinez RCR (2016) A

Window on the Study of Aversive

Instrumental Learning: Strains,

Performance, Neuroendocrine, and

Immunologic Systems.

Front. Behav. Neurosci. 10:162.

doi: 10.3389/fnbeh.2016.00162

A Window on the Study of Aversive
Instrumental Learning: Strains,
Performance, Neuroendocrine, and
Immunologic Systems

Caroline C. de Oliveira 1 †, Flávia V. Gouveia 1 †, Marina C. de Castro 1, Mayra A. Kuroki 1,

Lennon C. T. dos Santos 1, Erich T. Fonoff 2, Manoel J. Teixeira 2, José P. Otoch 3 and

Raquel C. R. Martinez 2*

1 Laboratory of Neuromodulation and Experimental Pain, Hospital Sirio-Libanes, Sao Paulo, Brazil, 2Division of Functional

Neurosurgery, Department of Neurology, School of Medicine, Institute of Psychiatry, University of Sao Paulo, Sao Paulo,

Brazil, 3Department of Surgery Techniques, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil

The avoidance response is present in pathological anxiety and interferes with normal

daily functions. The aim of this article is to shed light on performance markers of

active avoidance (AA) using two different rat strains, Sprague-Dawley (SD) and Wistar.

Specifically, good and poor performers were evaluated regarding anxiety traits exhibited

in the elevated plus maze (EPM) and corticosterone levels and motor activity in the open

field test. In addition, the plasma levels of Interleukin-6 (IL-6), Interleukin-1Beta (IL-1beta),

Nerve Growth Factor Beta (NGF-beta), Tumor Necrosis Factor-Alpha (TNF-alpha) and

cytokine-induced neutrophil chemoattractant 1 (CINC-1) were compared in the good

and poor performers to better understand the role of the immunologic system in aversive

learning. Behavioral criteria were employed to identify subpopulations of SD and Wistar

rats based on their behavioral scores during a two-way AA test. The animals were tested

for anxiety-like behavior in the EPM and motor activity in the open-field test. Plasma

corticosterone levels were measured at the end of the avoidance test. Cytokine levels

of IL-6, IL-1beta, NGF-beta, TNF-alpha, and CINC-1 were measured in the plasma of

the Wistar rats. Sixty-six percent of the Wistar rats and 35% of the SD rats exhibited a

poor performance. This feature was associated with a decrease in anxiety-like behavior

in the EPM. The poor and good performers exhibited lower levels of corticosterone

compared with the control animals, which suggests that training alters corticosterone

levels, thereby leading to hypocortisolism, independent of the performance. The CINC-1

levels were increased in the poor performers, which reinforces the role of immunologic

system activation in learning deficits. Our study provides a better understanding of the

complex interactions that underlie neuroimmune consequences and their implications for

performance.
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INTRODUCTION

Abnormal fear and exaggerated avoidance behavior are present
in many anxiety disorders (LeDoux, 2012; Galatzer-Levy et al.,
2014). Individual differences in sensitivity to stress and coping
behavior in stressful situations are critical in determining
vulnerability or resistance to psychopathologies, such as anxiety
disorders (Steimer and Driscoll, 2003). Specifically, avoidance
behavior is the act of performing a specific motor response
to prevent an upcoming aversive event; it involves an active
behavioral response to a conditioned threat (Moscarello and
LeDoux, 2013). In humans, passive coping styles are associated
with increased levels of anxiety (Sheynin et al., 2014). A
key characteristic is the marked heterogeneity in which only
a minority of individuals develops significant and prolonged
symptomatology (Yehuda and LeDoux, 2007).

Animal models may provide information regarding the
course and etiology of anxiety disorders and suggest that the
susceptibility to develop avoidance behavior is not uniform;
rather, susceptibility is determined by sensitivity to specific
stimuli or reactions to stimuli experienced during training
(Sheynin et al., 2014). One example of these models is the two-
way active avoidance (AA) test, which enables an investigation
of the transition from fear reactions to instrumental actions
(Sidman, 1953). AA may contribute to our understanding of the
functional interactions among defense, arousal, reinforcement,
motivation and control (Galatzer-Levy et al., 2014).

AA studies have demonstrated that most animals learn the
task; however, a significant number of animals (approximately
20%) exhibit a poor performance, and for many years, these
animals have been excluded from AA studies (Brush, 1996,
2003). Two different subpopulations, including good and poor
avoiders, have been identified in instrumental responses; good
avoiders exhibited high AA rates and low freezing following a
moderate amount of training, whereas poor avoiders exhibited
an opposite pattern (Choi et al., 2010; Lázaro-Muñoz et al., 2010;
Martinez et al., 2013). This distinction is important to provide
information regarding the normal and abnormal functioning of
neurocircuitry, facilitate neurobiology research, and increase the
accuracy and translatability of these models (Galatzer-Levy et al.,
2014).

Performance anxiety may be explained by an individual
inability to suppress the neural networks that underlie fear-
elicited reactions. In addition to neurocircuitry, avoidance
depends on individual differences (Sheynin et al., 2014). The
rate and degree of avoidance acquisition are affected by the
strain (Berger and Starzec, 1988; Servatius et al., 2008) and are
heritable, trait-like characteristics (Brush et al., 1979). Thus, a
number of lines of animals, including Roman Low Avoidance
(RLA) and Koltushi Low-Avoidance (KLA), have been bred for
their poor performance in AA tasks. It is proposed that anxiety-
vulnerable individuals tend to persist with exaggerated avoidance
and continue to respond when aversive events no longer occur
(Servatius et al., 2008).

Previous studies have focused on understanding the
competition in the brain circuits of good and poor avoiders
that results in individual differences in instrumental behavior.

Selective damage to the central amygdala in poor performers
restores the AA performance, which indicates that poor
performers had learned but were unable to perform the task
(Lázaro-Muñoz et al., 2010). Brain region activation in the
amygdala-prefrontal cortex circuits has supported this distinct
subpopulation (Martinez et al., 2013; Moscarello and LeDoux,
2013).

These coping strategies are behaviorally and
neuroanatomically distinct. In physiological fields, when
corticotropin-releasing hormone (CRH), which is released
during stressful situations and is a critical mediator of the
physiological responses to stress (Dunn and Berridge, 1990),
was infused into the central nucleus of the amygdala (CeA),
the c-Fos expression increased in the CeA in RLA rats, but
not in Roman high avoidance rats (Wiersma et al., 1998).
Furthermore, beta-adrenergic receptor blockers effectively treat
pathological avoidance behavior in patients with panic disorder
and performance anxiety (Ravaris et al., 1991), which suggests
that physiological differences may also be responsible for these
distinct populations.

Avoidance training sessions induce physiological stress
(Coover et al., 1973; Berger and Starzec, 1988). Moreover,
a stressful life experience has a positive association with
inflammatory diseases (Sternberg, 2001; Elenkov and Chrousos,
2002). Recently, evidence has suggested that impairments in
learning, memory and cognitive functions are also induced by
inflammatory responses mediated by cytokines (Donzis and
Tronson, 2014; Adzovic et al., 2015). Thus, the two-way AA test
may induce chronic stress as a result of continuous exposure to a
foot shock (King and Hegadoren, 2002), and the stress response
would release several inflammatory mediators (Gądek-Michalska
et al., 2013; Deak et al., 2015). An inflammatory process
produces substantial amounts of proinflamatory cytokines, such
as Interleukin-1Beta (IL-1beta), Interleukin-6 (IL-6) and Tumor
Necrosis Factor-Alpha (TNF-alpha), which are known to cause
cognitive dysfunction (Gądek-Michalska et al., 2013; Donzis
and Tronson, 2014; Jing et al., 2015), especially in learning
and memory impairment (Farr et al., 2014). Lim et al. (2014)
reported that an increase in Nerve Growth Factor (NGF)
improved memory formation. Moreover, an increase in IL-6
levels decreased passive avoidance responses (Brunssen et al.,
2013). The level of cytokine-induced neutrophil chemoattractant
1 (CINC-1) is correlated with impairments in learning and
memory and may represent a biomarker of brain damage
(Barichello et al., 2010, 2013). However, few studies have
attempted to clarify the correlation between serum levels of
cytokines and avoidance performance. The idea of this work
was to search for a serum biomarker that could represent the
immune activity. Increased cytokine levels have been associated
with deficits in memory and neuroplasticity and increases in
glial activation (Fiore et al., 2000). Treatment with minocycline
(an antibiotic that decreases microglial activation) decreased the
production of several proinflammatory cytokines (Choi et al.,
2007; Biscaro et al., 2012). Specifically, systemic administration
of minocycline attenuated cognitive deficits and increased
neurogenesis (Liu et al., 2007; Kohman et al., 2013), suggesting
a link between systemic inflammatory biomarkers and learning
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performance as a consequence of modulation of central immune
activity.

We shed light on performance markers for AA using two
different rat strains, Sprague-Dawley (SD) and Wistar. We
hypothesized that anxiety, different strains and decreases in
inflammatory cytokines would facilitate the learning of avoidance
behavior. In particular, this research focused on good and poor
performers, evaluated the anxiety traits exhibited in an elevated
plus maze (EPM) and the motor activity exhibited in the open
field test. The plasma levels of corticosterone, IL-6, IL-1beta,
NGF-beta, TNF-alpha, and CINC-1 were measured; the controls
and good and poor performers were compared to understand
the roles of the endocrine and immunologic systems in aversive
learning.

MATERIALS AND METHODS

Subjects
Male Wistar-derived (n = 28) and SD (n = 29) rats obtained
from the animal facility of the University of Sao Paulo were used
as subjects. The animals weighed 230–250 g and were housed
in polypropylene cages (40 × 34 × 17 cm) in groups of three
under a 12:12 dark/light cycle (lights on at 07:00 h). The room
temperature was maintained at 24 ± 1◦C, with wood shavings
and free access to food and water throughout the experiment.
The experiments were performed in compliance with the
recommendations of the Brazilian Society of Neuroscience and
Behavior, which, in turn, are based on the US National Institutes
of Health Guide for the Care and Use of Laboratory Animals.
The study was approved by the Ethics Committee on the Use
of Animals at Hospital Sirio Libanes (protocol number CEUA
2013/12) and the Medical School of the University of Sao Paulo
(protocol number CEP 083/11).

Study Design
The animals were randomized to experimental (SD: n = 24 and
Wistar: n = 23) or control (SD: n = 5 and Wistar: n = 5)
groups. The experimental animals were evaluated in the EPM
and the open field test for behavioral analysis. The experimental
animals were trained in the two-way AA test for 8 days. The box
controls received an equivalent exposure to the box, without the
delivery of a foot shock. The EPM, the open field test and the
AA test were counterbalanced across rats. After the last day of
training, the rats in the experimental and control groups were
immediately decapitated for the measurement of serum levels
of corticosterone, cytokine and chemokines, see Supplementary
Information.

Apparatus/Procedure
EMP
Following a habituation period of 5 days, the animals were tested
in the EPM. The maze comprised two open arms (50 × 10 cm)
crossed at right angles with two opposing arms of the same size,
as previously described in detail (Garcia et al., 2005). Two of
the opposing arms were enclosed by walls 40 cm high, with the
exception of the central section where the arms crossed. The
entire apparatus was elevated 50 cm above the floor. To prevent
the rats from falling, a rim of Plexiglas (0.5 cm high) surrounded

the perimeter of the open arms. The experimental sessions were
recorded using a video camera. The rats were gently placed in
the central area with the nose facing one of the closed arms and
were allowed to explore the maze for 5 min. Before the next rat
was tested, the maze was cleaned with a 5% ethanol solution and
dried with a cloth.

Open Field
The animals were tested in the open field, which consisted of a
0.6m square of dark gray Formica surrounded by 50-cm-high
Formica walls. The sessions were recorded with a video camera.
Each rat was placed in the center of the open field and allowed to
freely explore for 5min. After each animal completed the test, the
open field was cleaned with 5% ethanol and subsequently dried
with a dry cloth.

Sidman AA
The following day, behavioral training/testing was conducted
in 2-way shuttle boxes (Insight Equipment, Ribeirao Preto, Sao
Paulo, Brazil) for the experimental and control animals. AA
was implemented compared with signaled AA because it is a
more difficult protocol that produces a higher percentage of
poor avoiders (Choi et al., 2010; Lázaro-Muñoz et al., 2010).
The rats received 7 daily 25-min training sessions (excluding
weekends). Briefly, shuttling between compartments delayed the
delivery of a scrambled foot shock US (1 mA; 0.5 s) by 30 s (R-S
interval). In the absence of shuttling, the US delivery occurred
every 5 s (S-S interval). The R-S interval shuttles comprised
avoidance responses, and the S-S interval shuttles comprised
escape responses. All shuttles produced 0.3 s feedback stimuli
(house light blink). On day number 8, the good performers, poor
performers and additional box control rats were tested in the
Sidman avoidance.

Corticosterone, Cytokines, and Chemokines
Blood samples were obtained from the decapitated animals
and collected in EDTA-Vacutainer tubes (3 ml trunk blood).
The blood was immediately placed on ice and centrifuged. The
plasma was separated and stored at −80◦C until measurement.
For quantification, the plasma corticosterone was determined
using a Luminex (Bioplex-200 system (BIO-RAD) and Bio-
Plex Manager Software (Bio-Rad Laboratories, Hercules, CA).
The samples were measured using a multiplex bead-based
immunoassay and were measured in the same assay. The IL-
6, IL-1beta, NGF-beta, TNF-alpha, and CINC-1 concentrations
were determined in duplicate using specific commercial enzyme-
linked immunosorbent assay (ELISA) kits (R&D Systems);
Wistar and SD samples were analyzed separately. The ELISA
protocol was performed according to the manufacturer’s
specifications and as described previously (Ballendine et al.,
2015).

Behavioral Analyses
A single observer, who was unaware of the groups, recorded
the displacements and the other behaviors exhibited in the EPM
and open field using the X-Plot Rat Program 2005 Beta 1.0.1.
The displacements exhibited by the animals in both apparatuses
were recorded. In addition, the frequency and time spent in the
following behaviors were measured: (a) head dipping: dipping

Frontiers in Behavioral Neuroscience | www.frontiersin.org 3 August 2016 | Volume 10 | Article 162

http://www.frontiersin.org/Behavioral_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Behavioral_Neuroscience/archive


de Oliveira et al. Avoidance Hallmarks

the head below the level of the maze floor; (b) stretching: the
animal stretches to its full length with the forepaws (the hind
paws are maintained in the same place) and turns back to the
previous position; (c) rearing: partial or total raising on the
hind limbs; (d) sniffing: horizontal head movements in any
direction, including sniffing of the maze floor and walls; (e)
freezing: operationally defined as the total absence of animal
movement with the exception of respiration; and (f) grooming:
species-specific behavioral sequences, including cleaning of any
part of the body surface or fur with the tongue, teeth, and/or
forepaws. For Sidman avoidance: shuttling was registered by
infrared beams, and the final tests were recorded to DVD
for freezing analyses. Freezing was assessed during the first
2 min of the session by an observer blinded to the group
specification.

Statistical Analyses
The data are reported as the means ± standard errors of the
means (SEMs). The data were analyzed in order to compare
differences in performance between strains. Avoidance data were
analyzed using an analysis of variance (ANOVA) considering
strain, group and session as factors, followed by a Newman-Keuls
post-hoc test. The box controls were included as a control for the
freezing analyses but not for avoidance because, by definition,
they could not emit AA responses. The data obtained in the EPM,
open field test, and corticosterone assay were analyzed using
ANOVA considering strain and group as factors. Significance was
set at P < 0.05.

RESULTS

Avoidance
The training sessions produced a well-characterized behavioral
distinction between the good and poor performers. Of the 24 SD
and 23 Wistar rats, the good performers represented 66% of the
SD (n = 14) and 35% of the Wistar (n = 8) rats. For the freezing
analysis, an additional box control was used (SD n = 5, Wistar
n = 5); however, by definition, these animals never received
a shock. The good performers (SD and Wistar) exhibited an
increase in avoidance responses (Figure 1A) compared with the
poor performers (SD andWistar) by session 3 [Group× Session,
F(14, 588) = 7.54, P < 0.001]. There were no differences between
SD and Wistar considering the same type of performance (i.e.,
Wistar Poor vs. SD Poor or Wistar Good vs. SD Good; the triple
interaction of strain (wistar vs. sd) vs. group (good vs. poor)
and session was not significant [F(14, 588) = 1.49, P > 0.05]
nor the interaction between strain and session [F(14, 588) = 1.53,
P > 0.05]. The poor avoiders (SD and Wistar) froze more
[Group × Session, F(30, 324) = 1.22, P < 0.05] than the good
performers did by session 5 (Figure 1B). The control group
rats froze less compared with the trained animals independent
of the lineage. There was no difference between performances
considering the strain.

EPM
Figure 2 shows the entries (Figure 2A) and time spent
(Figure 2B) in the open arms exhibited by the good and poor

FIGURE 1 | Number of active avoidance responses in good and poor

performers across training sessions with Wistar (A) and Sprague

Dawley (B) rats. Data represent means ± SEMs. *P < 0.05 vs. poor

performer, #P < 0.05 vs. good and poor performers. SD Good, Sprague

Dawley good performers (n = 14); SD Poor, Sprague Dawley poor performers

(n = 10); SD Control, Sprague Dawley control rats (n = 5); Wistar Good,

Wistar good performers (n = 8); Wistar Poor, Wistar poor performers (n = 15);

Wistar Control, Wistar control rats (n = 5).

performers considering the different strains of Wistar and SD
rats. The Wistar poor performer rats exhibited an increase
in the entries in the open arms in comparison with Wistar
good performers and SD performers [Strain: F(1, 37) = 16.92,
P < 0.001; Performance: F(1, 37) = 3.30, P > 0.001 and
Strain × Performance F(1, 37) = 8.73, P < 0.005]. There were
no differences in the time spent in the open arms [Strain:
F(1, 37) = 36.6, P < 0.05; Performance: F(1, 37) = 1.73, P > 0.05
and Strain× Performance F(1, 37) = 1.59, P > 0.05].

Open Field
Figure 3 shows the total distance exhibited by the good and poor
performers considering the different strains ofWistar and SD rats
in the open field. There were no differences in the motor activity
between lineages [Strain: F(1, 37) = 6.82, P < 0.05; Performance:
F(1, 37) = 0.48, P> 0.05 and Strain× Performance F(1, 37) = 0.42,
P > 0.05].

Corticosterone
AA training decreased the corticosterone levels in the
good and poor avoiders compared with the corresponding
control groups [Strain: F(1, 45) = 13.46, P < 0.001;
Performance: F(1, 45) = 15.08, P < 0.001 and Strain ×

Performance F(1, 45) = 6.95, P < 0.002]. Additionally,
Wistar control animals showed an increase in corticosterone
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FIGURE 2 | Entries (A) and time spent (B) in the open arms by good and poor performers in the different strains of Wistar and Sprague Dawley rats.

Bars represent the means, and the vertical lines indicate the SEMs. &P < 0.05 vs. all other groups. SD Good, Sprague Dawley good performers (n = 14); SD Poor,

Sprague Dawley poor performers (n = 10); Wistar Good, Wistar good performers (n = 8); Wistar Poor, Wistar poor performers (n = 15).

FIGURE 3 | Total distance traveled in the open field by good and poor

performers in different strains of Wistar and Sprague Dawley rats. Bars

represent the means, and the vertical lines indicate the SEMs. SD Good,

Sprague Dawley good performers (n = 14); SD Poor, Sprague Dawley poor

performers (n = 10); Wistar Good, Wistar good performers (n = 8); Wistar

Poor, Wistar poor performers (n = 15).

levels in comparison with all other groups, as shown in
Figure 4.

Plasma Cytokines and Chemokines
Using ELISA, we quantified the systemic expression of cytokines
(IL-6, IL-1 beta, NGF-beta, and TNF-alpha) and chemokines
(CINC-1). The control, poor and good performers had
undetectable levels of the circulating cytokines IL-6, IL-1beta,
NGF-beta, and TNF-alpha. Specifically, it was not possible to
detect IL-6, IL-1beta, NGF-beta, and TNF-alpha in the plasma
samples of good and poor performers from Wistar and SD
lineages, suggesting that this level of detection is smaller than
the detection capability of this kit. For more details regarding
the ELISA data, see Supplementary Information 2, which
provides an example of IL-1beta detection. Only the CINC-
1 levels in the Wistar lineage were detected and exhibited an
increase in the poor performers compared with the control and
good performers [F(1, 17) = 5.18, P < 0.02], as illustrated in
Figure 5.

FIGURE 4 | Effects of AA training on corticosterone levels (pg/dL) in

control, good and poor avoiders of two different strains: SD Sprague

Dawley and Wistar. Bars represent the means, and the vertical lines indicate

the SEMs. #P < 0.05 vs. good and poor performers. &P < 0.05 vs. all other

groups. SD Good, Sprague Dawley good performers (n = 14); SD Poor,

Sprague Dawley poor performers (n = 10); SD Control, Sprague Dawley

control rats (n = 5); Wistar Good, Wistar good performers (n = 8); Wistar Poor,

Wistar poor performers (n = 15); Wistar Control, Wistar control rats (n = 5).

DISCUSSION

First, a behavioral distinction between animals with poor and
good performances was demonstrated. The poor performers
exhibited substantially reduced responses across the 8 training
sessions compared with the good performers. Both groups
had a sufficient number of learning trials to acquire the
instrumental association; however, the poor performers exhibited
little avoidance and tended to express persistent freezing
responses. The freezing responses exhibited by the poor
performers prevented them from actively avoiding the electric
shocks and led them to adopt this form of persistent, passive
coping behavior (Steimer and Driscoll, 2003). According to
Lázaro-Muñoz et al. (2010) and Choi et al. (2010), the animals
had acquired the avoidance response during training; however,
they had performance deficits that impaired them from memory
expression. The main reason supporting this argument is that the
lesion of the CeA was instrumental to AA in the poor performers.
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FIGURE 5 | Plasma concentration of cytokine-induced neutrophil

chemoattractant 1 (CINC-1) in the Wistar lineage assessed by

enzyme-linked immunosorbent assay. The data are represented in pg/mL;

the bars represent the means, and the vertical lines indicate the SEMs. &P <

0.05 vs. Control and Good performers. Wistar Good, Wistar good performers

(n = 8); Wistar Poor, Wistar poor performers (n = 15); Wistar Control, Wistar

control rats (n = 5).

The avoidance task results indicated strain differences in
the percentage of good performers (66% in SD vs. 35% in
Wistar). Deficits in learning performance across spatial and
contextual learning tasks in the Wistar lineage have previously
been reported, which suggests that they do not form context
parings in an easy and efficient pathway (Keeley et al., 2015).
However, the comparison of specific results between Wistar
and SD rats are, in some cases, conflicting; this difference may
be explained by the differences in the behavioral task. Some
authors have reported that the acquisition of the lever presser
avoidance is faster and expressed at a higher magnitude inWistar
compared with SD rats (Servatius et al., 2008; Beck et al., 2010;
Jiao et al., 2011; Perrotti et al., 2013; Avcu et al., 2014). In
contrast, Ferguson and Cada (2004) reported spatial learning and
memory deficits in Wistar rats compared with SD rats in the
complex maze task. Different strains, as well as the same lineage,
including rapid, modal, and slow avoiders and non-avoiders,
exhibited a heterogeneous pattern of responses in a signaled AA
(Galatzer-Levy et al., 2014). The Wistar lineage has an innate
ability to develop extinction-resistant avoidance (Servatius et al.,
2008; McAuley et al., 2009; Jiao et al., 2011); this characteristic
is important because avoidance is a core symptom of anxiety
disorders (American Psychiatric Association., 2013). Thus, the
exacerbated anxiety response in Wistar rats may be responsible
for decreasing the avoidance response and supports that only 35%
of the rats are good performers.

The Wistar lineage is known for its anxiety trait (Servatius
et al., 2008; McAuley et al., 2009; Jiao et al., 2011), and our
data demonstrated that good Wistar performers exhibited a
decrease in the entries in the open arms compared to Wistar
poor performers, thus reflecting well-established anxiety-like
behaviors (Cruz et al., 1994; Ramos et al., 1997). The current
findings suggest that good performers are predisposed to high
anxiety because they exhibit more fearful reactions, such as less
time spent in the open arms in the EPM. In the same task,
good and poor performers of SD lineage exhibited similar EPM

behavior. In contrast to our data, Horii et al. (2012) reported that
SD high avoiders exhibited high anxiety-like behaviors compared
with low avoiders. Furthermore, Steimer andDriscoll (2003) have
also identified an increase in the duration and frequency of open
arm exploration in roman high avoidance rats compared with
the low avoiders. One potential reason for this difference may
be the use of inbred strains of high and low avoidance animals,
which were originally selected and bred in accordance with their
performance in the avoidance task.

The open field test is the classic test used to assess
locomotor and exploratory activity (Walsh and Cummins, 1976;
Redolat et al., 2009; Overstreet, 2012). The current findings
demonstrated that there was no difference in motor learning
between performers as indicated by the total distance exhibited
in the open field in both lineages. Researchers who have bred
lines of Roman and SD rats (Steimer and Driscoll, 2003; Horii
et al., 2012) have reported that high performers exhibited an
increase in locomotor activity. This increase does not reflect a
physical impairment between good and poor performers, which
may explain the differences in the avoidance response. The
main reason for the poor avoiders not performing instrumental
responses is because of malfunctions in the neurocircuitry that
involves the prefrontal cortex and amygdala (Wilensky et al.,
2000; Choi et al., 2010; Lázaro-Muñoz et al., 2010; Martinez et al.,
2013; Moscarello and LeDoux, 2013; McCue et al., 2014; Jiao
et al., 2015).

With an emphasis on the neuroendocrine aspect, our
data demonstrated that poor and good performers exhibited
decreased corticosterone levels after 8 days of the two-way AA
compared with the control animals that never received shocks.
At first glance, this decrease in corticosterone is contrary to
the concept of stress research because evidence predominately
indicates an increase in corticosterone levels as a physiological
response to stress (King and Hegadoren, 2002; Brush, 2003;
Steimer and Driscoll, 2003; Lightman, 2008; Ganella and Kim,
2014; Spiga et al., 2015).

To understand this finding, the mechanisms of cortisol release
must be detailed. Its mechanisms involve the sympathetic and
hypothalamic-pituitary-adrenal (HPA) systems that are activated
when a stimulus is perceived as a stressor (King and Hegadoren,
2002). The activation of the sympathetic system is immediate
and results in epinephrine secretion from the adrenal medulla
and norepinephrine from peripheral and central sympathetic
neurons. HPA axis activation lasts from minutes to hours and
results in the release of corticotropin-releasing factor (CRF)
from the hypothalamus. This hormone stimulates the release of
adrenocorticotropin hormone (ACTH) from the pituitary in the
systemic circulation. Finally, ACTH acts on the adrenal cortex to
release the glucocorticoid cortisol (Baum and Grunberg, 1997).
Based on the HPA axis, several mechanisms may be involved
in the development of hypocortisolism. These mechanisms may
include reductions in biosynthesis or depletion at several levels
of the HPA axis; hypersecretion of CRF and an adaptive down-
regulation of the pituitary CRF receptors; an increase in feedback
sensitivity of the HPA axis or morphological changes at different
levels of the HPA axis. Thus, acute training tasks, such as foot
shock, induce the release of adrenal stress hormones, such as
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corticosterone (Gold and Van Buskirk, 1975). Repeated stress
may result in an upregulation of glucocorticoid receptors with
an increased sensitivity of the HPA axis to negative feedback
inhibition, which may be responsible for decreasing cortisol
secretion until the development of chronic hypocortisolism
(Boyer, 2000; Heim et al., 2000).

Our hypothesis is that longer duration training (7 days) may
be responsible for the elicitation of a repetitive stress, which
promotes adaptive effects, such as increasing the number of
glucocorticoid receptors and decreasing corticosterone secretion.
This may have a protective effect on the nervous system because
chronic exposure to high corticosterone impairs new learning in
several other aversive and non-aversive contexts (Wolf, 2003).
One potential mechanism is that attenuated cortisol leads to
an exaggerated catecholaminergic response during a traumatic
event, which may result in an over-consolidation of fear
(Yehuda et al., 1990; Cabib and Puglisi-Allegra, 1996; Reznikov
et al., 2015). Hypocortisolism has been reported in several
pathological conditions, including post-traumatic stress disorder,
burnout with physical complaints, chronic fatigue syndrome,
fibromyalgia, chronic pelvic pain, and asthma (Demitrack et al.,
1991; Hellhammer andWade, 1993; Crofford et al., 1994; Yehuda,
1997; Heim et al., 2000). Supporting our hypothesis, Xu et al.
(2015) reported that acute stress, but not chronic stress, increased
the plasma corticosterone concentration. Gourley et al. (2009)
reported that prior stress or chronic exposure to corticosteroids
leads to a decrease in endogenous corticosterone. Furthermore,
hypocortisolism has been described in healthy subjects who
experience ongoing stress and in animal models of chronic stress
(Caplan et al., 1979; Heim et al., 2000).

In terms of avoidance acquisition, the physiological stress
levels were maximal in early training and subsequently decreased
(Coover et al., 1973; Berger et al., 1981). During early avoidance
training (days 1 and 3), high and low avoiders exhibited an
increase in corticosterone and ACTH levels compared with basal
levels (Akieda-Asai et al., 2011). In this sense, yoked controls (i.e.,
rats that receive a footshock but that do not have control over
shock termination) have also shown an increase in corticosterone
levels after 3 days of stress (Berger et al., 1981; Kant et al., 1992)
but a decrease in corticosterone levels after 14 days of stress (Kant
et al., 1992), supporting the chronic stress effect.

In another avoidance protocol, Rhesusmonkeys were required
to press a lever to avoid electric shocks, and the cortisol levels
constantly decreased to extremely low values (Mason et al.,
1968). In humans, Bourne et al. (1968) suggested an association
between active coping and decreased adrenal activity, based on
data obtained from soldiers who lived in Vietnam camps, had
been warned to expect an enemy attack and had to prepare for
the event; interestingly, the cortisol metabolite levels decreased
with time.

Regarding performance, previous studies have demonstrated
that inbred high avoiders exhibited an increase in
adrenocorticotropin levels and CRH compared with low
avoidance rats (Ohta et al., 1999; Brush, 2003; Akieda-Asai et al.,
2011). Data from another strain, the derivation of the Syracuse
high and low avoidance, indicated a dissociation of behavioral
and endocrine measures in which low avoiders were more

anxious but had reduced corticosterone release compared with
high avoiders (Brush, 2003). The reason for this discrepancy with
our results may be because of inbred rats and the small number
of training sessions.

In terms of strain, the Wistar control group exhibited a
very high basal level of plasma corticosterone. These data
are consistent with the hyper-responsiveness of Wistar rats
to stress specifically in neuroendocrine responses, including
exaggerated corticosterone, plasma ACTH and norepinephrine
levels compared with SD rats (Paré and Redei, 1993; Redei et al.,
1994; Fairbanks and Klein, 1996; Gold and Chrousos, 1999; Baum
et al., 2006).

In addition to the HPA nervous system, the immune system is
impacted by stressful experiences (Deak et al., 2015). Cytokine
secretion markedly affected neurotransmission and induced
hormonal changes similar to the changes identified following
stressor exposure (Gądek-Michalska et al., 2013). Preexisting
individual differences in the immune system that may affect
social stress have previously been evaluated (Hodes et al.,
2014), which reinforces the increasing importance of the role of
inflammation in several processes.

Our data indicated undetectable levels of IL-6, IL-1beta, NGF-
beta, and TNF-alpha. The classic pro-inflammatory cytokines
include IL-1, IL-6, and TNF-alpha; these cytokines modulate
the central nervous system during stressor exposure (Deak
et al., 2015) and memory processes (Pugh et al., 1998; Elderkin-
Thompson et al., 2012). However, the undetectable levels in
our plasma samples suggest that these cytokines may be more
restricted to the central nervous system structures rather than
present in the circulating blood samples. IL-1beta and IL-6 are
most commonly found in the brain (Capuron and Miller, 2011).
Manipulations in the periphery have been previously shown to
increase the expression of IL-1 beta, IL-6, and TNF-alpha in the
hippocampus (Datta and Opp, 2008; Cibelli et al., 2010; Burton
et al., 2011; Ren et al., 2011). IL-1beta has been identified in
key structures, such as the amygdala and the paraventricular
nucleus of the hypothalamus, in response to stress (Blandino
et al., 2009; Hueston and Deak, 2014). Increased levels of
local TNF-alpha n the hippocampus via astrocyte signaling
are responsible for cognitive dysfunction (Habbas et al., 2015).
Previously, the quantification of NGF was primarily performed
with hippocampal (Zheng et al., 2008; Choi et al., 2011; Kim and
Oh, 2013) and cortical (Choi et al., 2011) samples.

Other cellular manifestations of neuroimmune activation
include the expression of the chemokine CINC-1, the rodent
homolog of human IL-8 (Ballendine et al., 2015; Silva et al.,
2015), which is responsible for mediating the recruitment of
neutrophils (Shibata, 2002; Brochu et al., 2011). CINC-1 was
the only detectable chemokine, and one reason may be that
neutrophils are the first inflammatory cells to be expressed
(Witko-Sarsat et al., 2000). Other reasons may include its role in
regulating oligodendrocytes that are responsible for the pattern
of white matter tracts in the central nervous system (Vora
et al., 2012) or decreased levels of serum CINC-1 that act
as neuroprotective agents in blood-brain barrier breakdown
(Michalak et al., 2010). In this sense, we suggested that CINC-
1 is an important inflammatory tool that could contribute to
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differential avoidance information processing. There is only one
paper (Ballendine et al., 2015) in which the systemic contribution
of infiltrating neutrophils to the neuroinflammatory response
has been indirectly associated with performance. Specifically,
pregnant rats were treated with polyl:C, which increased
circulating CINC-1, and the offspring exhibited impairments in
recognition memory, visual cues and altered behavioral flexibility
in an operant test battery (Ballendine et al., 2015); these findings
support our data that increased CINC-1 prejudices performance.
To our knowledge, no previous work in the literature has focused
on the link between CINC-1 and avoidance or fear conditioning.
Therefore, our study provides intriguing results relevant to
specific aspects of avoidance and its correlation with systemic
CINC-1. There is an inconsistency regarding serum CINC-1
levels in SD and Wistar lineages. The explanation may be that
most measurements of serum CINC-1 in rats have utilized Long
Evans (Ballendine et al., 2015), Lewis (Brochu et al., 2011) and
Wistar (Barichello et al., 2010, 2012, 2013; Camilo et al., 2014;
Quinteiro et al., 2014; Sunahara et al., 2014; Teixeira et al., 2014;
Fukui et al., 2015; Nolasco et al., 2015) lineages.

The avoidance paradigm has clinical relevance because
avoidance is an effective strategy for coping with danger; it
is extensively used by patients with fear-related disorders to
reduce their exposure to fear- or anxiety-provoking situations.
Pathological avoidance is a hallmark of anxiety disorders, and
patients are often unable to perform normal daily activities
(Mineka and Zinbarg, 2006). Our study provides a better
understanding of the complex interactions that underlie these
strains and the neuroimmune consequences, as well as their
implications for performance. It is important to emphasize that
the main contribution of our work is that we have demonstrated
for the first time that the plasma level of CINC-1 may be an
important biomarker of avoidance impairment. In the future,

we expect that regulatory cytokine therapy may represent
an effective strategy to regenerate the immune balance and
prevent or reverse abnormal fear and exaggerated avoidance
behaviors.
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