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Abstract

Background: In medical research, it is common to collect information of multiple continuous biomarkers to improve
the accuracy of diagnostic tests. Combining the measurements of these biomarkers into one single score is a popular

practice to integrate the collected information, where the accuracy of the resultant diagnostic test is usually improved.
To measure the accuracy of a diagnostic test, the Youden index has been widely used in literature. Various parametric
and nonparametric methods have been proposed to linearly combine biomarkers so that the corresponding Youden

index can be optimized. Yet there seems to be little justification of enforcing such a linear combination.

Methods: This paper proposes a flexible approach that allows both linear and nonlinear combinations of biomarkers.
The proposed approach formulates the problem in a large margin classification framework, where the combination
function is embedded in a flexible reproducing kernel Hilbert space.

Results: Advantages of the proposed approach are demonstrated in a variety of simulated experiments as well as a

real application to a liver disorder study.

Hilbert space, Youden index

Conclusion: Linear combination of multiple diagnostic biomarkers are widely used without proper justification.
Additional research on flexible framework allowing both linear and nonlinear combinations is in need.

Keywords: Biomarker, Diagnostic accuracy, Margin, Receiver operating characteristic curve, Reproducing kernel

Background
In medical research, continuous biomarkers have been
commonly explored as diagnostic tools to distinguish sub-
jects, such as diseased and non-diseased groups [1]. The
accuracy of a diagnostic test is usually evaluated through
sensitivity and specificity, or the probabilities of true pos-
itive and true negative for any given cut-point. Particu-
larly, the receiver operating characteristic (ROC) curve is
defined as sensitivity versus 1—specificity over all possible
cut-points for a given biomarker [2, 3], which is a compre-
hensive plot that displays the influence of a biomarker as
the cut-point varies. To summarize the overall informa-
tion of an ROC curve, different summarizing indices have
been proposed, including the Youden index [4] and the
area under the ROC curve (AUC; [5]).

The Youden index, defined as the maximum vertical
distance between the ROC curve and the 45° line, is an
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indicator of how far the ROC curve is from the unin-
formative test [3]. Normally, it ranges from 0 to 1 with
0 for an uninformative test and 1 for an ideal test. The
Youden index has been successfully applied in many clini-
cal studies and served as an appropriate summary for the
diagnostic accuracy of a single quantitative measurement
(e.g., [2,6,7]).

It has been widely accepted by medical researchers that
diagnosis based on one single biomarker may not provide
sufficient accuracy [8, 9]. Consequently, it is becoming
more and more common that multiple biomarker tests
are performed on each individual, and the corresponding
measurements are combined into one single score to help
clinicians make better diagnostic judgment. In literature,
various statistical modeling strategies have been proposed
to combine biomarkers in a linear fashion. For instance, Su
and Liu [10] derived the analytical results of optimal linear
combination based on AUC under multivariate normal
assumption. Pepe and Thompson [11] proposed to relax
the distributional assumption and perform a grid search
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for the optimal linear combination, while its computation
becomes expensive when the number of biomarkers gets
large. Recently, a number of alternatives were proposed
to alleviate the computational burden. For instances, the
min-max approach [12] combines only the minimum and
maximum values of biomarker measurements linearly; the
stepwise approach [13] combines all biomarker measure-
ments in a stepwise manner. By targeting directly on the
optimal diagnostic accuracy, Yin and Tian [14] extended
these two methods to optimize the Youden index and
demonstrated their improved performance in a number of
numerical examples.

In recent years, nonlinear methods have been popu-
larly employed to combine multiple biomarkers in vari-
ous fields, including genotype classification [15], medical
diagnosis [16], and treatment selection [17]. In this paper,
a new model-free approach is proposed and formulated
in a large margin classification framework, where the
biomarkers are flexibly combined into one single diag-
nostic score so that the corresponding Youdex index [4]
is maximized. Specifically, the combination function is
modeled non-parametrically in a flexible reproducing ker-
nel Hilbert space (RKHS; [18]), where both linear and
nonlinear combinations could be accommodated via a
pre-specified kernel function.

The rest of the paper is organized as follows. In
Section ‘Methods, we provide some preliminary back-
ground of combining multiple biomarkers based on the
Youden index. In Section ‘Results and discussion, we
discuss the motivation for flexible combinations and for-
mulate the proposed flexible approach in a framework
of large margin classification for combining multiple
biomarkers. In Section ‘Results and discussion, we con-
duct numerical experiments to demonstrate the advan-
tages of the proposed approach, apply the proposed
approach to a liver disorder study, and extend the pro-
posed framework to incorporate the effect of covariates.
Section ‘Conclusions’ contains some discussion.

Methods

Preliminaries

Suppose that every subject has m biomarker measure-
ments X = (X1, X@),..-,Xmm)! with a probability
density function f(X), where X(; is a continuous measure-
ment of the j-th biomarker. It also has a binary response
variable Y € {1,—1} indicating the subject is diseased
or not. In literature, researchers from different fields
[8, 9, 14] have discussed and explored the validity of com-
bining m biomarker measurements into one single score
function g(X) as a more powerful diagnostic tool. A sub-
ject is diagnosed as diseased if the combined score g(X)
is higher than a given cut-point ¢, and non-diseased oth-
erwise. To summarize its diagnostic accuracy, the Youden
index is commonly used in practice. With sensitivity and
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specificity defined as sen(g,c) = Pr(g(X) > c|Y = 1) and
spe(g, ¢) = Pr(g(X) < c|Y = —1) respectively, the Youden
index is formulated as

J= n;ax {sen(g, c) + spe(g,c) — 1}.

The Youden index normally ranges from 0 to 1, where
J = 1 corresponds to a perfect separation, and /] = 0
corresponds to a random guess.

To estimate the Youden index, various modeling strate-
gies have been proposed. Schisterman et al. [19] provided
a closed form for the Youden index assuming the condi-
tional distribution of X|Y = =+1 follows a multivariate
Gaussian distribution. Further relaxing the distributional
assumption, kernel smoothing techniques were adopted
by Yin and Tian [14] and Fluss et al. [20], where the sen-
sitivity and specificity were estimated in a nonparametric
fashion.

Note that the formulation of / can be rewritten as

J = max w()Pr(gX) > ¢, Y = 1) + w(—1)
Pr(gX) <c¢Y=-1)-1
1
= max EE(W(Y)(I + Y sign(g(X) — c))) 1, (1)

where w(l) = 1/7, w(—-1) = 1/1 —n), 7 = Pr(Y = 1),
and sign(x#) = 1if u > 0 and —1 otherwise. Denote the
ideal combination function g*(x) and cut-point c* as the
ones that maximize J over all possible functionals and cut-
points. Following the proof of Proposition 1 in [21], the
ideal g*(x) and ¢* must satisfy

sign(g*(x) — ¢*) = sign (p(x) — 1), (2)

where p(x) = Pr(Y = 1|x) is the conditional probability
of disease given the biomarker measurements.

Linear or nonlinear combination

In (2), the ideal g*(x) and c¢* are defined based on p(x)
that is often unavailable in practice. Hence the expec-
tation in (1) needs to be estimated based on the given
sample (x;,y;)7_ . Specifically, a natural estimate J can be
obtained as

n

J= LS (1 + i sign(gx) — ) — 1
= mix ﬂZw(y, y;sign(g(x;) — ¢

¢ i=1
1
= max (1 + sign(g(x;) — ¢))
gc 2|5 1'62‘5':1 gn(e(xi

1
S (1 —sign(g(x;) —¢)) — 1, (3)
215 1] § nlgt
where w(1) = 1/ = n/|S1|, W(=1) = n/|S-1], §1 =
{i:y; =1}, S-1 = {i : y; = —1}, and | - | denotes the set
cardinality.
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The optimization in (3) is generally intractable without
a specified candidate space of g. In literature, linear func-
tional space g(x) = ﬂTx is often used [10—14], mainly due
to its convenient implementation and natural interpreta-
tion. Yet there seems to be lack of scientific support for the
use of linear combination of biomarkers.

Consider a toy example, where 7 = 1/2, X|Y =1 ~
No((LDT,B) and X|Y = —1 ~ N5((0,0)7, 1), where I
is a 2-dimensional identity matrix. Then for any given x,

o fxY =1) ~ 1
P XY = D+ f (XY = —1) 14 el Gotr)

where x = (x(l),x(z))T. Thus, the ideal combination of
biomarkers g*(x) can take the linear form g*(x) = x1 +
x2, leading to sign(g*(x) — ¢) = sign (p(x) -1 /2) with
¢ = 1. However, if the biomarkers are heterocedastic in
the positive and negative groups, the ideal combination
would be no longer linear. For instance, when X|Y =1 ~
No (L DT, L) but X|Y = —1 ~ N, ((0,0)7, 21),

_ flY =1)
SOY =D +f &Y = -D)
2

1= (%) +#) + (x%n +x(22))/4

p(x)

2+e

Clearly, the ideal combination of biomarkers is a

2 2
quadratic function g*(x) = % — (1) + %)) with
¢ = log(2) — 1. Furthermore, if the conditional distribu-
tion X|Y is unknown, then the ideal combination of
biomarkers may take various forms, and thus a pre-
specified assumption on linear combination can be too
restrictive and lead to suboptimal combinations.

Model-free estimation formulation
To allow more flexible g(x) than linear functions, it is
natural to optimize (3) over a bigger functional space con-
sisting of nonlinear functions. The objective function in
(3) can be simplified as
1 n
min ;w(yl)(l sign(u;)),
where u; = y;(g(x;) — ¢). However, it involves a sign oper-
ator, which makes it discontinuous in g and thus difficult
to optimize in general [22]. To circumvent the difficulty,
surrogate loss functions are often used to facilitate the
computation, so that the estimation formulation becomes
1 n
min Z W)L ().

i=1

Popularly used surrogate loss functions include
the hinge loss L(u) =1 —u); [23], the logis-
tic loss L(u) =log(l + exp(—u)) [24], the t-loss

Ly) = min((1 — u)4+,1) [22, 25], and the extended
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s-loss Ls(u) = min {§(8 — u), 1} [26]. It is showed that
all these surrogate loss functions are Fisher consistent in
estimating the 0-1 loss 1 — sign(x). The general proofs
are given in [22, 27, 28], and thus omitted here. Figure 1
displays the 0-1 loss, the hinge loss, the logistic loss, the
Y¥-loss, and the g 5-loss as functions of u. For illustra-
tion, we focus on the v5-loss in the sequel considering its
extendability to a more flexible framework with covariate
effects as discussed in Section 6.

With the v5-loss, the proposed model-free estimation
framework for (g(x), ¢) is formulated as

n

1 .

g min ; WoDLs0ig(x) — ) + 2T (@, (4
where A is a tuning parameter, Hy is set as a RKHS asso-
ciated with a pre-specified kernel function K(-,-), and
J@) = %IIgII%_LK is the RKHS norm penalizing the com-
plexity of g(x). The popular kernel functions include the
linear kernel K(u,v) = ulv, the m-th order polynomial
kernel K(u,v) = (1 + uTv)m, and the Gaussian kernel
K(u,v) = exp {— la — v||2/212} with a scale parameter 72.
When the linear kernel is used, the resultant Hg contains
all linear functions; when the Gaussian kernel is used, Hx
becomes much richer and admits more flexible nonlinear
functions.

More interestingly, the representer theorem [18]
implies that the solution to (4) must be of the form
g = Y% aiK(x;,x), and thus ||g||§{K = a’Ka with
a= (a,  ,an’ and K = (K(xi,xj))l’szl. The repre-
sentor theorem greatly simplifies the optimization task
by turning the minimization over a functional space into

Loss function
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Fig. 1 Various loss functions, including the 0-1 loss, the hinge loss,
the logistic loss, the ¥ loss and the vy 5 loss
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the minimization over a finite-dimensional vector space.
Specifically, the minimization task in (4) becomes

min
acR”,ceR

IS “
s@ =~ WOy | 31 | D aK(xix) — ¢

i=1 j=1

A
+ 5aTK a, (5)

where a = (aZ,¢)T is an (# + 1)-dim vector.

The minimization task in (5) involves a non-convex
function Ls(-), and thus we employ the difference convex
algorithm (DCA; [29]) to tackle the non-convex opti-
mization task. The DCA decomposes the non-convex
objective function in to the difference of two convex func-
tions, and iteratively approximates it through a refined
convex objective function. It has been widely used for
non-convex optimization and delivers superior numerical
performance [17, 21, 30]. Its computational complexity is
of order o(log(1/€)n®) [30], where € denotes the compu-
tational precision. The details of solving (5) are similar to
that in [21], and thus omitted here.

Results and discussion
Simulation examples
This section examines the proposed estimation method
for combining biomarkers in a number of simulated
examples. The numerical performance of the proposed
kernel machine estimation (KME) method is compared
against some existing popular alternatives, including the
min-max method (MMM) [12], the parametric method
under multivariate normality assumption (MVN) [31], the
non-parametric kernel smoothing method (KSM) with
Gaussian kernel [14], the stepwise method (SWM) [13],
and the other two classification methods in [15], the
logistic regression (LR) and the classification tree (TREE).
For illustration, the kernel function used in all methods

is set as the linear kernel K(zq,z3) = le z; and the
Gaussian kernel K(z1,23) = e—||zl_12||2/2f2, where the

scale parameter 2 is set as the median of pairwise

Euclidean distances between the positive and negative
instances within the training set [32]. The tuning parame-
ter A for our proposed method is selected by 5-fold cross
validation that maximizes the empirical Youden index

Y Iy = —DIEx;) <o)

~ 1 > ieVy
’—§k§ > 10i=-D
eV
A 6
3 1= DG <0 ©
eV
2 1i=1 ’
iEVk

where I(-) is an indicator function and Vj is the valida-
tion set of k-th folder. The maximization is conducted
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via a grid search, where the grid for selecting A is set
as {10(5_41)/10;5 =1, ,81}. The optimal solutions of
MVN and KSM are searched by routine optim() in R as
suggested in Ying and Tian [14]. SWM and MMM are
based on the grid search with the same grid. TREE is
tuned by default in R. Furthermore, for the proposed
KME method, § is set as 0.1 for all simulated examples as
suggested in Hedayat et al. [26].

Four simulated examples are examined. Example 1 is
similar to Example 5.1.1 in [14]. Example 2 modifies
Example 1 by using multivariate Gamma distribution,
which appears to be a popular model assumption in lit-
erature [19]. Examples 3 and 4 are similar to Setting 2 in
[17] and Example II(b) in [33], which simulate data from
logistic models with nonlinear effect terms

Example 1. A random sample {(X;,Y;);i = 1,--- ,n}
is generated as follows. First, Y; is generated from
Bernoulli(0.5). Second, if ¥; = 1, then X; is generated
from MVN(t1, £1), where p; = (04,1.0,1.5,1.2)” and
31 = 0.314 + 0.7]4 with I a 4-dimensional identity matrix
and J; a 4 x 4 matrix of all 1’s; if ¥; = —1, then X is
generated from MVN(g,, ¥1) with g, = (0,0,0,0)7.

Example 2. A random sample {(X;,Y;);i = 1,--- ,n}
is generated as follows. First, Y; is generated from
Bernoulli(0.5). Second, if ¥; = 1, then X; is gener-
ated from a multivariate gamma distribution with mean
u; = (0.55,0.7,0.85,1)7 and covariance matrix ¥; =
0.25/4 + diag(0.025,0.1,0.175,0.25); if ¥; = —1, then
X; is generated from multivariate gamma distribution
with mean pu, = (0.55,0.55, 0.55,0.55)7 and covari-
ance matrix Yo = 0.025[; + 0.25J4. The multivariate
gamma distributed samples are generated with normal
copula.

Example 3. A random sample {(X;,Y;);i = 1,---,n}
is generated as follows. First, X; is generated from
MVN(u, X), where p = (0,0,0,0)” and & = 0.3l +
0.7]4. Second, Y; is generated from a logistic model with
logit(p(x)) = x(1) + %3y + %33 + () — 1.5.

Example 4. A random sample {(X;,Y;);i = 1,--- ,n} is
generated as follows. First, X; is generated from t, ([L, 2),
where o = (0,0,0,007 and ¥ = I4. Second, Y;
is generated from a logistic model with logit(p(x)) =

8<sin(0.5nx(1)) + cos(mx(1)x(2)) + x%s) + 3x3)x@4) + x%4)).

In all examples, the sample sizes for training n; and
testing n;, are set as n, = 100,250,500 and n, =
2000, respectively. Each scenario is replicated 100 times.
The averaged empirical Youden index 7 estimated on the
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testing sets, as well as the corresponding standard devia-
tions, are summarized in Table 1.

It is evident that our proposed methods, linear kernel
machine estimation method (LKME) and Gaussian kernel
machine estimation method (GKME), yield competitive
performance in all examples. The performance of MVN,

Table 1 Simulation examples: estimated means and standard
deviations (in parentheses) of the empirical Youden index J over
100 replications

n =100 n =250 n =500
Example 1
LKME 0.604 (0.0042) 0.628 (0.0019) 0.641(0.0018)
GKME 0.572 (0.0063) 0.604 (0.0029) 0.623 (0.0023)
MMM 0.455 (0.0032) 0470 (0.0021) 0483 (0.0020)
MVN 0.633(0.0018) 0.638(0.0014) 0.647 (0.0012)
KSM 0.388 (0.0180) 0458 (0.0104) 0.490 (0.0106)
SWM 0.555 (0.0065) 0.594 (0.0044) 0.611(0.0035)
LR 0.628 (0.0022) 0.639 (0.0017) 0.646 (0.0017)
TREE 0.490 (0.0068) 0.525(0.0047) 0.559 (0.0029)
Example 2
LKME 0.636 (0.0075) 0.690 (0.0025) 0.710 (0.0015)
GKME 2 (0.0054) 0.654 (0.0045) 0.696 (0.0016)
MMM 0.609 (0.0033) 0.622 (0.0025) 0.622 (0.0022)
MVN 3 (0.0065) 0.571(0.0047) 0.563 (0.0040)
KSM 4(0.0281) 0.046 (0.0164) 0.047 (0.0171)
SWM 0.447 (0.0094) 0.426 (0.0078) 0429 (0.0065)
LR 0.648 (0.0054) 0.675 (0.0028) 0.678 (0.0025)
TREE 0.433(0.0052) 0.512 (0.0039) 0.555 (0.0036)
Example 3
LKME 0.296 (0.0091) 0.367 (0.0053) 0.389 (0.0049)
GKME 11 (0.0052) 0.568 (0.0028) 0.592 (0.0022)
MMM 0.423 (0.0035) 0.434(0.0021) 0.443 (0.0018)
MVN 0.344 (0.0050) 0371 (0.0045) 0.377 (0.0041)
KSM 0.192 (0.0085) 93 (0.0084) 0.202 (0.0086)
SWM 0.370(0.0057) 0.406 (0.0028) 0417 (0.0025)
LR 0.307 (0.0043) 0.316 (0.0030) 0.320 (0.0026)
TREE 0.424 (0.0059) 0477 (0.0042) 0.528 (0.0031)
Example 4
LKME 0.103(0.0102) 0(0.0098) 0.209 (0.0089)
GKME 0.529 (0.0078) 0.626 (0.0050) 0.682 (0.0028)
MMM 0.184 (0.0084) 0.227 (0.0034) 0.236 (0.0026)
MVN 0.109 (0.0071) 52 (0.0056) 0.189 (0.0054)
KSM 0.188 (0.0050) 0.213(0.0035) 0.220 (0.0028)
SWM 0.255 (0.0078) 0.293 (0.0050) 0.307 (0.0039)
LR 0.002 (0.0023) 0.004 (0.0008) 0.011 (0.0007)
TREE 0.257 (0.0143) 0.364 (0.01171) 0.368 (0.0101)
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SWM, and LR is competitive in Example 1 as the data
within each class indeed follows a Gaussian distribution
sharing a common covariance structure, and thus the lin-
ear combination is optimal. Their performance becomes
less competitive in other examples when linear combina-
tion is no longer optimal. It is evident that in Examples 3
and 4, with nonlinear patterns specified, the GKME out-
performs all other methods. Especially, in Example 4, the
performance of GKME is outstanding due to a strong
nonlinear pattern specified. In general, the performance
of KSM is less competitive. It could be due to the over-
fitting issue when applying the Gaussian kernel to estimate
sensitivity and specificity. With similar exhaustive grid
search, the performance of SWM is better than MMM in
Examples 1 and 4 but worse in Examples 2 and 3. As
for the two classification methods, LR yields competitive
performance in Examples 1 and 2 and becomes less com-
petitive when logistic models with nonlinear patterns are
applied in Examples 3 and 4. The performance of TREE is
modest considering the nature of recursive partition.

Furthermore, it is of interest to conduct a numerical
comparison on the performance of various surrogate loss
functions in estimating the Youden index /. Figure 2 dis-
plays their estimated empirical Youden index J in Exam-
ple 3 with training size 500 over 100 replications. It is
evident that the performances of all loss functions are
similar.

Real application
In this section, our proposed method is applied to a
study of liver disorder. The dataset consists of 345 male

Box plot_real application
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Fig. 2 The boxplot of the empirical Youden index J for the hinge loss,
the logistic loss, ¥-loss, and g1 -loss in Example 3 with ny, = 500
over 100 replications




Xu et al. BMC Medical Research Methodology (2015) 15:94

subjects with 200 subjects in the control group and 145
subjects in the case group. For each subject, there are
five blood tests (mean corpuscular volume, alkaline phos-
photase, alamine aminotransferase, aspartate aminotrans-
ferase, and gamma-glutamyl transpeptidase) which are
thought to be sensitive to liver disorders that may be
related to excessive alcohol consumption, and another
covariate with the average daily alcoholic beverages con-
sumption information. The corresponding empirical esti-
mates of the Youden index of all six markers are 0.141,
0.178, 0.174, 0.144, 0.240, and 0.121, respectively. The
dataset was created by BUPA Medical Research Ltd.,
and is publicly available at University of California at
Irvine Machine Learning Repository (https://archive.ics.
uci.edu/ml/datasets/Liver+Disorders).

The total 345 samples are randomly split into a training
set of 200 samples and a testing set of 145 samples. We also
set § = 0.1 and select the tuning parameter A by 5-fold
cross validation targeting on maximizing (6). The exper-
iment is replicated 100 times, and Fig. 3 summarizes the
averaged performance measures of our proposed method,
MMM, MVN, KSM, SWM, LR, and TREE.

It is evident that our proposed method delivers compet-
itive performance in comparison with other methods. It is
also interesting to notice the significant improvement on
diagnostic accuracy by combining biomakers nonlinearly.
It is encouraging to note that our proposed methods with
Gaussian kernel outperforms all other methods.

Combining biomarkers with covariate-adjusted
formulation

In many situations, the accuracy of diagnostic tests
could be largely influenced by various factors, which

Box plot_loss function
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Fig. 3 Real application: boxplot of the empirical Youden index J over
100 replications
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population-based cut-point ¢ does not take into account.
To incorporate the effect of covariates, a natural idea is
to consider personalized cut-point function c(z) as pro-
posed in [21]. The covariate-adjusted formulation of J is
then expressed as

J = max %E(W(Y, 7)(1 + Y sign(g(X) — c(Z))) ~1,7)
where w(1,z) = 1/m,, w(—1,z) = 1/(1 — 7,), and n, =
Pr(Y =1|Z = z).

Under this extended framework, the hinge loss, the
logistic loss, and the ¥ -loss are not longer Fisher con-
sistent in estimating sign(g(x) — c¢(z)), as the candidate
function is restricted to the form of g(x) — c(z) [26].
Proposition 1 shows that the surrogate s-loss can still
achieve the Fisher consistency when § approaches 0.

Proposition 1. Denote Dy = {X : gx) — c(z) >
0 and |p,(x) — 7wl > €}, where x = (x,2), and
pz(x) = Pr(Y = 1|X). Given any € > 0, let (g5, c}) =
argmingyCE(w(Y,DLg(Y(g(X) — c(Z)))), thenas § — 0,

Pr (Dgg‘,cj;,eADg*,c*,e) — 0,

where A denotes the symmetric difference of two sets.

With the surrogate v5-loss, the covariate-adjusted esti-
mation formulation becomes

n

1
min_ — Z wi(yi, z)Ls (yi (€(xi) — c(z:)))

€Hr, c€HK, N
getKy K i

+5 (Igl2, +lel12,),  ®

where Ki(-,-) and Ky(-,-) are two per-specified kernel
functions, H, and Hk, are their corresponding RKHS’s,
and || g||%<1 and ||c||%<2 are the corresponding RKHS norms.
The optimization in (8) can be solved by DCA as for the
population-based framework, and the details are omitted
here.

Conclusions

This paper proposes a flexible model-free framework
for combining multiple biomarkers. As opposed to most
existing methods focusing on the optimal linear combi-
nations, the framework admits both linear and nonlinear
combinations. The superior numerical performance of the
proposed approach is demonstrated in a number of simu-
lated examples and a real application to the liver disorder
study, especially when the sample size is relatively large.
Furthermore, the proposed method is especially efficient
with a relatively large number of biomarkers present,
where most existing methods relying on grid search are
often inefficient. An extension of the proposed framework
to the covariate-adjusted formulation is also included.
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Further development on estimating confidence interval
using perturbation resampling procedure [34] and vari-
able selection for biomarkers are still under investigation.
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