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Machine learning improves 
the prediction of febrile 
neutropenia in Korean inpatients 
undergoing chemotherapy 
for breast cancer
Bum‑Joo Cho1, Kyoung Min Kim2, Sanchir‑Erdene Bilegsaikhan3 & Yong Joon Suh4*

Febrile neutropenia (FN) is one of the most concerning complications of chemotherapy, and its 
prediction remains difficult. This study aimed to reveal the risk factors for and build the prediction 
models of FN using machine learning algorithms. Medical records of hospitalized patients who 
underwent chemotherapy after surgery for breast cancer between May 2002 and September 2018 
were selectively reviewed for development of models. Demographic, clinical, pathological, and 
therapeutic data were analyzed to identify risk factors for FN. Using machine learning algorithms, 
prediction models were developed and evaluated for performance. Of 933 selected inpatients with a 
mean age of 51.8 ± 10.7 years, FN developed in 409 (43.8%) patients. There was a significant difference 
in FN incidence according to age, staging, taxane-based regimen, and blood count 5 days after 
chemotherapy. The area under the curve (AUC) built based on these findings was 0.870 on the basis of 
logistic regression. The AUC improved by machine learning was 0.908. Machine learning improves the 
prediction of FN in patients undergoing chemotherapy for breast cancer compared to the conventional 
statistical model. In these high-risk patients, primary prophylaxis with granulocyte colony-stimulating 
factor could be considered.

Chemotherapy-induced febrile neutropenia (FN) is one of the most concerning complications in patients with 
breast cancer undergoing chemotherapy1. Neutropenia is a principal dose-limiting toxicity of myelosuppressive 
chemotherapy that predisposes patients to grave infections2. Moreover, infection in patients with neutropenia is 
the direct consequence of chemotherapy-induced neutropenia3. Chemotherapy-induced neutropenia is a prin-
cipal risk factor for infection-related morbidity4. Further, mortality rates related with FN vary from 2 to 21%5,6.

Chemotherapy-induced FN commonly occurs during the initial cycle of cytotoxic therapy and increases 
in frequency with both duration and depth of the neutropenia3. In addition to an influence on quality of life, 
chemotherapy-induced FN exposes patients with cancer to life-threatening infections. Considering the sever-
ity of FN, the most patients who develop FN are hospitalized for evaluation and injected with broad-spectrum 
antibiotics. Along with infections, chemotherapy-induced FN frequently results in dose reductions and treatment 
delays which have been known to compromise treatment1,7. The risk of developing FN appears to depend on 
diverse factors, including patient-related factors, tumor burden, and chemotherapy regimen6.

Thus, primary prevention, through the administration of granulocyte colony-stimulating factor (G-CSF), is 
recommended by guidelines when a significant risk of FN exists4,8,9. G-CSF stimulates the maturation, prolif-
eration, and release of neutrophils, leading to a dose-dependent increase in circulating neutrophils10. Primary 
prophylaxis with G-CSF decreased the risk of FN by 50% in patients with solid tumors without altering tumor 
response, overall survival, or infection-related mortality8. Currently, the criteria for the use of G-CSF and other 
means to reduce the risk of FN are based on low-quality evidence11.
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Trials to prevent FN events during chemotherapy administration require an evaluation of risk factors related 
with the development of critical neutropenia12. However, this evaluation remains inaccurate3. Until now, no 
available prediction model has gained general acceptance12. A particularly important field of uncertainty that 
is emphasized by these findings is the absence of risk prediction models that estimate the risk of FN in patients 
reliably8.

Machine learning techniques have been widely adopted for the investigation of biomedical big data over 
the past years13. Recently, machine learning frameworks known as deep learning, which are based on artificial 
neural networks, have attracted more attention because of its notable success in predicting clinical outcomes 
of interest14. In this study, we aimed to unravel the predictive factors for and improve the prediction of FN by 
machine learning.

Results
Of the 933 patients, the mean age was 51.8 ± 10.7 years. 611 (65.5%) patients underwent breast-conserving sur-
gery. Regarding staging, 737 (79.0%) patients were staged as I/II, while 196 (21.0%) patients were staged as III/
IV. The median length of follow-up was 4.9 ± 2.9 years. FN developed in 409 (43.8%) patients, and the period 
until the development of FN was 10.2 ± 2.8 days.

In the training dataset, 843 patients were grouped according to the presence of FN. Patients with and without 
FN are compared in Table 1. There was a significant difference in the incidence of FN according to age, staging, 
and taxane-based regimen. The group with FN was older, had advanced disease, and received taxane-based 
regimens more frequently. Differences between the FN and non-FN groups were also found in complete blood 

Table 1.   Clinical demographic characteristics of patients with and without febrile neutropenia in the training 
dataset. FN febrile neutropenia, SD standard deviation, BSA body surface area, ER estrogen receptor, PR 
progesterone receptor, Her-2 human epidermal growth factor receptor 2, CA cancer antigen, CBC complete 
blood count, SERM selective estrogen receptor modulator, LHRH luteinizing hormone-releasing hormone, F/U 
follow-up.

Parameters FN group (n = 366) non-FN group (n = 477) p value

Age (years), means ± SD 0.004

 ≤ 50 157 (42.9) 276 (57.9)  < 0.001

 > 50 209 (57.1) 201 (42.1)

Body surface area (m2), means ± SD 1.58 ± 0.14 1.57 ± 0.13 0.498

Hypertension, n (%) 112 (30.6) 113 (23.7) 0.028

Diabetes mellitus, n (%) 42 (11.5) 44 (9.2) 0.303

Tuberculosis, n (%) 9 (2.5) 14 (2.9) 0.832

Breast-conserving surgery, n (%) 201 (55.1) 345 (72.3)  < 0.001

Tumor size (cm), mean ± SD 2.7 ± 2.0 2.3 ± 1.4 0.002

Positive lymph node, means ± SD 2.6 ± 5.2 1.2 ± 3.4  < 0.001

ER, n (%) 268 (74.0) 312 (66.0) 0.012

PR, n (%) 225 (62.2) 280 (59.2) 0.392

Her-2, n (%) 108 (29.5) 133 (27.9) 0.645

CA 15–3, means ± SD 56.3 ± 202.0 24.0 ± 136.5 0.009

TNM staging, n (%)  < 0.001

I/II 248 (67.8) 410 (86.0)

III/IV 118 (32.2) 67 (14.0)

Taxane-based regimen, n (%) 245 (66.9) 184 (38.6)  < 0.001

CBC (before chemotherapy), means ± SD

Hemoglobin (g/dL) 12.9 ± 1.2 13.0 ± 1.4 0.426

Platelet (× 103/µL) 262 ± 63 269 ± 65 0.168

Neutrophil (× 103/µL) 3.725 ± 1.550 3.815 ± 1.420 0.383

Lymphocyte (× 103/µL) 1.905 ± 0.603 1.971 ± 0.621 0.119

CBC (5 days after chemotherapy), means ± SD

Hemoglobin (g/dL) 10.9 ± 1.7 11.5 ± 1.1  < 0.001

Platelet (× 103/µL) 221 ± 82 226 ± 62 0.378

Neutrophil (× 103/µL) 3.329 ± 2.278 3.067 ± 1.343 0.052

Lymphocyte (× 103/µL) 0.867 ± 0.374 1.561 ± 0.593  < 0.001

SERM, n (%) 139 (38.0) 221 (46.3) 0.017

LHRH, n (%) 112 (30.6) 190 (39.8) 0.006

Aromatase inhibitor, n (%) 148 (40.4) 121 (25.4)  < 0.001

Radiation treatment, n (%) 292 (79.8) 401 (84.1) 0.122

Herceptin, n (%) 101 (27.6) 130 (27.3) 0.938
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count/differential blood count 5 days after chemotherapy. Lymphocyte count was significantly lower in the 
group with FN. We calculated and validated this predictive model using the testing dataset. The demographic 
characteristic of the 90 patients in the testing dataset are presented in Table 2. The highest AUC value was 0.870 
on the basis of logistic regression.

Factors associated with FN were selected by machine learning algorithms. The performances of prediction 
models in the testing dataset are presented in Table 3. XGboosting showed the best performance with an AUC 
of 0.908. The AUC of each algorithm is presented in Fig. 1. Data collected for hierarchical levels were used as 
input data for the decision tree model. The root node of the decision tree was lymphocyte count 5 days after 
chemotherapy, and the cut-off was 0.982 (× 103/µL) (Fig. 2).

Discussion
In the present study, multivariate analysis demonstrated predictive factors for FN, including age, staging, and 
taxane-based regimen. The lymphocyte count 5 days after chemotherapy was also a strong predictive factor for 
FN. Based on these findings, logistic regression showed an AUC of 0.870 for validation. Even in machine learning, 
the lymphocyte count 5 days after chemotherapy was the strongest predictive factor for FN. The AUC improved 
by machine learning was 0.908, although with a slight difference.

Chemotherapy regimen is one of the main determinants of the risk of FN as shown in the present study. In 
practice, some regimens are more myelotoxic than others4. Taxane- and anthracycline-based regimens were 
previously reported as regimens with a high risk of FN when used for the treatment of breast cancer4. CMF is 
less toxic than AC or FA(E)C3. Because the rates of FN for these and similar regimens vary considerably, it is 

Table 2.   Clinical demographic characteristics of patients with and without febrile neutropenia in the testing 
dataset. FN febrile neutropenia, SD standard deviation, ER estrogen receptor, PR progesterone receptor, Her-2 
human epidermal growth factor receptor 2, CA cancer antigen, CBC complete blood count, SERM selective 
estrogen receptor modulator, AI aromatase inhibitor, LHRH luteinizing hormone-releasing hormone, F/U 
follow-up.

Parameters FN group (n = 43) non-FN group (n = 47) p value

Age (years), means ± SD 0.050

 ≤ 50 13 (30.2) 24 (51.1)

 > 50 30 (69.8) 23 (48.9)

Body surface area (m2), means ± SD 1.61 ± 0.14 1.63 ± 0.14 0.383

Hypertension, n (%) 12 (27.9) 11 (23.4) 0.638

Diabetes mellitus, n (%) 5 (11.6) 5 (10.6) 1.000

Tuberculosis, n (%) 0 (0) 0 (0) 1.000

Breast-conserving surgery, n (%) 28 (65.1) 37 (78.7) 0.166

Tumor size (cm), mean ± SD 2.7 ± 1.3 2.5 ± 1.2 0.490

Positive lymph node, means ± SD 1.7 ± 4.0 0.3 ± 1.4 0.038

ER, n (%) 34 (79.1) 26 (55.3) 0.046

PR, n (%) 26 (60.5) 18 (38.3) 0.057

Her-2, n (%) 12 (27.9) 7 (14.9) 0.196

CA 15–3, means ± SD 15.2 ± 12.0 11.7 ± 7.8 0.140

TNM staging, n (%) 0.003

I/II 33 (76.7) 46 (97.9)

III/IV 10 (23.3) 1 (2.1)

Taxane-based regimen, n (%) 23 (53.5) 14 (29.8) 0.032

CBC (before chemotherapy), means ± SD

Hemoglobin (g/dL) 13.0 ± 1.6 13.1 ± 1.2 0.940

Platelet (× 103/µL) 263 ± 56 265 ± 77 0.590

Neutrophil (× 103/µL) 3.661 ± 1.574 4.006 ± 1.683 0.550

Lymphocyte (× 103/µL) 2.024 ± 0.575 2.193 ± 0.640 0.250

CBC (5 days after chemotherapy), means ± SD

Hemoglobin (g/dL) 10.7 ± 1.1 5.314 ± 1.593 0.017

Platelet (× 103/µL) 219 ± 99 11.3 ± 1.0 0.170

Neutrophil (× 103/µL) 3.977 ± 3.468 3.348 ± 1.208 0.220

Lymphocyte (× 103/µL) 0.838 ± 0.339 1.703 ± 0.683  < 0.001

SERM, n (%) 13 (30.2) 23 (48.9) 0.087

LHRH, n (%) 11 (25.6) 20 (42.6) 0.121

Aromatase inhibitor, n (%) 22 (51.2) 14 (29.8) 0.053

Radiation treatment, n (%) 35 (81.4) 41 (87.2) 0.564

Herceptin, n (%) 13 (30.2) 10 (21.3) 0.346
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difficult to determine the actual risk15. In addition to the regimen-specific risks, evaluating the individual risk 
factors in each patient can be valuable in determining appropriate treatment16.

The cycle number of the current round of chemotherapy is an important factor for FN, although only the 
first cycle was investigated in the present study11. Previous studies have demonstrated that the first cycle of 
chemotherapy is related with a greater risk for the development of FN than subsequent cycles2,17. The decreased 
risk of FN after subsequent cycles may be the result of clinicians’ understanding of the nadir of blood counts and 
clinical features of patients during the first round of chemotherapy. The history of FN in a patient is a generally 
recognized risk factor for the development of FN11,18. Guidelines recommend the use of G-CSF as secondary 
prophylaxis in patients who develop FN during the equitoxic chemotherapy regimen, considering the patient’s 
prior tolerance to chemotherapy11.

Blood counts may indicate comorbid conditions, the extent of disease, or individual response to cytotoxic 
chemotherapy. Even in the present study, the lymphocyte count 5 days after chemotherapy was the strongest 
predictive factor for FN. The slow decrease of the nadir of the lymphocyte count is apparently protective against 
FN19. Higher lymphocyte counts 5 days after chemotherapy may reflect higher resistance to infection, as these 
patients may have the potential to activate their cellular or humoral immunity rapidly19–21. However, the explicit 
role of lymphocytes in the development of FN remains to be elucidated.

Previous studies have reported that prophylactically administered G-CSF is significantly related with a lower 
risk of FN10,22. Primary prophylaxis with G-CSF can decrease the need for dose delay or reduction, antibiot-
ics, and hospital admission4,18. Moreover, prophylactic G-CSF reduces early death, including infection-related 
mortality10,22. Currently, guidelines recommend prophylaxis with G-CSF when the FN risk is high (> 20%) on the 
basis of either chemotherapy regimen alone (high-risk regimen) or the combination of chemotherapy regimen 
(intermediate-risk regimen with 10–20% FN risk) and personal risk factors4,9.

Table 3.   Performance of machine learning algorithms for the prediction of febrile neutropenia. LR logistic 
regression, DT decision tree, LASSO least absolute shrinkage and selection operator, SVM support vector 
machine, ANN artificial neural network, AUC​ area under the curve, PPV positive predictive value, NPV 
negative predictive value.

LR DT XGboosting LASSO SVM ANN

AUC​ 0.870 0.855 0.908 0.862 0.880 0.865

Accuracy 0.781 0.759 0.816 0.805 0.782 0.782

Sensitivity 0.878 0.707 0.829 0.805 0.829 0.854

Specificity 0.696 0.804 0.804 0.804 0.739 0.717

PPV 0.720 0.763 0.791 0.786 0.739 0.729

NPV 0.865 0.755 0.841 0.822 0.829 0.846

Figure 1.   The AUC of each algorithm shown using colored lines. The image was drawn in Python 3.6. AUC​ 
area under the curve, ROC receiver operating characteristic, TPR true positive rate, LASSO least absolute 
shrinkage and selection operator regression, SVM support vector machine, ANN artificial neutral network.
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In this study, some machine learning algorithms outperformed logistic regression. This phenomenon has been 
observed in many prediction models using machine learning13,14. Logistic regression models are an extension of 
linear models using logit function as a link. Therefore, a non-linear interaction between associated factors and 
the outcome may not be fitted optimally. Using non-linear functions, machine learning recognizes the patterns 
present in the medical data and predicts the outcomes by minimizing the error23.

Our machine learning algorithm can be implemented in a clinical workflow to bridge the gap between 
research and practice. Considering that the period until the development of FN was 10.2 ± 2.8 days in our study, 
clinicians may use parameters including the complete blood count/differential blood count 5 days after chemo-
therapy to decide whether to use prophylactic G-CSF. Therefore, we envision a software tool for the prediction 
of FN after chemotherapy in patients with breast cancer (Supplementary Fig. S1). The software provides the 
predicted probability of FN if parameters regarding FN are entered using a user-friendly interface.

To the best of our knowledge, this study is the first to improve the prediction of FN after chemotherapy in 
patients with breast cancer by machine learning. Our predictive model defines the risk of FN after chemotherapy. 
The current model represents progress in predicting FN and optimizing protection against its development. This 
machine learning model has the potential to become a routine tool in daily clinical practice to guide the use of 
prophylactic G-CSF.

The present study has some limitations. First, our data showed the high rate of FN, considering that the 
relevant literature reported the incidence of FN as 10–50%8,9,24–28. In the current study, inpatients were purely 
selected because they had more lucid serial data. However, hospitalized patients usually have more severe status 
rather than outpatients, which can cause a selection bias. Moreover, according to the criteria of our national 
health insurance coverage G-CSF should be given at less than 500 of neutrophils or at less than 1,000 of neu-
trophils if patients have fever. Therefore, generalization should be avoided. Second, only the first cycle of each 
regimen was investigated. Subsequent cycles were not regarded as independent since FN may be affected by the 
accumulation of drugs during previous cycles. Thus, a more customized model needs to be developed for the 
subsequent cycles. Lastly, the decision to use G-CSF was not analyzed. Regarding the use of G-CSF, cost and 
national insurance coverage should be considered jointly.

In conclusion, machine learning improved the prediction of FN in patients undergoing chemotherapy for 
breast cancer. In these high-risk patients, primary prophylaxis with G-CSF could be considered. With this strat-
egy, patient safety could be ensured during chemotherapy in patients with breast cancer.

Methods
Study design.  Medical records of 1,105 hospitalized patients diagnosed with breast cancer between May 
2002 and September 2018 in the Department of Breast and Endocrine surgery, Hallym University Sacred Heart 
Hospital were selectively reviewed for inclusion. Among them, 1,079 patients underwent surgery and were con-
firmed pathologically as having breast cancer. Finally, of the 1,079 patients, 933 who received chemotherapy 
after surgery were included in this study (Fig. 3). All patients received the first cycle of full-dose chemotherapy 
in the hospital, and biometric data were recorded during the treatment period. This study was approved by the 
Institutional Review Board of Hallym University Sacred Heart Hospital (No. 2018-04-018) and adhered to the 
tenets of the Helsinki Declaration. The requirement for written informed consent was waived by the Institutional 
Review Board.

Figure 2.   Detailed cut-off values displayed in a decision tree model. The image was drawn in Python 3.6. 5D 
5 days after chemotherapy, CEA carcinoembryonic antigen, BSA body surface area, WBC white blood cell, PRE 
pretreatment, PLT platelet.
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Datasets.  The entire cohort was divided into a training and testing dataset which were mutually exclusive. 
The training dataset was built with 843 patients treated between May 2002 and January 2018. The testing dataset 
consisted of 90 patients treated between February 2018 and September 2018 and was used to validate the perfor-
mance of machine learning models. In both datasets, patients who had any missing data for clinical, pathologi-
cal, or therapeutic variables of interest were excluded from the analyses.

Assessments.  Demographic, clinical, pathological, and therapeutic information were obtained from the 
medical records of study participants. Tumors were staged according to the 8th edition of the American Joint 
Committee on Cancer staging system. FN was defined as the incidence of fever of 38.3 °C or 38.0 °C for over 1 h 
orally, and neutrophil count < 500 or 500–999/mm3 with predicted drop to < 500/mm3 over next 48 h9. During 
the first cycle of chemotherapy, each patient was monitored carefully for the development of FN.

Analysis.  To extract the factors associated with FN, classical and recent machine learning algorithms were 
applied. Least absolute shrinkage and selection operator regression, ridge regression, support vector machine, 
decision tree, XGboosting, and artificial neural network were used for machine learning algorithms. Conven-
tional stepwise logistic regression was used as a reference method. Factors associated with FN were selected from 
the dataset using the recursive feature elimination method29. The p value used to select and remove the factor 
in the forward stepwise process was 0.05. Factor selection and model construction were done on the platform 
with scikit-learn 0.20 in Python 3.6 (Python Software Foundation, Wilmington, DE). Prediction models were 
constructed for each machine learning algorithm with the training dataset using the optimal feature subset for 
each machine-learning algorithm. Five-fold cross-validation was used for evaluation. The performance of the 
prediction models was evaluated in the testing dataset. The area under the curve (AUC) was used as the main 
measurement.

Data availability
All the data supporting the findings of this study are available from the corresponding author upon reasonable 
request.
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