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Data-driven learning how oncogenic gene
expression locally alters heterocellular networks
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Anika C. Pirkey® '

Developing drugs increasingly relies on mechanistic modeling and simulation. Models that
capture causal relations among genetic drivers of oncogenesis, functional plasticity, and host
immunity complement wet experiments. Unfortunately, formulating such mechanistic cell-
level models currently relies on hand curation, which can bias how data is interpreted or the
priority of drug targets. In modeling molecular-level networks, rules and algorithms are
employed to limit a priori biases in formulating mechanistic models. Here we combine digital
cytometry with Bayesian network inference to generate causal models of cell-level networks
linking an increase in gene expression associated with oncogenesis with alterations in stromal
and immune cell subsets from bulk transcriptomic datasets. We predict how increased Cell
Communication Network factor 4, a secreted matricellular protein, alters the tumor micro-
environment using data from patients diagnosed with breast cancer and melanoma. Pre-
dictions are then tested using two immunocompetent mouse models for melanoma, which
provide consistent experimental results.
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issues are dynamic structures where different cell types

organize to maintain function in a changing environment.

For instance, the mammary epithelium reorganizes during
distinct stages of the ovarian cycle in preparation for lactation!.
At the same time, immune cells clear dead cells and defend
against pathogens present in the tissue microenvironment. Ulti-
mately, the number and functional orientation of different cell
types within a tissue interact to create a network, that is a het-
erocellular network. This heterocellular network is essential for
creating and maintaining tissue homeostasis. While we know that
tissue homeostasis is disrupted during oncogenesis, our under-
standing of how genetic alterations quantitatively and dynami-
cally influence the heterocellular network within malignant
tissues in humans is not well developed despite large efforts, like
The Cancer Genome Atlas (TCGA), to characterize the genomic
and transcriptomic landscape in human malignancy?3. In parallel
with these large scale data gathering efforts, two informatic
developments, namely digital cytometry and Bayesian network
inference, may be helpful in interrogating these datasets and are
summarized in the next paragraphs.

In cytometry, single-cell sequencing technology elicits a lot of
excitement as it enables unbiased discovery of novel cell subsets
in particular disease states®>. Unfortunately, persistent challenges
related to confounding of batch effects with biological replicates
limit the statistical power of these datasets to link oncogenic
transcriptional changes with re-organization of the cellular
network®’. Due to the high number of biological replicates,
transcriptomic datasets, such as the Cancer Genome Atlas, pro-
vide a rich resource in characterizing the heterogeneity of onco-
genic transformation. Yet, these data were obtained from
homogenized tissue samples and reflect the expression of genes
averaged across a heterogeneous cell population. Computation-
ally, “Digital Cytometry” can deconvolute the prevalence of
individual cell types present within a mixed cell population®. The
approach stems from the idea that the influx of a particular cell
subset into a tissue corresponds to an increase in a gene signature
uniquely associated with this particular cell subset’~!2. Gene
signatures of immune cells have been developed in a number of
studies, which increasingly leverage scRNAseq data and machine-
learning methods!3-16. Besides representing different cellular
subsets, gene signatures can also represent intracellular processes
associated with oncogenesis, like the epithelial-mesenchymal
transition!”-21, Though, the predictive value of many of these
tissue “features” in inferring how heterocellular networks are
altered in diseased tissues remain unclear, as establishing corre-
lations among features tends to be the end point of studies (e.g.
refs, 19:22,23),

Besides facilitating data acquisition, improved computational
power has also enabled probabilistic inference methods that
identify relationships within biological datasets that could not be
observed using simpler statistical techniques?2>. These rela-
tionships can be depicted as a graph, where each node represents
a random variable, or “feature”, and an edge represents a direct
relationship between two variables. When the direction of influ-
ence can be inferred for an edge, the parent-child relationship can
be, under certain conditions, interpreted as causal and defined as
an arc. A parent-child relationship implies that the values of these
two random variables are not independent. By repetitively testing
for independence conditioned on other subsets of variables,
algorithms can learn the topology of a Bayesian network, which is
expressed as a directed acyclic graph (DAG), directly from data2°.
As algorithms for reconstructing Bayesian networks emerged,
they were used to model signaling pathways within cells?’, to
identify known DNA repair networks in E. coli using microarray
data?® and to identify simple phosphorylation cascades in T cells
using flow cytometry data?®30. While many more studies have

been published since, a common conclusion is that the statistical
confidence associated with an inferred network improves as the
number of samples included in a dataset is greater than the
number of random variables. However, transcriptomics data, like
that obtained as part of the TCGA, typically have a large number
of random variables (#1g.,es) and a small number of biological
replicates (#patients), Which makes inferring gene-level networks
computationally difficult and also implies greater uncertainty in
the inference3!.

As summarized in Fig. 1, we propose an approach that com-
bines digital cytometry with Bayesian network inference to
identify how heterocellular networks associated with functional
plasticity and anti-tumor immunity change during oncogenesis in
humans. Conceptually, digital cytometry improves the statistical
power by projecting the transcriptomic space onto a smaller
number of “features” that estimate the prevalence of stromal and
immune cell types and the average differentiation state of
malignant cells present within the tumor microenvironment, such
that Marures << Mpatienss- The causal structure among these features
can then be predicted using Bayesian network inference. While
data unstructured in time, such as the TCGA datasets, are not
ideal for inferring causality, we test the inferred networks using
in vivo experiments using syngeneic murine tumor models.

To illustrate the approach, we focused on Cell Communication
Network factor 4 (CCN4/WISP1), a secreted matricellular protein
that is upregulated in invasive breast cancer?, expressed by
malignant cells, and correlates with a lower overall survival in
patients diagnosed with primary melanoma33-3°. Functionally,
expression of CCN4 promotes metastasis in melanoma by
promoting a process similar to the epithelial-mesenchymal
transition®334, In developing state metrics that quantify func-
tional plasticity in breast cancer and melanoma using an unsu-
pervised approach, CCN4 was the only gene product associated
with both a mesenchymal state metric in breast cancer and a de-
differentiated state metric in melanoma that results in a secreted
protein?!. The collective set of features, or simply nodes of a
network, were quantified in three transcriptomic datasets
obtained from bulk tissue samples from patients with breast
cancer and melanoma and used to generate a casual network
describing how expression of a secreted gene product by malig-
nant cells, such as from CCN4, more broadly alters the hetero-
cellular network within a tissue using Bayesian network inference.

Results

Generating causal graphs linking oncogenes with hetero-
cellular networks. Bayesian network inference involves inferring
the structure of the network, which captures the specific causal
interactions or arcs among the nodes of a network and represents
them as a directed acyclic graph (DAG), and then estimating the
parameters of the conditional probability distribution from the
datasets. As summarized in Supplementary Fig. 1, we used a four-
step process to learn the causal structure associated with the cell-
level networks. The four steps corresponded to specifying a
“blacklist” based on prior information, generating an ensemble of
potential arcs using 10 different structural learning algorithms,
filtering potential arcs based on a trade-off between regression
accuracy and model complexity to create a “whitelist”, and
learning the network structure using both the “blacklist” and
“whitelist”. We will discuss this process in more detail in the
following paragraphs.

In learning the causal structure of a network, the network
structure can be shaped by prohibiting the inclusion of specific
arcs into a proposed network, that is by assigning an arc to a
“blacklist” or alternatively a “no-list”. Here, the “blacklist”
represents a way to incorporate prior knowledge about causal
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Fig. 1 A computational workflow combining digital cytometry with Bayesian network inference to estimate how a genetic alteration associated with
disease, such as over-expression of a secreted gene product by malignant cells, impacts the heterocellular network within a tissue. Digital cytometry
deconvolutes a bulk transcriptomic profile using gene signatures that correspond to different stromal, malignant, and immune cell types. The results

estimate the prevalence of the different cell types within the tissue sample,

that is the digital cytometry features. By using bulk transcriptomic profiles of

defined patient populations, underlying variation in the inferred cellular composition coupled with features associated with a patient sample, such as over-
expression of a secreted gene product by malignant cells, can be used to estimate how the heterocellular network is impacted by a genetic alteration

intrinsic to the malignant cell using Bayesian Network inference. To illustrate the approach, we focused on malignant cell expression of Cell Communication
Network factor 4 (CCN4), a secreted matricellular protein. The resulting directed acyclic graph represents the collective conditional independence among

the modeled features, or nodes, of the network.

relationships associated with oncogenesis and the roles that
specific immune cells play in controlling tumor cell growth. In
particular, we considered only arcs into the “CD8 T cells” node
(i.e., a leaf node), only arcs that originate from the “Cancer” node
(i.e., a root node), mostly arcs that originate from the “CCN4”
node (with exception for the “Cancer” node), and only arcs into
the “CD4 T cells” and “Neutrophils” nodes. Cancer as a root node
follows from contemporary understanding of oncogenesis, where
mutation of either oncogenes or tumor-suppressor genes is the
cause of cancer development3®. Including expression of CCN4 as
a root node follows from its frequent mutation in and scRNAseq-
assayed expression by malignant cells?3-37. Recent immunothera-
pies that either adoptively transfer CD8 T cells®® or improve the
function of CD8 T cells by relieving immune checkpoints3®
motivate specifying CD8 T cells as a leaf node. Specifying “CD4

T cells” and “Neutrophils” as leaf nodes follows from the high
number of zero values for those features in the dataset, which
were 350 and 439 samples in the BRCA dataset, respectively.
These limits were implemented by assigning the corresponding
arcs to the “blacklist”. In a Bayesian context, assigning an arc to
the “blacklist” specifies the prior probability of including this arc
in network to zero. Practically, including these different categories
of arcs into the “blacklist” helped infer arc direction consistently
among the different structural learning algorithms (see Supple-
mentary Fig. 2). As the number of arcs included in the “blacklist”
was increased, the number of edges with unclear direction was
decreased. Specifically, 17 edges had an unclear direction without
specifying a “blacklist” (Supplementary Fig. 2A), while only 6
edges had an unclear direction in the final “blacklist” (Supple-
mentary Fig. 2E).

| (2022)13:1986 | https://doi.org/10.1038/s41467-022-29636-3 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-29636-3

10 ¥, ¥
V ¢ i
v ¥
9 [ I
AL
sk
8 [ k
Al ;
¢ k 5
H # H
7 {4 ¥ H #
v ¥ ¥
z 5 ; ﬁ ’I [ Clear direction
S [IH fl i I +BIC minimum
8 5 f ’ H ] Unclear direction
I 5 ; ’ ’; ”' + BIC minimum
% 2 ‘ 2 [ [ Unclear direction
o [ 5 ¥ i [ Excluded
504 [ A g _
< v ¥ )
i /
s 1A A ¢
AL 1 g
ail /
¥
| |
2 g ; ;
il ¢
¥ ¢ ¥
1 bl 4 #
A /
i ¥ ¢

257 30 35 40 45 50 55
Edge Number

60 1900

1.E+00 50 BIC No. in

Final DAG 1800
40
1.E-10

30 \ 1700

No. in
Whitelist

Number of Arcs

1.E-20 20
.= 1600

10

1.E-30

Bayesian Information Criterion (Total)

& 1500
Empty < < < < < <
Graph 0  1E-30 1E-20 1E-15 1E-10 1E-05 All

Whitelist Threshold

BIC / Number of Parental Arcs

Cancer 102.8/0 102.8/0 102.8/0 102.8/0 102.8/0 102.8/0 102.8/0 102.8/0
cCNa 852/0 71.0/1 71.0/1 71.0/1 71.0/1 71.0/1 71.0/1 71.0/1
B Cells naive 67.8/0 67.6/2 65.0/1 650/1 650/1 67.0/1 70.4/2 728/3
CAF 61.3/0 49.9/2 47.4/2 47.4/2 482/4 502/5 50.2/5 54.0/6
CDAT cells 195.1/0 172.5/3 172.5/3 172.5/3 172.5/3 172.5/3 172.3 /4 173.7/6
CD8 T cells 728/0 65.8/4 658/4 658/4 658/4 658/4 67.7/5 727/7
Endothelial cells ~ 142.7/0 128.5/2 133.6/1 128.5/2 126.3/2 119.4/5 119.4/5 1223/4
Epithelial 859/0 80.0/1 818/2 800/1 80.0/1 80.0/1 80.0/1 80.0/1
Macrophages 763/0 763/0 763/0 763/0 763/0 763/0 76.4/1 764/1
Mesenchymal 99.2/0 56.8/2 57.5/1 57.5/1 56.8/2 580/3 58.0/3 60.0/4
Neutrophils 102.4/0 1053/3 105.3/3 105.3/3 105.3/3 105.3/3 106.5/4 107.8/5
NKcellsactive ~ 174.7/0 174.7/0 174.7/0 174.7/0 174.7/0 174.7/0 174.7/0 174.0 /1
NKcellsresting ~ 143.8/0 119.6 /1 119.6/1 119.6/1 119.6/1 119.6/1 121.0/2 122.4/3
pMO 123.8/0 20.8/2 208/2 73.0/2 73.0/2 73.0/2 1159/3 1159/3
pM1 109.6/0 109.6/0 108.8/1 92.3/2 88.6/3 88.6/3 88.6/3 88.6/3
pM2 108.1/0 931/1 931/1 931/1 931/1 931/1 60.5/2 60.5/2
Proliferation 742/0 68.4/3 68.7/4 68.4/3 715/3 705/3 705/3 753/6

yi8uans adp3

1.E-40

1.E-50

1.E-60

Fig. 2 Summary of the evidence obtained from the TCGA breast cancer dataset supporting the consensus edges in the seed network. A Edges ordered
based on the number of algorithms that detected that an edge was enriched (bar graph - left axis) and the strength of enrichment (dotted lines - right axis).
The strength of enrichment, that is Edge Strength, corresponds to the probability of a partial correlation between the two nodes of an arc being explained
by random chance, given the rest of the network. The lines associated with the strength of enrichment represent the minimum (dashed line) and maximum
(dotted line) values obtained by the different algorithms for each edge. Bar graph color indicates whether an edge was significantly enriched with a clear
direction and contained within the set of arcs identified at the minimum BIC (green), significantly enriched without a clear direction but contained within
the set of arcs identified at the minimum BIC (green/yellow), significantly enriched without a clear direction (yellow), or excluded from the consensus seed
network list (tan). B Dependence of overall network connectivity (top) and node connectivity (bottom) on the number of arcs included in the whitelist. A
threshold value for the edge strength (x-axis) was used to select arcs for including in the whitelist (red curve), which resulted in the inferred DAG

connectivity (black circles). Values for the Bayesian Information Criterion (BIC) were calculated for the entire DAG (top - black squares) and for each node
given the inferred parents (bottom table: BIC/number of parental arcs). The cells highlighted in green indicate the minimum BIC value and the number of

corresponding arcs that were included in the consensus whitelist.

As algorithms for structural learning have different underlying
assumptions, we used an ensemble approach to average across the
different algorithms to identify a list of potential arcs that were
used to seed the final learned structure of the DAG, that is a
consensus seed network. This ensemble approach mirrors the
“community network” approach described by Marbach and
coworkers based on experiences with DREAM challenges for
inferring intracellular networks*%4l. Specifically, we used ten
different structural learning algorithmszé, including constraint-
based (Incremental association Markov Blanket - IAMB?%2,
Incremental association with false discovery rate control -
IAMB.FDR*, practical constraint - PC.STABLE*, grow-shrink
Markov Blanket - GS*3), score-based (hill climbing - HC, Tabu
search - Tabu®®), and hybrid learning (max-min hill-climbing -
MMHCY, restricted maximization - RSMAX2%8) algorithms.
Two algorithms for local discovery of undirected graphs (max-
min parents and children - MMPC*?, Hiton parents and children
- SLHITON.PC%) were also included to provide additional
evidence supporting the existence of an edge between two nodes.
Bootstrap resampling, that is resampling the dataset with
replacement to generate a synthetic dataset of similar size as
the original and infer the network structure using the synthetic
dataset, was used in learning the network structure with each
algorithm, which resulted in generating 10,000 network struc-
tures. For each algorithm, an averaged network structure was
then calculated from this collection of network structures, where
the threshold for including an arc into the average network was

automatically determined by each algorithm and was nominally
0.5 using the approach described by Scutari and Nagarajan>?, We
applied the same approach to both the breast cancer (BRCA -
Figs. 2 and 3 and Supplementary Table 1) and the two melanoma
datasets (common melanocytic nevi and primary melanoma:
GEO - Fig. 5 and Supplementary Fig. 3 and Supplementary
Table 2, and primary melanoma from the TCGA: SKCM - Fig. 5
and Supplementary Fig. 3 and Supplementary Table 3). Of note,
edge/arc numbers are conserved across Supplementary Tables 1-3
and Fig. 2 and Supplementary Fig. 3.

The strength of evidence supporting the existence of an arc,
that is arc strength, can also be used to filter arcs for inclusion in
the consensus seed network, or simply called a “whitelist” or “yes-
list”. For instance, all arcs with a strength below a certain
threshold can be included in the “whitelist” (see Fig. 2B). As this
threshold was increased, more arcs were included in the
“whitelist” and the number of arcs included in the final DAG
was also increased. We also note that, while exploring the impact
of a strength threshold, arcs were left out of the “whitelist” if their
inferred direction varied among the algorithms (yellow bars in
Fig. 2 and Supplementary Fig. 3). While increasing the number of
arcs in the DAG better approximates the joint probability
distribution, a complicated network limits interpretability. We
used a Bayesian Information Criterion (BIC) to quantify this
trade-off between regression accuracy and model complexity,
where the optimal balance is at a minimum value. When the BIC
was used to analyze the entire BRCA network, an empty graph
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Fig. 3 A directed acyclic graph (DAG) representing the conditional probability distribution inferred using the digital cytometry and sample features
extracted from the breast cancer arm of the TCGA. The nodes of the graph represent features, such as CCN4 gene expression (rectangle), sample

attribute (hexagon), or the prevalence of a particular cell type/state (oval). The edges represent inferred causal relationships among the nodes. The black
lines with arrow heads represent a positive causal relation while red lines with horizontal bars represent a negative or inhibitory causal relation, where the
extent of influence of the parental node is annotated by the number beside the edge. The number included within the node symbol represents the average
normalized value of the digital cytometry feature within the dataset with values of all of the parental nodes set to zero. The width of the edge is proportional

to the posterior probability of inclusion into the DAG.

provided the maximum value and the minimum value corre-
sponded to an empty “whitelist”. As the weight of each node in
contributing to the overall BIC value varied, we found that
applying the BIC to individual nodes instead of the entire DAG
provided better insight into including specific arcs in the final
“whitelist”. For instance, parental arcs associated with CCN4,
Mesenchymal, and CD8 T cells were readily identified without
specifying a “whitelist”. Adding additional arcs with higher
strength values (i.e., arc strength values greater than 1E-20) into
the “whitelist” increased the BIC values. However, minimal BIC
values for other nodes, such as active NK cells and p(M2), were
only found when arcs with higher strength values were included.
The arcs included in the “whitelist” used in the final analysis
corresponded to the parental arcs associated with the minimum
BIC values determined at the node-level for each dataset and that
arcs didn’t form cycles (see Fig. 2B and Supplementary Fig. 3).
For instance, the minimum BIC value for the Endothelial node of
119.4 occurred in the BRCA analysis using a strength threshold
for “whitelist” inclusion of 1E-10. This minimum BIC value was
associated with five parental arcs: arc numbers 9 (“prolifera-
tion” — “Endothelial cells”), 19 (“Cancer” — “Endothelial cells”),
20 (“naive B cells” — “Endothelial cells”), 33 (“Mesenchymal” —
“Endothelial cells”), and 39 (“p(M1)” — “Endothelial cells”).
However, only arc numbers 19, 33, and 39 were included in the
“whitelist”. Arcs 9 and 20 formed cycles with arcs identified at the
minimum BIC values for other nodes and were excluded from the
“whitelist”. The final network for each dataset was generated
using a hybrid learning algorithm (mmbhc) using a “blacklist”
specified based on prior causal knowledge and a “whitelist”
corresponding to the consensus seed network. Similar to the first
step, bootstrap resampling (#1;,,; = 10,000) and network aver-
aging were used to generate the three DAGs shown in Figs. 3 and
5. Each DAG was used to generate parameters for a linear
Gaussian model estimated by maximum likelihood and condi-
tioned on the network structure that approximates the joint

probability distribution associated with the dataset. Values for the
linear coefficients and the average node values were used to
annotate the DAGs. The sign of the linear coefficient was also
used to annotate whether a particular arc promotes or inhibits the
target node.

The resulting DAGs imply that oncogenesis in breast cancer
was associated with a shift from epithelial to mesenchymal cell
state accompanied by an increase in cell proliferation and a
suppression of endothelial cells, which were inferred with high
confidence. In turn, endothelial cells promote the infiltration of
CD4 T cells. The local structure associated with “Cancer”s
influence on the “Mesenchymal” state via “CCN4” suggests an
incoherent type-3 feed-forward motif to regulate the mesench-
ymal state. Inference of a feed-forward motif is interesting as
feed-forward loops are highly prevalent and well understood as
control mechanisms in intracellular networks®! but are less well
understood in the context of intercellular networks. In addition,
expression of CCN4 inhibits active NK cells. The high confidence
arc between active NK and resting NK cells follows from these
features being mutually exclusive in the dataset and very few
samples having zero values for both features. The mesenchymal
state increased cancer-associated fibroblasts (“CAFs”) with high
confidence. Interestingly, oncogenesis was also associated with
increasing the prevalence of a type 1 macrophage (“p(M1)”),
which in turn promoted the recruitment of CD8 T cells. The
prevalence of CD8 T cells are also connected to “Cancer” via a
larger incoherent feed-forward motif involving “p(M1)”, “CCN4”,
the “Mesenchymal” state, and “CAFs” with high confidence.

As there was more data supporting the BRCA DAG, the
resulting Bayesian network model was compared against the
underlying experimental data and used to explore the impact of
varying CCN4 expression in the context of normal and cancer
tissue (Fig. 4). To simulate normal and cancer tissue, we queried
the conditional probability distribution by generating samples
from the Bayesian network and filtered the values based on
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Fig. 4 Conditional probability query of the BRCA DAG compared against digital cytometry estimates obtained from experimental data. Experimental
samples obtained from normal mammary and tumor tissue are shown as blue versus red dots, respectively. Samples of the conditional probability model
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(E) and Cancer Associated Fibroblasts (F). Linear trend lines are superimposed on the conditional probability samples.

“Cancer” < 0.05 and “Cancer” > 0.95, which are colored in blue
and red, respectively. The corresponding experimental data
points and trend lines are overlaid upon the posterior distribu-
tions. The posterior distributions mirror the experimental data
points, where there is an increase in CCN4 expression between
normal (“Cancer” < 0.05) and cancer (“Cancer” > 0.95) tissue. The
posterior distributions mirror the variability observed in the
experimental data when comprised of non-zero values, such as
CD8 T cells (Fig. 4A) and CAFs (Fig. 4F). In contrast, the
prevalence of zero values increased the range of the posterior
distribution, such as for CD4 T cells (Fig. 4B). In comparing
normal to cancer tissue, CD8 T cells was the only feature, on
average, increased in cancer tissue, while CD4 T cells and CAFs
were decreased and active NK cells (Fig. 4C), B cells (Fig. 4D),
and Macrophages (Fig. 4E) exhibited similar trends. Slopes of the
trend lines highlight the influence of CCN4 expression on the
prevalence of different immune cell populations. Increased CCN4
expression had the most pronounced inhibition on active NK
cells and also suppressed CD8 T cells. CCN4 expression also had
a pronounced positive impact on the prevalence of CAFs,
macrophages, and CD4 T cells. CCN4 expression seemed to
have no impact on B cells.

The breast cancer dataset contained 582 samples, of which
8.8% were from normal mammary tissue. In contrast, the two
melanoma datasets contained 78 GEO samples, which includes
34.6% benign nevi, and 94 SKCM samples of primary melanoma
only. While a lower number of samples limits the inferential
power of a dataset, we decided to analyze them separately as they
had different distributions in transcript abundance as a function
of transcript length. As the Bayesian network inference algorithm
leverages differences in the magnitude of a feature within a
population, approaches to harmonize these two datasets may

introduce a systemic bias that is convoluted with oncogenic
transformation, as the GEO dataset has many samples obtained
from benign nevi while the SKCM dataset does not. In analyzing
the melanoma datasets separately, we developed separate
consensus seed networks using the node-level BIC values (see
Supplementary Fig. 3). Using these consensus seed networks to
specify the corresponding “whitelist”, the structure and para-
meters associated with Bayesian network was inferred indepen-
dently from each melanoma dataset (see Fig. 5).

Given the high prevalence of samples from benign nevi in the
GEO dataset, high confidence arcs in the GEO network focus on
changes associated with oncogenesis. Similar to the breast cancer
analysis, oncogenesis was associated with a shift from an
epithelial to a mesenchymal-like cell state. The mesenchymal cell
state is promoted by both oncogenesis and CCN4 expression via a
feed-forward motif, depicted here as the more common type 1
coherent motif. In addition, CCN4 expression indirectly impacted
CAFs by promoting a mesenchymal-like cell state. Similar to the
breast cancer analysis, oncogenesis promoted an increase in CD8
T cells, but indirectly by recruiting active NK cells. In analyzing
the SKCM dataset, less emphasis is placed on the changes
associated with oncogenesis but how expression of CCN4
influenced the network. Similarly to the GEO analysis, the SKCM
analysis suggested that CCN4 expression directly impacted the
mesenchymal state that then influenced CAFs. In addition, CCN4
expression directly promoted resting NK cells, which is similar to
the BRCA analysis considering the reciprocal relationship
between active and resting NK cells. In both melanoma datasets,
CD8 T cells were directly promoted by macrophages and by NK
cells either directly in the GEO dataset or indirectly through
macrophages in the SKCM dataset. In addition, neutrophils,
proliferation, and B cells were independent of all nodes. In all
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Fig. 5 Two DAGs representing the conditional probability distributions inferred using the digital cytometry and sample features extracted from the
two melanoma-related datasets. A Analysis of a bulk RNAseq dataset obtained from patients with common pigmented nevi and primary melanoma

(Nsamples = 78). B Analysis of primary melanoma samples extracted from the SKCM arm of the TCGA (Nsamples = 94). The DAGs are summarized using
similar notation as described in Fig. 3. Dotted lines indicate edges that were included in the consensus seed network but, as the samples were all from

patients with cancer, had no evidence in the TCGA dataset.

three analysis, there was high confidence associated with the arcs
among the nodes quantifying macrophage polarization, which is
likely an artifact of the formula used to calculate p(M®i)’s (see
Eqn 1). Queries of the conditional probability distribution based
on the SKCM DAG for active NK cells, Macrophages, B cells, and
CAFs were similar to the BRCA analysis (Supplementary Fig. 4).
Similar to the BRCA analysis, a high number of zero values for
the CD4 T cell features in the SKCM dataset suggests caution in
interpreting differences in CD4 T cell predictions. To validate
these predictions, we focused on two strategies: using flow
cytometric analysis of tumor-infiltrating lymphocytes in syn-
geneic mouse tumor models to validate the digital cytometry
predictions and targeted in vitro experiments to validate the
presence or absence of arcs predicted by the Bayesian network
inference.

Validating the impact of CCN4 expression using syngeneic
mouse models. Syngeneic immunocompetent mouse models of
cancer provide an important complement to retrospective studies
of human data as they can aid in causally linking genetic
alterations with cellular changes the tumor microenvironment.
Here we used two syngeneic transplantable models for melanoma
to test the predictions generated by the collective approach: the
spontaneous B16F0 model and the YUMM1.7 model that displays
BrafVoUOE/WT pten—/— Cdkn2~/~ genotype. As these cell lines
basally produce CCN4 protein, we generated CCN4 knock-out
(KO) variants using a CRISPR/Cas9 approach and confirmed
CCN4 KO by testing conditioned media for CCN4 protein by
ELISA. Tumors were generated by injecting the cell variants
subcutaneously in 6-8-week-old female C57BL/6 mice and
monitoring for tumor growth. Once wild-type (WT) tumors
reached between 1000 and 1500 mm? in size, tumors were sur-
gically removed from all mice that were not considered outliers
and processed into single-cell suspensions (n =7 for YUMM1.7
variants and n=4 for B16F0 variants). The single-cell suspen-
sions were aliquoted among three antibody panels to characterize
the tumor-infiltrating lymphocytes by flow cytometry (see

Supplementary Figs. 5-7 for gating strategies). While the B16F0
and YUMM1.7 KO variants were generated using a double
nickase CRISPR/Cas9 approach, similar results were obtained
using a homology-directed repair strategy>#3>. Additional con-
trols for puromycin selection of CRIPSR/Cas9 edited cells using
B16FO0 cells transfected with a pBabe-puromycin retrovirus also
behaved functionally similar in vitro and in vivo as wild-type
B16F0 cells®*.

The percentage of CD45" cells among total live cells exhibited
a semi-log dependence on tumor size (Fig. 6A - BI16FO:
R?=0.607, F-test p-value=7.27E-6; YUMML7: R2=0.830,
F-test p-value = 1.48E-7), where CCN4 KO resulted in smaller
tumors in both cell models with greater CD457 cell infiltration.
As illustrated in Fig. 6A, YUMM1.7 variants had a much higher
dependence on tumor size than B16F0 variants. Conventionally,
flow cytometry data are normalized to tumor size to estimate the
prevalence of a particular cell type per tumor volume. Yet, the
dependence on tumor size could be a confounding factor in
addition to CCN4 expression that could skew the results.
Moreover, the Bayesian network analysis predicts the impact of
CCN4 expression alone on the prevalence of specific immune cell
subsets. Thus, we focused instead on the prevalence of a
particular cell type within the live CD45" TIL compartment to
validate the digital cytometry predictions.

In comparing the WT B16F0 and YUMMI.7 models, the
relative prevalence of NK (Live CD45% CD3e~ NKI1.1* B220~
events), CD4T T (Live CD451 CD3et CD41 CD8a~ events), and
CD8* T (Live CD45%t CD3e™ CD4~ CD8a™ events) cells were
similar while B cells (Live CD45T CD3e~ NK1.1~ B220% events)
were almost 10-times more prevalent in the B16F0 tumors
compared to YUMM1.7 tumors (Fig. 6B). The prevalence of these
different cell types changed within the CD45% TIL compartment
upon CCN4 KO (Fig. 6C, D). Figure 6C highlights the trends
among the mouse models and compares against the digital
cytometry predictions obtained from the BRCA and SKCM
datasets. Predictions for the change in cell type prevalence by
CCN4 expression were obtained by comparing the prevalence of
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Fig. 6 CCN4 knock-out in two syngeneic mouse models of melanoma induced a similar shift in cytolytic lymphocytes as observed in human breast
cancer and melanoma. A The percentage of live CD45+ cells isolated from tumors generated by inoculating s.c. with WT (red) and CCN4 KO (blue)
variants of BI6FO (o and x's) and YUMM1.7 (] and +'s) cells, where the log-linear trends are highlighted by dotted lines. CD45+ values were obtained
from three different antibody panels that quantified T cells, B/NK cells, and myeloid cells in TIL isolates from each mouse. B A comparison of the ratio of
NK cells (black), CD8+ T cells (red), CD4+ T cells (blue), and B cells (green) to live CD45+ TlLs in s.c. tumors generated using WT B16FO and YUMM1.7
cells (mean = s.d.). € The difference in the mean prevalence of the infiltrating immune cell types was compared when CCN4 is present (WT) versus absent
(CCN4 KO) as predicted by digital cytometry from the BRCA (dark gray) and SKCM (light gray) datasets and as observed experimentally using the B16FO
(red) and YUMM1.7 (black) mouse models. D TIL comparison upon CCN4 KO in B16FO and YUMMT1.7 mouse models stratified by NK cells, CD8+ T cells,
CD4+ T cells, and B cells (top to bottom) (n =7 biologically independent animals for YUMMT1.7 and n = 4 biologically independent animals for BI6FO
variants and mean +s.d.). p-values calculated between WT and CCN4 KO pairs using two-sided Student's t test.

the indicated cell type estimated by digital cytometry with CCN4
expression. Given the uncertainty associated with how particular
tissue samples represent the full dynamic range of biologically
relevant CCN4 expression, the BRCA and SKCM samples were
separated into 5 quantiles based on CCN4 expression (see
Supplementary Figs. 8 and 9). We used the feature values from
the highest CCN4 expression quantile to represent wild-type
tumors and from the lowest CCN4 expression quantile to
represent CCN4 knock-out tumors. We then calculated the
difference in cell type abundance upon CCN4 knock-out.
Specifically, CD4 and CD8 T cells and B cells had analogous
digital cytometry features as assayed in the flow panel, while NK
cells were mapped to the “active NK cells” feature. The relative
change in abundance was largely consistent among the four
systems, with the YUMM1.7 model being the most different. The

8

BRCA and SKCM datasets predicted that NK cells were most
reduced by CCN4 expression, which was observed in both the
B16F0 (p-value =0.047, n =4) and YUMML1.7 (p-value = 0.051,
n=17) models. The BRCA dataset predicted that CCN4
expression reduced CD8' T cells, which was observed in the
YUMMI1.7 model (YUMM1.7 p-value =0.002) with a similar
trend observed with the B16F0 model (p-value=0.770). The
CD4™ T cells seemed to vary in response to CCN4 expression as
the BRCA and B16FO0 results showed an increase while the SKCM
and YUMM1.7 results showed a decrease. As stated previously,
the BRCA and SKCM predictions for CD4 T cells should be
interpreted with caution given the high frequency of zero values
for the features. B cell response was mixed with both the BRCA
and SKCM results suggesting no change. In mice, B cells were
observed to decrease in the B16F0 model and increase in the
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YUMMI1.7 model upon CCN4 KO, with the low number of B
cells infiltrating YUMM1.7 tumors rendered the results more
variable. Given the small sample size of the experimental mouse
cohorts, only the extremes were statistically significant, with NK
cells significantly increased (p-value=0.047) and B cells
significantly decreased (p-value=0.002) in B16F0 CCN4 KO
tumors and CD8 T cells significantly increased (p-value = 0.002)
in YUMM1.7 CCN4 KO tumors (Fig. 6D).

CCN4 expression-induced changes in the myeloid compart-
ment are less clear. In addition to changes in T and NK cells
within the live CD45" compartment, we also assayed myeloid
subsets in tumors generated by WT and CCN4 KO variants of the
B16F0 and YUMMI1.7 cell lines. Using the gating strategy sum-
marized in Supplementary Fig. 7, we focused on CD11ct and
CD11lc™ macrophages (live CD457 CD11b™ GR1~ F4/80*
events), neutrophils (live CD45% CD11bi"* CD11¢~ GR1t F4/
80~ events), dendritic cells (live CD45%T CD11bl/int CD11ct
GR1~ F4/80~ events), and two different myeloid-derived sup-
pressor cell (MDSC) subsets: CD11c~ and CD11ct MDSC (live
CD45%" CD11b* GR1* F4/801/~ MHCII™ events). In comparing
tumors derived from WT cell lines, CD11ct macrophages were
the most predominant infiltrating myeloid cell subset and most
subsets were consistent between the two mouse models (Fig. 7A).
Upon CCN4 KO in the mouse models, the CD11ct macrophage
subset increased while the MDSC subsets decreased (Fig. 7B-E)
within the CD45" compartment, while the response varied for
the two least abundant subsets: neutrophils and CD11c™ mac-
rophages. The reduction in CD11c¢t MDSC in CCN4 KO variants
were most pronounced and statistically significant (p =0.004 in
YUMM1.7 and p=0.153 in B16F0). While Ly6G and Ly6C
staining may have been a better staining strategy for distin-
guishing among monocytic (Mo-) and polymorphonuclear
(PMN-) MDSC subsets, we observed a reduction in PMN-
MDSCs in YUMML.7 tumors upon CCN4 KO using Ly6G/Ly6C
antibodies?>. Consistent with the idea that PMN-MDSCs arise
from impaired differentiation of granulocytes, neutrophils were
increased within the CD45% compartment in CCN4 KO tumors
derived from YUMMI1.7 cells (p =0.002) but not statistically
different in the BI6F0 model (p = 0.097). Other myeloid subsets
trended similarly but with differences that were not statistically
significant. In addition, we noted that a dendritic cell subset (live
CD451 CD11b%/it CD11ct GR1~ F4/80~ cells) increased upon
CCN4 KO (p =0.045 in YUMM1.7 and p =0.011 in B16FO0).
Comparing the trends in the myeloid compartment observed
among the mouse models and the Bayesian network predictions
obtained from the BRCA and SKCM datasets is less clear, given
the uncertainty as to how the digital cytometry features map onto
the quantified myeloid subsets in these mouse models. In
particular, the digital cytometry features, that is the subset of
particular genes and their relative expression that constitute a
particular cell’s gene expression signature, were defined using
differentiated cell subsets. In contrast, MDSCs are prevalent
within the tumor microenvironment and result from impaired
differentiation of myeloid precursors into mature myeloid cells,
like macrophages, dendritic cells, and neutrophils. Uncertainty in
mapping how the gene expression signature in an immature
myeloid cell subset overlaps with a differentiated myeloid cell
creates uncertainty in predicting cell abundance by digital
cytometry. Despite those concerns, key myeloid features in the
Bayesian networks were macrophages oriented towards a Ml
phenotype. Correspondingly, CD11ct macrophages, a subset that
has been associated with pro-inflammatory M1 tumor-associated
macrophages®2, were the most predominant myeloid subset in
WT B16F0 and YUMMI.7 tumors and did not change upon

CCN4 KO. In the BRCA dataset, the prevalence of macrophages
was influenced by CCN4 expression; yet, the functional orienta-
tion away from the M2 and towards the M1 phenotype depended
solely on oncogenic transformation. Similarly, the prevalence of
macrophages was influenced by both CCN4 expression and
oncogenic transformation in both melanoma datasets. In contrast
to the BRCA results, functional orientation of macrophages
were independent of both oncogenic transformation and CCN4
expression. Neutrophils were predicted to be independent of
CCN4 expression in the melanoma datasets, which is not
surprising considering that the majority of tumors had zero
values for the Neutrophil feature. Similarly, neutrophils were
about 10 times less abundant than CD11c 4+ macrophages in the
mouse models. Given the significant changes observed in MDSCs
and the corresponding differentiated cell subsets upon CCN4 KO
in the mouse models, challenging digital cytometry predictions in
this way highlights features that can be improved, such as
discriminating among terminally differentiated and immature
subsets, like Mo-MDSC and PMN-MDSC.

Validating the predicted causal effects of CCN4 expression. To
validate the causal predictions present within the DAGs, we first
focused on the inferred direct promotion of a mesenchymal state
in malignant cells by CCN4 expression. To test this, we per-
formed a rescue experiment with both CCN4 KO variants of the
B16F0 and YUMM1.7 lines by adding recombinant CCN4 pro-
tein back to the cultures and monitored the expression of genes
associated with the epithelial-mesenchymal transition in real time
(Fig. 8A). Within 30 min of adding rmCCN4 to CCN4 KO
YUMMI1.7 cells, an increase in Snail was observed and a con-
comitant reduction in the epithelial marker E-cadherin (Cdhl).
We also observed similar dynamics using the B16F0 line. Col-
lectively, these gene expression dynamics are consistent with
CCN4 expression shifting malignant cells from an epithelial to
mesenchymal-like phenotype.

While the focus typically is on the presence of an edge with the
DAG, the absence of an edge can also provide information. In this
context, we noted that local proliferation of CD8™ T cells correlates
with clinical response to immune checkpoint blockade®3”%, In
addition, the DAGs inferred from both the breast cancer and
melanoma datasets suggest that a decrease in CD8T T cells is
driven indirectly through CCN4 expression via modulating cancer-
associated fibroblasts or the activity of NK cells. While the
structural learning algorithms rejected a direct edge between CCN4
expression and CD8V cells, we tested whether CCN4 expression
directly inhibits T cell proliferation (see Fig. 8B) using a statistical
analysis of Cell Trace distributions in CD4t and CD8*1 T cells
stimulated in vitro (see Supplementary Table 4). Specifically,
splenocytes were stimulated in vitro with aCD3/aCD28-loaded
beads in the presence of media conditioned by WT or CCN4 KO
B16F0 cells or supplemented with 10 ng/ml recombinant mouse
CCN4, which was consistent with the concentration in medium
conditioned by WT cells. In both the CD4* and CD8% T cell
populations, the presence of tumor-conditioned media significantly
inhibited the fraction of cells that divided at least once (Dil - CD4
p-value = 0.022, CD8 p-value = 0.018) and the probability that a
cell will divide at least once (PF - CD4 p-value =0.024, CD8
p-value=0.013) while CCN4 protein exposure was not a
statistically significant factor. For responding cells, the average
number of divisions they undergo (PI) was not different among
experimental conditions for CD4" T cells (p-value =0.22) but
reduced in CD8T T cells exposed to tumor-conditioned media
(p-value = 0.0077). Overall, the presence of tumor-conditioned
media and not CCN4 protein influenced T cell proliferation, which
was consistent with the DAGs.
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Fig. 7 Myeloid immune cell subsets differentially infiltrated tumors derived from WT B16FO and YUMM1.7 cells and shifted in prevalence upon CCN4
knock-out. A A comparison of the ratio of CD11c- (black) and CD11c+ (gray) macrophages, Dendritic cells (yellow), CD11lc+ MDSC (green), MDSC (blue),
and Neutrophils (red) to live CD45+ TlLs in s.c. tumors generated using WT B16FO and YUMMT1.7 cells (mean % s.d.). B The difference in prevalence of the
myeloid cell types was compared when CCN4 is present (WT) versus absent (CCN4 KO) as predicted by digital cytometry of the BRCA (dark gray)
and SKCM (light gray) data sets and as observed experimentally using the B16FO (red) and YUMM1.7 (black) mouse models. Macrophages are the
only myeloid cell subset inferred from the BRCA and SKCM datasets and are assumed to be related to CD1lc+ macrophages in mouse models. C A
representative scatter plot of GR1 versus CD11c expression in gated live CD45+ CD11b+ TILs obtained from WT (top) and CCN4 KO (bottom) YUMM1.7
tumors. D-F TIL comparison upon CCN4 KO in B16FO and YUMM1.7 mouse models stratified by myeloid-derived suppressor cell subsets (D: MDSC (top)
and CD11c+ MDSC (bottom)) and other myeloid cell subsets (E: CD11c- (top) and CD11c+ (bottom) macrophages, F: neutrophils (top) and dendritic cells
(bottom)) (n =7 biologically independent animals for YUMMT1.7 and n = 4 biologically independent animals for B16FO variants and mean + s.d.). p-values
calculated between WT and CCN4 KO variants using two-sided Student's t test.

The third prediction tested was related to CCN4 expression CD8T T cells by immunizing C57BL/6mice against YUMM1.7
either promoting resting NK cells in the primary melanoma cells and isolated CD8a*t T cells from splenocytes three days
DAG or inhibiting active NK cells in the breast cancer DAG. after re-priming with live YUMMIL.7 cells. We also created a
We note that the strong inhibitory edge between active and variant of CCN4 KO YUMMI1.7 cells with CCN4 expression
resting NK cells is a consequence of the mutually exclusive induced by doxycycline and vector controls that were used as
nature of these two nodes, as the weighting of many of the target cells (see Supplementary Fig. 10). IFNy ELISpots were
genes within resting and active NK cell gene signatures are used to quantify the CD8% T cell functional response to the
similar (see Fig 8C). One of the most differentially weighted different tumor targets in the presence or absence of tumor-
genes among these two gene signatures is IFNy. NK cells also  produced CCN4 protein (Fig. 8D). While doxycycline added in
share cytotoxicity mechanisms and cytokine release, like IFNy, the context of a blank induction vector had no effect, re-
with CD8T T cells, Another characteristic of CD8% T cells expression of CCN4 protein by CCN4 KO YUMML.7 cells
present within the tumor microenvironment is that they are following doxycycline induction significantly reduced IFNy
dysfunctional®. As the digital cytometry approach used here production (p-value<0.002), which suggests that secreted
doesn’t estimate the functional state of CD8% T cells only their CCN4 protein plays a direct role in inhibiting CD8a™ T cell
prevalence within a tissue sample, we decided to test whether function. Overall, the changes observed between WT and CCN4
CCN4 expression had a direct impact on CD8™ T cell function, KO variants of the BI6FO and YUMM1.7 mouse models were
as quantified by target-specific ex vivo cytokine release as consistent with the causal networks inferred from the breast
measured by ELISpot. First we generated YUMMI1.7-reactive cancer and melanoma datasets.
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Fig. 8 CCN4 promoted an epithelial-mesenchymal-like transition and had no direct effect on T cell proliferation but impaired CD8+ T cell function.
A Expression of genes for transcription factors (left panel - Snail: red triangle, Snai2: blue diamond, Zeb1: black circle, and Zeb2: gray square) and adhesion
proteins (right panel - Cdh1: blue triangle, Cdh2: black circle, Fn1: red square) associated with the epithelial-mesenchymal transition were assayed as a
function of time following addition of rmCCN4 to CCN4 KO YUMM1.7 (top row) and CCN4 KO B16FO cells (bottom row). Colored asterisks indicate
whether gene at a particular time point was significantly different than untreated cells, where n = 3 biological independent samples. B The distribution in
cell trace staining among live CD4* (left panel) and CD87 (right panel) T cells stimulated with aCD3/aCD28 (AP beads) alone or in the presence of
media conditioned by WT B16FO cells (AP beads + WT TCM), media conditioned by CCN4 KO B16FO cells (AP beads + CCN4 KO TCM), or with 10 ng/
ml of recombinant mouse CCN4 (AP beads + rCCN4). The distribution in the corresponding unstimulated cells (gray) are shown at the bottom. The
colored vertical lines indicate the predicted dilution of cell trace staining in each generation based on the unstimulated controls. C Bivariate projection of the
weights of genes within the resting (y-axis) and activated (x-axis) NK cell signatures. D Using spleens from C57BL/6 mice that were challenged with
YUMM1.7 cells, isolated CD8+ T cells were assayed by in vitro ELISpot for IFNy expression using variants of the YUMM1.7 cell line as targets (CCN4 KO
YUMM1.7 with a blank inducible expression vector and CCN4 KO YUMMT1.7 with a CCN4 inducible expression vector). To induce CCN4 expression, these
YUMMT1.7 variants were also cultured in the absence (—) or presence of doxycycline (+) and quantified following 24 h co-culture. Statistical significance
between WT and CCN4 KO variants was assessed using two-way ANOVA followed by Tukey's multiple comparison ad hoc post-test, where n=6

biologically independent samples. Results summarized as mean * s.d.

Discussion

Validating the role that a particular molecule plays in driving the
disease state using targeted experiments is central for improving
understanding of biological mechanisms or selecting among
competing drug targets. Given the limited observability of the
biological response in experimental models and patients,
mechanistic modeling and simulation is playing an increasing
role in helping answer many central questions in discovering,
developing, and receiving federal approval of pharmaceutical
drugs and also basic biology®®. In immuno-oncology, there is
increasing interest in modeling the heterocellular network of
relevance for a specific immunotherapy. The first step in creating
mathematical models of cell-level networks is to create the
topology of the network, which is expressed in terms of which
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nodes to include and how they influence each other. The struc-
ture of these cell-level models is created using a fully supervised
approach, which means by hand using expert knowledge®’. For
instance, systems of ordinary differential equations have been
developed to capture multiple spatial compartments containing
interacting malignant, antigen presenting, and T cells and to
predict a general immune response®$, a response to immune
checkpoint blockade using CTLA-4, PD-1, and PD-L1
antibodies®® or adoptive cell transfer®®.

While leveraging the knowledge of experts is a great starting
point, hand-curated models can also implicitly impose bias on
how data is interpreted. In the context of molecular-level net-
works, rules and algorithms have been developed to elaborate
causal networks based on a limited set of rules®!-%%. The rules
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constrain the types of interactions, or arcs, that are realistic
between the nodes while the algorithms generate all possible arcs
that are consistent with the rules and collection of nodes. The
resulting rule-based networks are then used to interpret data by
filter the arcs for the most consistent and, in the process, may
reveal previously unappreciated pathways. For instance, a rule-
based model was used to interpret single-molecule detection of
multisite phosphorylation on intact EGFR to reveal a new role for
the abundance of adapter proteins to redirect signaling®. Given
the challenges with representing the various activation states
of a 12-subunit Ca?*/calmodulin-dependent protein kinase II
(CaMKII) holoenzyme that is essential for memory function, a
rule-based model identified a molecular mechanism stabilizing
protein activity that was obscured in prior reduced models®®.
Inspired by engineering better CAR T cells, Rohrs et al. developed
a rule-based model to interpret site-specific phosphorylation
dynamics associated with Chimeric Antigen Receptors®’.

To our knowledge, no equivalent approach exists in the context of
modeling cell-level networks. One might consider agent-based or
cellular automata models to apply as the cellular interactions are
specified by rules. In rule-based modeling of molecular networks, the
rules and algorithms elaborate a network space that encompasses all
possible topologies of the network and data is used to prune the
network to the most relevant. Similarly, the arcs included in the
“blacklist” and “whitelist” can be considered as a Bayesian prior,
where the strength of inclusion in the final DAG and the coefficient
associated with a particular arc in the conditional probability
function depend on the data. In contrast, agent-based or cellular
automata models require specifying all interactions between cells as
rules a priori and are validated qualitatively by comparing emergent
behavior against experimental observations®®-70, We posit that
coupling digital cytometry with Bayesian network inference is ana-
logous to rule-based modeling in the context of modeling cell-level
networks. Here, the rules comprise a limited set of constraints, or
heuristics, related to the direction of information flow. Specifically,
the rules limit how changes in gene expression within the malignant
cell introduced during oncogenesis propagate to stromal and
immune cells present within the tumor microenvironment and are
implemented as a “blacklist”. In formulating the “blacklist” used
here, specifying cancer as a root node and CD8% T cells as a leaf
should be generalizable in the context of most solid tumors. Due to
immune privilege, glioblastoma multiform may be an exception for
CD81 T cells’!. Specifying the oncogene as a child of cancer and a
potential root node to everything else should also be generalizable.
Choosing an oncogene that produces a secreted product is also
important as the secreted product is likely to play a direct role in
intercellular communication. Single-cell RNAseq data can help
support this assumption that malignant cells express the oncogene.
Specifying nodes that have a high percentage of zero values as leaves
follows from network inference arguments as trends in the non-zero
values, which ideally are related to other nodes, may be swamped by
differences between the zero and non-zero values and may give rise
to spurious arcs. The algorithms that underpin Bayesian network
inference search over all possible network topologies for arcs that are
consistent with the data. The resulting networks can be used in
multiple ways. As an unsupervised approach, the network topology
could complement existing workflows for creating mechanistic
mathematical models fit for use in testing molecular targets®”’2. In
addition, DAGs represent explicit hypotheses generated from pre-
existing human data that motivate experiments to validate the
predictions, as illustrated by the B16F0 and YUMM1.7 results.

While the focus here is in the context of breast cancer and
melanoma due the pre-existing breadth of data, the approach
could be generally applied to other biological contexts and
motivate experimental studies. For instance, one of the limitations
of inferring the network topology in the form of directed acyclic

graphs is that some direct and indirect causal relationships can be
confounded, such as reciprocal feedback modes of communica-
tion between cells’3. Discerning the difference between a direct
and indirect causal relationship has practical importance, such as
for selecting therapeutic targets’%. Methods, like Granger caus-
ality and dynamic Bayesian networks317576, do exist that could
reveal direct and indirect causal relationships, but time-series data
is required. Unfortunately, human tissue samples, like those in
the TGCA, are very rarely sampled with time. Analysis of pre-
existing human datasets can be complemented by a more focused
experimental study of a pre-clinical model. Specifically, single-cell
RNAseq to identify the cell types present and their associated
gene signatures can be combined with bulk transcriptomic
sequencing to capture the prevalence of all of the cell types within
the tissue sample and provide a large number of biological
replicates spanning the disease space - normal homeostasis;
initiation; early, middle and late progression; and productive
resolution or adverse outcomes. Similar network topologies
would suggest similar biological mechanisms and help select
relevant pre-clinical models for drug development. In short, we
feel that combining digital cytometry with Bayesian network
inference has the potential to become an indispensable unsu-
pervised approach for discovering relevant heterocellular net-
works associated with disease.

Methods

The research complies with all relevant ethical regulations. In particular, the West
Virginia University Institutional Review Board classified all analysis of existing data
obtained from humans as exempt from Human Subjects Research (IRB Protocol
#1604090889). In addition, all animal experiments were approved by West Virginia
University (WVU) Institutional Animal Care and Use Committee (IACUC Pro-

tocol #1604002138) and performed on-site.

Digital cytometry. Transcriptomics profiling of bulk tissue samples using Illumina
RNA sequencing for the breast cancer (BRCA) and cutaneous melanoma (SKCM)
arms of the Cancer Genome Atlas were downloaded from TCGA data commons,
where values for gene expression were expressed in counts using the “TCGAbio-
links” (V2.8.2) package in R (V3.6.1) and converted to TPM. RNA-seq data assayed
in samples acquired from benign melanocytic nevi and untreated primary mela-
noma tissue and associated sample annotation were downloaded from GEO entry
GSE98394 and converted to TPM. TCGA data and the benign nevi and melanoma
data were filtered to remove sample outliers and normalized based on house-
keeping gene expression’’. Digital cytometry features associated with the func-
tional plasticity of malignant cells within an epithelial to mesenchymal-like state
space were calculated based on state metrics developed separately for bulk breast
cancer and melanoma tissue samples2!. Cell proliferation features were calculated
based on the median expression of genes associated with cell proliferation that were
identified previously using human cell line data3. Features corresponding to the
prevalence of endothelial cells, cancer-associated fibroblasts, macrophages, and
CD4+ T cells were calculated using CIBERSORTXx (https://cibersortx.stanford.edu)
using the gene signatures derived from single-cell RNAseq data3” while the pre-
valence of B cells naive, CD8™ T cells, Macrophage M0 (M®0), Macrophage M1
(M®1), Macrophage M2 (M®2), activated NK cells, resting NK cells, and neu-
trophils were calculated using the LM22 immune cell gene signatures in CIBER-
SORTX run in absolute mode.

Given the potential lack of independence among the macrophage features, the
LM22 macrophage features were combined to estimate the probability of the
average functional orientation using the formula described previously’!:

M®i

pPMPI) = ————————————
MO0 + MD1 + MD2

©)
where i = {0, 1, 2} and denotes the specific macrophage subtype. Additional cellular
features were excluded from the analysis as they tended to have a large number of
zero values across the datasets, which resulted in being disconnected from the rest
of the network in preliminary structural inference. Sample attributes were
transformed to numerical values, which were assumed to be extremes of a
continuous variable. For instance, if the sample was obtained from normal tissue,
the value for “Cancer” was set equal to 0; if the sample was obtained from cancer
tissue, the value for “Cancer” was set equal to 1. The sample attributes, CCN4 gene
expression, and estimated cellular features extracted from the bulk RNAseq data
calculated for each sample are included in the GitHub repository.

Bayesian network inference. Prior to network inference, feature values were log
transformed, normalized to values between 0 and 1, and discretized (BRCA: 15
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intervals; GEO and SKCM: 6 intervals). The features were then assigned to nodes.
The relationships among the nodes, or arcs, were represented by directed acyclic
graphs inferred from the datasets using a process involving four steps, as detailed in
the results section and graphically summarized in Supplementary Fig. 1. In learning
the network structure, the strength of evidence supporting the existence of an arc,
that is arc strength, corresponds to the probability of a partial correlation between
two nodes of an arc being explained by random chance, given the rest of the
network. Specifically, arc strength is the p-value calculated using the exact t-test for
a Pearson’s correlation coefficient. Given the inferred structure, a Bayesian network
in the form of a linear Gaussian model was fit to the datasets using maximum
likelihood estimation of the model parameters. A Bayesian Information Criterion
(BIC) was used to evaluate the trade-off between a L1 loss function, which
numerically quantifies the ability of a specified directed acyclic graph to represent
the conditional independence of the joint probability distribution, and a penalty
associated with network complexity. A BIC value for feature j was calculated by:

Nops .

BICJ = Mapes * loglo(nobs) + ig:l ‘Y’J - YU‘y (2)
where f/,-j and Yj; are the observed and predicted values for feature j, 1, is the
number of parental arcs associated with the entire DAG or node, and n,y, is the
number of samples. Conditional probability queries of the Bayesian networks were
performed by logic sampling with 10> samples. Bayesian network inference was
performed using the ‘bnlearn’ package (V4.5) in R (V3.6.1).

Reagents and cell culture. Cytokines and antibodies were obtained from com-
mercial sources and used according to the suppliers’ recommendations unless
otherwise indicated. The mouse melanoma line B16F0 (purchased in 2008, RRID:
CVCL_0604) and HEK293T (purchased in 2005, RRID: CVCL_0063) were
obtained from American Tissue Culture Collection (ATCC, Manassas, VA). The
mouse melanoma line YUMMI1.7 (received in September 2017, RRID:
CVCL_JK16) was a gift from Drs. William E. Damsky and Marcus W. Bosenberg
(Yale University)78. HEK293T, B16F0 and YUMM1.7 cells were cultured at 37°C in
5% CO, in high-glucose DMEM (Cellgro/Corning) supplemented with L-glutamine
(Lonza), penicillin-streptomycin (Gibco), and 10% heat-inactivated fetal bovine
serum (Hyclone). All cell lines were revived from frozen stock, used within 10-15
passages that did not exceed a period of 6 months, and routinely tested for
mycoplasma contamination by PCR. CCN4 knock-out variants of BI6F0 and
YUMML1.7 cells were generated using a double-nickase CRISPR/Cas9 editing
strategy described previously?>. Briefly, two pairs of mouse CCN4 double nickase
plasmids that target the mouse Ccn4 gene at different locations were purchased
from Santa Cruz Biotechnology, Inc. (Dallas, TX) and transfected into BI6F0 and
YUMML.7 cells following the manufacturer’s instructions. Following antibiotic
selection, surviving single clones were isolated and expanded on six-well plates. The
concentration of CCN4 protein in the cell culture media from those wells was
assayed using the Human WISP-1/CCN4 DuoSet ELISA Kit (R&D Systems,
Minneapolis, MN) to confirm CCN4 knockout. CCN4-knockout cells were further
expanded and aliquoted to create a low passage frozen stock.

In vivo tumor assays and in vitro T cell proliferation assays. C57BL/6Ncrl mice
(6-8-week-old female) were from Charles River Laboratories. Mice were randomly
assigned to treatment groups and co-housed following tumor initiation. Animals
were housed with a 12-h light/dark cycle (light 6 a.m. to 6 p.m.), temperature
nominally 74 degrees F, and humidity 50%. Subcutaneous tumors were initiated by
injecting mice subcutaneously with 3 x 10° of the indicated YUMM1.7 cells and
2.2 % 10° of the indicated B16F0 cells in 100 uL and, once palpable, tumor sizes
were recorded every other day via caliper. Tumor volume was calculated using the
formula: 0.5236 x width? x length, where the width is the smaller dimension of the
tumor. Once WT tumors reached between 1000 and 1500 mm? in size, the tumors
were surgically removed from mice in both arms of the study (WT and CCN4 KO)
after euthanasia and processed into single-cell suspensions. This normally occurred
at Day 14 with the BI6F0 model and at Day 27 with the YUMM1.7 model. Seven
tumors were processed separately for each YUMMI.7 variant while four tumors
were processed for each BI6F0 variant. Single-cell suspensions were obtained by
enzymatically digesting the excised tumors using the Tumor Dissociation Kit and
gentleMACS C system (Miltenyi Biotec, Auburn, CA). In addition to following the
manufacturer’s instructions, the gentleMACS program 37C_m_TDK_1 was used
for B16F0 tumors and 37C_m_TDK_2 was used for YUMM1.7 tumors. Following
lysing of the red blood cells, the remaining single-cell suspensions were washed and
stained with Live/Dead Fixable Pacific Blue Dead Cell Stain Kit (ThermoFisher).
Following blocking with Mouse BD Fc Block (purified rat anti-mouse CD16/CD32
antibodies, BD Biosciences), the surface of the cells were stained with one of three
different antibody mixes that focused on T cells (CD45, CD3, CD4, CD8, and
PD1), NK and B cells (CD45, CD3, B220, NK11, DX5, and PD1), and myeloid cells
(CD45, CD11b, CD1l1c, Gr-1, F4/80, and MHCII) and quantified by flow cyto-
metry. The specific antibodies and dilutions used are listed in Supplementary
Table 5.

To assess the impact of CCN4 protein on T cell proliferation in vitro,
splenocytes were obtained from naive C57BL/6 mice and stained with CellTrace
Pacific Blue Cell Proliferation Kit (ThermoFisher). Stained splenocytes (2.5 x 10°)
were stimulated for 3 days in 96-well plate with MACSiBeads loaded with anti-

mouse CD3 and anti-mouse CD28 antibodies (AP beads, Miltenyi Biotec), at a 1:1
proportion. Fresh serum-free DMEM media conditioned for 24 hours by either
confluent wild-type (WT TCM) or confluent CCN4 KO (CCN4 KO TCM)
melanoma B16F0 cells were collected, centrifuged to remove cells and cell debris,
and added at 50% final volume during T cell stimulation with AP beads. In
addition, splenocytes were either left unstimulated or stimulated with AP beads
alone, or stimulated in the presence of recombinant mouse CCN4 protein (rCCN4,
R&D) at a final concentration of 10 ng/mL, which was selected based on the
concentration of CCN4 observed in medium conditioned by WT cells. Each
experimental arm was performed in biological triplicate. After 72h, cells were
washed and stained with Live/Dead Fixable Green Dead Cell Stain Kit
(ThermoFisher). Surface staining with anti-mouse CD8/APC (Miltenyi Biotec),
anti-mouse CD4/APC-Cy7 (BD Biosciences), anti-mouse CD62L/PE (eBioscience,
ThermoFisher) and anti-mouse CD44/PerCP-Cy5.5 (eBioscience, ThermoFisher)
was performed after incubating the cells with Mouse BD Fc Block (BD
Biosciences). The proliferation of both CD4F and CD8% T cells were quantified by
flow cytometry. Results representative of one of two independent experiments.

In vitro suppression of CD8" T cell function. Inducible mouse CCN4 expression
lentiviral vector (IDmCCN4) was constructed with Gateway cloning using Tet-on
destination lentiviral vector pPCW57.1 (Addgene Plasmid #41393, a gift from David
Root) and pShuttle Gateway PLUS ORF Clone for mouse Ccnd (GC-Mm21303,
GeneCopoeia). Lentiviruses were produced by transfecting either pPCW57.1-
mCCN4 or pCW57.1 and two packaging plasmids, psPAX2 (Addgene plasmid
122260) and pCMB-VSG-G (Addgene plasmid 8454), into HEK293T cells. Virus
soup was aliquoted and used to transduce YUMMI1.7 Ccn4 CRISPR knockout
(Ym1.7-KO1) cells with the expression vector?3. After puromycin selection, two
pools of cells with inducible mCCN4 (Ym1.7-KO1-IDmCCN4) or vector control
(Ym1.7-KO1-IDvector) were obtained. ELISA tests with doxycycline (Dox, final
0.5 pg/ml) induction revealed the mCCN4 expression was under stringent control
and the secreted protein was in the similar level as compared with wild-type
YUMML.7 cells (see Supplementary Fig. 10).

To generate YUMMI.7-reactive CD8+ T cells, healthy C57BL/6Ncrl mice were
inoculated subcutaneously with irradiated YUMM1.7 cells (10°/mouse), followed
by live YUMMIL.7 cells (3 x 10°/mouse) 3 weeks later. The mice without tumor
growth in the next five weeks were maintained. Three days before the assay, the
mice were injected again with live YUMMI.7 cells (10°/mouse). On the day of
assay, these mice were euthanized and the YUMM1.7-reactive cells were isolated
from mouse splenocytes using mouse CD8a+ T Cell Isolation Kit (130-104-075,
Miltenyi Biotec), resuspended in a concentration of 106/ml. In total, 50 ul (5% 10%)
of the YUMMI.7-reactive CD8+ T cells were aliquoted into each well on a 96-well
plate for ELISpot assay using Mouse IFNy/TNFa Double-Color ELISpot kit
(Cellular Technology Limited, CTL) following manufacturer’s instructions. Briefly,
target tumor cells were stimulated with IFNy (200 U/ml or 20 ng/ml) for 24 h,
harvested and resuspended in a concentration of 2 x 106/ml. In all, 50 ul (10°) of
indicated tumor cells in triplicates were aliquoted into each well, with or without
doxycycline (Dox, 0.5 pg/ml). The reactions were incubated at 37°C for 24 hours
and colored spots were developed (red for IFNy and blue for TNFa). The spots
were counted and imaged using an Olympus MVX10 Microscope and the result
was plotted and analyzed by Microsoft Excel (version 16.57).

RNA analysis. All samples for RNA analysis were prepared in biological triplicates
using CCN4 KO cells plated on 6-well plates in complete growth medium for 48 h
before starting the time-course experiment with a wash and replacement of
medium. In groups treated with recombinant mouse CCN4 protein (rmCCN4,
1680-WS-050,R&D systems), rmCCN4 was added at a final concentration of

5.0 ug/mL. At the indicated time points, cells were lysed and total RNA was isolated
using the GeneJET RNA purification kit (Thermo Fisher Scientific). 50-500 ng of
each RNA was reverse-transcribed using the High Capacity RNA-to-cDNA Kit
(Thermo Fisher Scientific). Real-time quantitative RT-PCR was performed on a
StepOnePlus real-time PCR system with Brilliant II SYBR Green qPCR master mix
(Agilent Technologies, Santa Clara, CA). Glyceraldehyde-3-phosphate dehy-
drogenase served as the internal control for the reactions, and the results were
analyzed in R to obtain normalized gene expression values. The primer pairs for the
indicated genes in this work were adopted from PrimerBank’® and listed in Sup-
plemental Table 6.

Flow cytometry. Single-cell suspensions described above were stained with specific
antibodies or isotype controls using conventional protocols. Fluorescence-activated
cell counting was performed using a BD LSRFortessa and FACSDiva software
(V8.0 BD Biosciences), where the fluorescence intensity for each parameter was
reported as a pulse area with 18-bit resolution. Unstained samples were used as
negative flow cytometry controls. Single-stain controls were used to establish
fluorescence compensation parameters. For TIL analysis, greater than 5 x 10°
events were acquired in each antibody panel in each biological replicate. In ana-
lyzing enriched cell populations, 2 x 10* events were acquired in each biological
replicate. Flow cytometric data were exported as FCS3.0 files and analyzed using R/
Bioconductor (V3.6.1), as described previously®(. The typical gating strategies for
T cells, NK and B cells, and myeloid cells are shown in Supplementary Figs. 5-7,
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respectively. The statistical difference in tumor-infiltrating lymphocytes between
WT and CCN4 KO variants was assessed using log-transformed values and a two-
tailed homoscedastic Student’s ¢ test. Cell proliferation was quantified using four
metrics: fraction diluted (Dil), Precursor frequency, %dividing cells (PF), Pro-
liferation index (PI), and proliferation variance (SDP)3!. Statistical differences
among these proliferation parameters were assessed using type III repeated mea-
sures ANOVA in the “car” (V3.0-7) package in R. A p-value < 0.05 was considered
statistically significant.

Statistics and reproducibility. As this was an exploratory study, no sample-size
calculation was performed prior to the study. However, independent experiments
using multiple replicates are used to ensure reproducibility. The size of a cohort
within a biological replicate was limited to the bandwidth of sample processing
workflow. Mice were excluded from the study if they failed to develop tumors
following subcutaneous challenge. Experiments were repeated at least once, or data
were compiled from two independent experiments. Replicates were reproducible.
Mice were purchased from the indicated vendors, labeled, and randomized to
treatment groups/cages. Mice receiving different cell lines were housed in the same
cages, at a density of five mice per cage. The investigators were not blinded to the
group allocation during data collection or analysis, as the same individuals that set
up the experiments were the ones that analyzed the results. They did remain
objective in interpreting the data.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The key datasets used in the analysis can be obtained from the following sources:
o The datasets supporting the conclusions of this article are available in Gene
Expression Omnibus repository with the following GEO accession number: GSE98394.
« Transcriptomics profiling of bulk tissue samples using Illumina RNA sequencing for
the breast cancer (BRCA) and cutaneous melanoma (SKCM) arms of the Cancer
Genome Atlas were downloaded from TCGA data commons, where values for gene
expression were expressed in counts, using the “TCGAbiolinks” (V2.8.2) package in R
(V3.6.1).

Code availability
The code used in the analysis can be obtained from the following GitHub repository:
+https://github.com/KlinkeLab/CellNetwork_2020%
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