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Today, the whole world is facing a great medical disaster that affects the health and lives of the
people: the COVID-19 disease, colloquially known as the Corona virus. Deep learning is an effective
means to assist radiologists to analyze the vast amount of chest X-ray images, which can potentially
have a substantial role in streamlining and accelerating the diagnosis of COVID-19. Such techniques
involve large datasets for training and all such data must be centralized in order to be processed.
Due to medical data privacy regulations, it is often not possible to collect and share patient data
in a centralized data server. In this work, we present a collaborative federated learning framework
allowing multiple medical institutions screening COVID-19 from Chest X-ray images using deep
learning without sharing patient data. We investigate several key properties and specificities of
federated learning setting including the not independent and identically distributed (non-IID) and
unbalanced data distributions that naturally arise. We experimentally demonstrate that the proposed
federated learning framework provides competitive results to that of models trained by sharing data,
considering two different model architectures. These findings would encourage medical institutions
to adopt collaborative process and reap benefits of the rich private data in order to rapidly build a
powerful model for COVID-19 screening.
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1. Introduction new obligations to service operators with regard to data man-
agement, in particular making their centralization much more
regulated. The respect of privacy is more than ever an important
issue at the heart of data processing. These challenges create
a problem for data scientists building and deploying machine-
learning-based healthcare systems as a service. In short, in order
to benefit from these powerful diagnostics, you have to share
your data.

Federated learning (FL), introduced by Google in 2017 [1],
is a distributed machine learning approach that enables multi-
institutional collaboration on deep learning projects without
sharing client data. A motivating example for FL arises when we
keep the training data on local device’s users (nodes) rather than
logging it to a data center. These nodes perform computations
from their own data in order to update a global model.

Because each node generates its data with different patterns,
the distribution of data within each node differs from node to
node. For example, one client may have much more data than
others. So it is impossible to define a representative sample of

When we talk about machine learning and privacy, there
is a sense of conflict. Indeed, machine learning generally and
deep learning models specially, need to have access to very
large dataset to achieve good performance. Unfortunately, this
data is often stored in several organizations because of pri-
vacy concerns and liability risks. Especially in healthcare domain,
most data is hard to obtain due to legal, privacy, technical,
and data-ownership challenges. International regulations such as
the Health Insurance Portability and Accountability Act in USA
(HIPAA) and the General Data Protection Regulation in European
Union (GDPR)! completely redefine the data management policy.
There is no longer any question of massively collecting client’s
data without a specific service objective. The GDPR sets the legal
framework for the protection of personal data within the Euro-
pean Union. Making companies more responsible, the GDPR gives
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Ezzit, 3021 Sfax, Tunisia.
E-mail addresses: sourour.ammar@crns.rnrt.tn (S. Ammar),
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1 https://gdpr-info.eu/issues/data- protection-officer/.
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the overall distribution. Here, we talk about two of key prop-
erties that differentiate federated optimization from a typical
distributed optimization problem: (1) Not independent and iden-
tically distributed (Non-IID) data: since each particular user has
his local training data, so there is no single representation of
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population distribution. (2) Unbalanced data: similarly, each user
has a quantity of data that differs from others.

In view of the federated learning advantages, we have ex-
ploited this technique in order to deal with a very sensitive
topic in the healthcare field. Indeed, since last December 2019,
a new coronavirus infection disease (named COVID-19) was first
reported in Wuhan in China. Subsequently, the outbreak began
to spread widely in China and most countries in the world [2].
The rapid escalation of this pandemic (with hundreds of deaths
and thousands of infections) is presenting great challenges for
stopping the virus.

Currently, more than one diagnostic method is possible for the
detection of coronavirus but Chest X-ray images and CT scans
are from most accepted standard diagnostic [3-5]. Indeed, since
COVID-19 attacks the epithelial cells that line our respiratory
tract, we can use Chest X-ray images to analyze the health of
a patient’s lungs, and given that nearly all hospitals have X-ray
imaging machines, it could be possible to use X-ray images to test
for COVID-19 without the dedicated test kits. Compared to these
tests, chest X-ray images analyzed with Artificial Intelligence
offer a fast and cost-effective way to COVID-19 screening.

Therefore, many research works have been devoted to the
COVID-19 outbreak prediction [6,7] and diagnosis [8,9] based on
machine Learning techniques.

In the present work, we have concentrated our efforts to
develop and validate a system based on federated learning for de-
tection of COVID-19 from Chest X-ray images, which is the root of
all the novelties of the article. To the best of our knowledge, this
is the first study that addresses the problem of federated learning
on X-ray images for COVID-19 detection. The main contributions
of this paper are:

e We propose a decentralized and collaborative framework
that allows clinicians to reap benefits of the rich private data
share while conserving privacy.

e We demonstrate, that despite the decentralized data, the
non-IID and unbalanced properties of the data distribution,
the proposed federated learning framework remains robust
and shows competitive results compared to a centralized
learning process.

e We conducted extensive experiments and comparisons with
different variations to show the interest and significance of
the proposed strategy which can be particularly useful in
situations like COVID-19.

The remaining paper is organized as follows: Section 2 cites
the related works. Section 3 describes an overview of our pro-
posed framework of federated optimization procedure adapted
to a detection problem of COVID-19 disease in X-ray images.
Section 4 is dedicated to the experiments and results, where both
the centralized and federated ways used to train our COVID-19
dataset are introduced and their results are discussed. Finally, we
conclude this study in Section 5.

2. Related work

Recently, a lot of work has been done to develop algorithms
of deep learning for the detection of such a disease from chest
X-ray images [10,11]. Indeed, the work in [12] developed an
algorithm that can detect pneumonia from chest X-ray images at
a level exceeding practicing radiologists with a Dense Convolu-
tional Network. Xu et al. [13] used an hierarchical Convolutional
Neural Network (CNN) to classify X-ray images into normal and
abnormal categories. A descriptive study [ 14] of radiology images
obtained from COVID-19 cases demonstrated that these images
contain useful information for diagnostics and early recognition
of this disease. As consequence, many works on radiology images
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have been proposed for COVID-19 detection. Hemdan et al. [15]
and Wang and Wong [16] used deep learning models to diagnose
COVID-19 from Chest X-ray images. Nour and Cémert [17] used
a CNN model to extract deep discriminative features from X-ray
images and used them to feed three machine learning algorithms,
which were k-nearest neighbor, support vector machine, and
decision tree. Gupta et al. [18] proposed an integrated stacked
deep convolutional network to detect COVID-19 and pneumonia
by identifying the abnormalities in Chest X-ray images. Zhang
et al. [19] developed a deep learning-based model that can detect
COVID-19 based on chest X-ray images with sufficiently high
sensitivity, enabling fast and reliable screening. In [20], the au-
thors introduced a deep model for early detection of COVID-19
cases using X-ray images that can achieve good accuracy rates
for binary and multi-classes. Narin et al. [21] and Chowdhury
et al. [22] trained and compared multiple pre-trained CNN based
models for the detection of COVID-19 infected patients using
chest X-ray images. Recently, Demir [23] proposed a deep Long
short-term memory (LSTM) architecture learned from scratch to
automatically identify COVID-19 cases from X-ray images. Other
works [24-26] focused on detecting COVID-19 positive cases from
chest CT scans using CNN based models.

A drawback of these centralized models is that, in practical
cases, medical organizations do not agree to devote their doctor-
patient confidentiality by giving out the medical images, like
X-ray images, for training purposes. In contrast, many research in
healthcare [27-30] demonstrated that the technique of federated
learning is a good way to connect all the medical institutions
and make them share their experiences with privacy guarantee.
In this case, the performance of machine learning model will be
significantly improved by the formed large medical dataset. As an
example, Lee et al. [30] presented a privacy-preserving platform
in a federated setting for patient similarity learning across insti-
tutions. Their model can find similar patients from one hospital
to another without sharing patient-level information. Similarly,
Huang et al. [29] sought to tackle the challenge of non-IID ICU pa-
tient data that complicated decentralized learning, by clustering
patients into clinically meaningful communities and optimizing
performance of predicting mortality and ICU stay time. More
recently, Baheti et al. [27] used the concept of federated learning
for detection of pulmonary lung nodules with CT scans.

As COVID-19 is a recent emerging infectious disease, there is
no publicly available large datasets. Most of the existing data is
stored privately because of concerns over privacy. So, we propose
in this paper to develop a collaborative framework to avoid com-
promising patient privacy while promoting scientific research on
large datasets to improve patient care. The goal of our work is to
promote screening COVID-19 from Chest X-ray images using the
federated learning. We demonstrate that a decentralized learning
may address the demands for data protection without impacting
the performance compared to a data-centralized learning.

3. Proposed framework

We depict in this section the details of our proposed method
for Chest X-ray images classification to identify COVID-19 from
non-COVID-19 cases. This section first presents the preliminar-
ies of the federated learning context, then an overview of our
proposed framework, followed by the architecture of our training
model, and finally a description of the client-side model training
procedure and the server-side model aggregation procedure.
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3.1. Preliminaries

We consider the standard machine learning problem objective
function fi(w) = #£(x;,y;, w), that is the loss of prediction on
example (x;, y;) when using a model described by a vector param-
eter w. In a federated setting, we assume that the data points i are
partitioned across K clients, Py is the set of data points on client
k, and n, = |Pk| designs the number of the client data points.
Thus, the optimization objective is:

K

min f(w) where f(w) = 3" " Fy(w)

weRd n

1"2; (1)
with Fe(w) = " > fiw)
i=1

McMahan et al. [31] introduced an algorithm for federated
learning: FederatedAveraging or FedAvg which aims at minimiz-
ing the objective function in Eq. (1) assuming a synchronous
update scheme and a generic non-convex neural network loss
function. In terms of convergence, FedAvg is practically equivalent
to a central model when IID data is used. McMahan et al. [1]
demonstrated that FedAvg is still robust for some examples of
non-IID data. However, Zhao et al. [32] showed that the accuracy
of FedAvg is significantly reduced when trained on highly skewed
non-IID data even under convex optimization setting.

3.2. Our framework overview

In this work, we propose to study a federated learning frame-
work based on a client-server architecture (illustrated in Fig. 1)
implementing the FedAvg algorithm in order to classify X-ray
images into COVID-19 infected cases and non-COVID-19 ones.
In this configuration, a centralized parameter server maintains a
global model that shares with clients and then coordinates their
updates. Clients coordinate to build a powerful model based on
their own private datasets.

We propose to build a deep convolutional neural network
(CNN) to deal with the feature extraction and the classification
of X-ray images to detect the COVID-19 disease. This model takes
as input an X-ray image and outputs the probability of COVID-
19 infection. The details of this model architecture (CNN) are
described in Section 3.2.1.

The learning phase of this CNN model consists of several
communication rounds where the central server interacts syn-
chronously with the clients. Before starting the training rounds,
the CNN model is first initialized with random weights w®. We
suppose that there are K available clients having each ny private
X-ray images stored locally. Each communication round ¢t consists
of four steps:

Step 1. Initially the central server maintains a global central
model g, with initial weights w!~!, which is shared with a subset
of clients (hospitals in our case) S; that are randomly selected
given a fraction C, with C € [0, 1].

Step 2. Each client k € S;, receiving initial parameters w!™!,
performs training steps on a mini-batch b of its local own private
data based on the minimization of the local objective F; using
mini batch stochastic gradient descent (SGD) with a local learn-
ing rate njq and for a number of epochs E. Clients optimize
the model via minimizing the categorical cross entropy loss for
classification.

Step 3. If local training is finished (running SGD for E epochs
on local data points), users from S; send back to the server their
model updates wy, k € S;.
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Step 4. Finally, the server receives updates from all participat-
ing clients and computes an average model w' according to Eq. (2)
to update the global model g parameters.

My
w' « Z Fw,i (2)

Here w' are parameters updated at round t, wj, are parameters
sent by client k at round t, n, is number of data points stored
on client k, and n is total number of data points participated in
collaboratively training.

These four steps constitute one round of FL of our CNN model.
This operation is then repeated many times (rounds). We notice
that at each new round t, the server re-sends the new parameters
w1 of the global model g built in the previous round t — 1. We
also notice that the subset of clients can be changed from one
round to another if many clients are available. The client selection
protocol is given in Section 3.2.2.

3.2.1. Model architecture

We propose in this study a decentralized and collaborative
framework for the screening of COVID-19 from chest X-ray im-
ages. Our aim is to demonstrate that the federated learning of
a deep CNN model allows to reap benefits of the rich private
data sharing while conserving privacy. For this reason, the choice
of the CNN architecture is not our main concern, and there are
several architectural choices that can slightly increase or decrease
the overall performance. For simplicity we adopt two well-known
CNN architectures in image classification, namely VGG16 [33] and
ResNet50 [34] as backbone network. For both architectures, we
use the pre-trained CNN leaving off the fully connected layer
head. Then, we add a classification head composed of global
average pooling, a fully connected layer of 64 and 256 units with
dropout for VGG16 and ResNet50, respectively, and a final fully
connected layer composed of two units with softmax activation
for classification. To optimize the classification head, we use the
categorical cross-entropy loss. Our CNN takes as input an X-
ray image of size 224 x 224, and outputs 2 probability values
belonging to our 2 classes.

As shown in Fig. 1, we have two parties exchanging informa-
tion: federated clients and a central server. We provide in the
following sections the details of these two parties.

3.2.2. Client-side model update

The training is performed on the client-side, indeed, each
federated client has a fixed dataset and computational capabil-
ities to run mini-batch SGD. We dispose of 4 clients having all
the same CNN architecture (described in Section 3.2.1) and loss
functions. The proposed training algorithm is listed in Algorithm
1. At round t, each local model is initialized by a global model
w' coming from the server. After running a number of iterations
of SGD as many times as number of local epochs, the client
computes a gradient update in order to generate the new updated
model which is shared with the aggregation server. Following this
training protocol, local data remains private to each client and is
never shared.

3.2.3. Server-side model aggregation

The server that owns the global model, manages the overall
progress of the model training and distributes the original model
to all participating clients. It receives synchronized updates from
all participating clients at each federated round t (see Algorithm
2) and aggregates them to build a new model with updated
parameters according to Eq. (2). Algorithm 2 presents the details
of the server side learning process.
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Fig. 1. Federated Learning architecture for COVID-19 detection from Chest X-ray images.

Algorithm 1 Federated learning: client-side training at federated
round t.

Algorithm 2 Federated learning: server-side aggregation proce-
dure.

Require: local learning rate n and loss function £
Require: num_local_epochs and local training data
1: procedure CLIENTUPDATE(w')

2: w <« wt > Initialize local model

3: B <« Split Py into batches of size B

4 for each local epoch i from 1 to E do > With SGD
optimizer

5 for each batch b in B do

6 Compute gradient g’ < Vé(w; b)

7: Update local model w <« w — ngib

8 end for

9 end for

10:  return w
11: end procedure

> Upload to server

4. Experiments

In this work, we simulate experiments with 4 clients (hos-
pitals), and each client treats the full local dataset as a single
mini-batch at each round.

4.1. Data preparation

Since there are no available large public datasets belonging to
COVID-19 cases, the dataset used for this work only includes 108
chest X-ray images belonging to 76 patients, all of which were
confirmed with COVID-19, and 108 chest X-ray images diagnosed
as normal (not COVID-19) belonging to healthy patients. The
COVID-19 X-ray images used for this research are available at
the Github repository? while 108 X-ray images of normal cases
are randomly selected from the public chest X-ray dataset [35],

2 https://github.com/ieee8023/covid-chestxray-dataset.

Require: T : num_fedetared_rounds
1: procedure AGGREGATING(C, K)
2: Initialize global model w®

3 for each round t = 1,2,... T do

4: m < max(C x K, 1)

5 S; < (random set of m clients) > Selected Clients for
round ¢

6: for each client k € S; do > Run in parallel

7: Send w'~! to client k

8: wj < CLIENTUPDATE (k, w'™1)

9: end for

10: w! <« Zf;l Lwy > Aggregating clients updates

11: end for

12:  return w'

13: end procedure

which contains normal and abnormal chest X-ray images. Fig. 2
(left) shows sample images belonging to the two classes.

We randomly split the dataset into a training set containing
80% of the images (76 COVID-19 images belonging to 55 patients
and 76 healthy patient images) and a test set containing 20% of
the images (32 COVID-19 images belonging to 21 patients and 32
healthy patient images). The training dataset is then split into K
sub-sets according to the appropriate testing data distribution. All
our simulations are done using K = 4 clients.

When we deal with IID data, we assign 38 images (19 COVID-
19 cases and 19 Normal cases) for each client. All clients have the
same amount of data (25%) according to the same distribution.
In order to simulate non-IID training on our dataset, we use a
skewed class distribution and we divide the learning data so that
each client gets a different number of images from each class
(44% of images of one class and 6% of images of the second one).
Finally, we generate a third version of our training dataset in
order to test unbalanced data distribution over clients. To do this,
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COVID-19 affected cases
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Normal cases

(b) Augmented dataset

Fig. 2. Sample Chest X-ray images from the used dataset. Left : sample images selected from the original dataset. Right : corresponding augmented images generated

with random zoom and rotation augmentations.

we spread the entire training samples over the 4 clients, so that
each has more observations than others. The four clients have
respectively 44%, 37%, 13%, and 6% of training dataset.

All images from the same patient only appear in either training
or testing set. In addition, there is no patient overlap between the
client sub-sets in order to make our federated setup realistic.

Since the dataset is small, we applied data augmentation op-
erations in order to artificially expand the size of the training
and test sub-sets by creating modified versions of the images. We
used two geometric transformations, namely rotation and zoom.
Rotation augmentations consist of rotating the image right or
left on an axis by a random and small degree (rotation_range =
10). Zoom augmentations are done by zooming in or out the
image according to a small range (zoom_range = 0.1). Fig. 2
(right) presents some samples of augmented images. By these
operations, the number of training samples is augmented from 38
to 152 (76 COVID-19 cases and 76 normal cases) for each client.
This augmented dataset is used only for one experiment, in order
to demonstrate the dataset size impact on the model quality and
test accuracy. Results are explained in Section 4.3.1.

4.2. Model settings and evaluation metric

On both the federated learning and the centralized learning
end, we adopt the same CNN networks, with pre-trained weights
on ImageNet [36], leaving off the fully connected layer head and
replaced by a new classification head, for training and predic-
tion. Two CNN architectures are tested, the details of which are
provided in Section 3.2.1.

The model weights of the CNN backbone (VGG16 and
ResNet50) are frozen such that only the new fully connected lay-
ers head will be trained. The standard SGD optimizer is used for
minimizing the loss function and then updating the network pa-
rameters. We refer to this method as FL-VGG16 and FL-ResNet50
respectively when using VGG16 and ResNet50 architectures as
the model backbone. We set the local learning rate nj.q = 0.001,
the batch size = 2, and the training epochs = 10. In addition, we
resize each image to a fixed size of 224 x 224 pixels.

Significant accuracy rate is required in COVID-19 diagnosis and
detection system to limit the spread of the infection and to guide
the patient treatment. Therefore, to evaluate the performance
of our proposed method, we report accuracy rates on testing
data after each round of federated learning. For each method,

we repeat experiments 3 times and all the curves represent
average results obtained over these 3 simulations. Since we have
binary classification tests, we provide also statistical measures of
performance that are widely used in medical and epidemiologi-
cal research [25], namely sensitivity and specificity. Indeed, the
sensitivity reflects the probability that the screening test will be
positive among those who are already diseased (True Positives)
and the specificity reflects the probability that the screening test
will be negative among those who do not have the disease (True
Negatives) [37].

To show the effectiveness of our federated learning based
method, we first compare its performance with traditional learn-
ing method, where we train the same architecture network on
shared and centralized data (We refer to this method as
Centralized-VGG16 and Centralized-ResNet50 respectively when
using VGG16 and ResNet50 architectures as the model backbone).

4.3. Results

We conduct this study of federated learning for COVID-19 de-
tection to highlight the effectiveness of this type of decentralized
and collaborative learning in such context where data is private.

First, we compare our decentralized method with the central-
ized one. Then, we study the effect of the parameter C on the
model performance after each round when we deal with IID data
distribution. Finally, we compare the two distribution settings IID
and non-IID, balanced and unbalanced.

4.3.1. Federated vs. data-centralized training:

We have 152 training samples and 64 testing samples in our
dataset. Since there is not a natural user partitioning of this data,
we considered the balanced and IID setting. So, we partition the
training dataset into 4 clients each containing 38 training (25%).

In this section, federated results are compared with a central-
ized learning method. Our aim is to evaluate accuracy perfor-
mance of our proposed FL based method. Fig. 3 shows compar-
ative results across data-sharing and FL for our two implemen-
tations (VGG16 and ResNet50) over our original training dataset
and the augmented one. The models quality is measured by
accuracy scores on a held-out test dataset, plotted against the
number of communication rounds for FL based methods, and
against data-sharing epochs for centralized methods.
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Fig. 3. Comparison of Federated Learning to data-sharing learning using original and augmented dataset for learning. Left: results using the VGG16 as the model
backbone. Right: results using the ResNet50 as the model backbone. An epoch for centralized methods is defined as a single training pass over all of the centralized
data. A round for FL methods is defined as a parallel training pass of every client over their local training data.

For FL settings, we fix C = 1 (all clients are considered at
each round). Fig. 3 shows that the proposed FL procedure can
achieve a comparable classification performance without sharing
clients’ data. Fig. 3-left shows that from the round 35, our FL-
VGG16 method trained on the original dataset (FL-VGG16: orange
curve) approaches the Centralized-VGG16 method trained on the
same dataset (Centralized-VGG16: red curve) but after collect-
ing and sharing all data from the 4 clients. Fig. 3-right shows
that our FL-ResNet50 (orange curve) method provides similar
behavior but requires more rounds (50 rounds) to approach the
Centralized-ResNet50 method (red curve).

We notice that the blue and the magenta curves correspond
to our FL based methods (FL-VGG16 and FL-ResNet50) and the
Centralized-VGG16/ResNet50 methods respectively learned on an
augmented dataset with data augmentation techniques described
above. Our FL results show a remarkable consistency on the
simulated distributions. Our method (FL-VGG16+data aug : blue
curve) has comparable results with the two centralized methods
(Centralized-VGG16 and Centralized-VGG16+data aug) after only
12 rounds. The same result is observed with the FL-ResNet50
method which provides comparable results with the two central-
ized methods using the same CNN architecture after 50 rounds.
The amount of data at each client side has then a significant
impact on the final result.

Another important result that can be underlined from Fig. 3-
left is that after about 90 rounds, all methods (with the VGG16
CNN) are equivalent and provide similar results. Fig. 3-right
shows the same behavior but from round 120. This result high-
lights the effectiveness of our proposed FL based framework, since
it allows to achieve similar results to centralized methods by
iterating several rounds without never sharing data that preserve
their privacy.

Results with 5-fold cross validation. To further evaluate our
proposed FL based method, we used 5-fold cross-validation
method, which consists of dividing all the available data into a
predefined number of folds (5 in our case), and using one fold
for testing and the others for training. The training process is
repeated 5 times until all folds are used as a test set. Using the
cross-validation method is motivated by the fact that we have
little data and our model will be tested on only few data samples.
So by doing cross-validation, we use all of our data both for
training and testing while evaluating our model on examples it
has never seen before. At each iteration, the training and test sets
are randomly divided into K = 4 sub-sets each for one client
while respecting the protocol described above where all images
from the same patient only appear in either training or test set
and there is no patient overlap between the client sub-sets.

We provide in Fig. 4 comparative results across data-sharing
and FL for our VGG16 and ResNet50 implementations using a
5-fold cross-validation method. All the curves represent average

Table 1

Accuracy, Sensitivity, and Specificity rates after the last FL round/Data sharing
epoch. Reported results are given with respect to our experiments made with
the 5-fold cross-validation method. Accuracy, Sensitivity, and Specificity rates
provided in this table are average results over the 5 simulations.

Method Accuracy Sensitivity Specificity
FL-VGG16 93.57 95.03 92.12
FL-VGG16 + data aug 94.40 96.15 92.66
Centralized-VGG16 93.75 95.20 92.3
Centralized-VGG16 + data aug 94.0 95.01 93.0
FL-ResNet50 95.4 96.03 94.78
FL-ResNet50 + data aug 97.0 98.11 95.89
Centralized-ResNet50 95.3 96.0 94.6
Centralized-ResNet50 + data aug 96.5 96.8 96.2

results obtained over the 5 simulations for each method. Fig. 4
confirms all the results presented in Fig. 3 for both VGG16 and
ResNet50 implementations. This finding confirms the generaliza-
tion ability of the proposed model and the independence of our
reported results of the train/test dataset splits.

We report in Table 1 the performance of the tested methods
based on accuracy, sensitivity, and specificity measures after the
last round for FL based methods and the last epoch for the
centralized ones. The first result that we can see in Table 1 is
that after 150 rounds, our FL-ResNet50 model provides the higher
accuracy performance when it is trained with data augmenta-
tion achieving an accuracy of 97%. This method also provides a
high sensitivity rate of 98.11% and a specificity rate of 95.89%.
Another result that can be underlined from Table 1 is that all
tested methods provide comparable sensitivity and specificity
rates when using the same model backbone. Indeed, all VGG16
based models provide sensitivity and specificity rates ranging in
95 — 96% and in 92 — 93%, respectively. On the other hand, the
ResNet50 based models provide higher sensitivity and specificity
rates ranging in 96 —98% and in 94 — 96%, respectively. This result
highlights the effectiveness of our proposed FL based methods,
since they provide comparable performances to centralized meth-
ods while preserving data privacy, showing their suitability for
privacy-restricted applications.

4.3.2. Results on IID data

We consider here the IID and balanced data partition (same
as Section 4.3.1) and we provide experiments with the client
fraction C, which controls the amount of multi-client parallelism.
We notice that C = 1 means that all available clients are selected
for collaborative training at each round, and C = 0 means that
only one client is selected at each round. When C = 0, there
is no parallelism between clients, and the learning process is
considered to be sequential. In our case, C = 0.25 is equivalent
to C = 0 since we have only 4 clients. We report in this section
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Cross-Validation results using ResNet50 CNN
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Fig. 4. Comparison of Federated Learning to data-sharing learning using original and augmented dataset for learning. Curves represent average results obtained over
the 5 simulations for each method. Left: results using the VGG16 as the model backbone. Right: results using the ResNet50 as the model backbone.
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clients in our case), C = 0.5 corresponds to half clients (2 clients in our case) and C = 0.25 corresponds to only one client per round. Left: results using the VGG16

as the model backbone. Right: results using the ResNet50 as the model backbone.

results obtained with three values of the parameter C : 1, 0.5, and
0.25.

Fig. 5 shows the test accuracy curves plotted against the
communication rounds up to 100 and 150 for FL-VGG16 and
FL-ResNet50, respectively. Fig. 5-left shows that the FL-VGG16
converges to close values faster when all clients are considered
(C = 1 : orange curve) and collaborate at each round. When
only half of clients are selected (C = 0.5 : green curve), the
results are slightly worse but they approach the case when C = 1
after about 45 rounds. When only one client is selected at each
round (C = 0.25 : cyan curve), the results are fluctuating and the
convergence to close values begin only after several rounds. This
behavior is justified by the fact that only one client is considered
at each round, so the update model process on the server consists
of replacing the old model by the one sent by the considered
client and there is no collaborative learning. The quality of the
new model at each round depends then on the selected client
data.

For FL-ResNet50, Fig. 5-right illustrates the same convergence
behavior for all curves but we get slightly worse accuracy rates
when C = 0.5 and C = 0.25. When using half of clients, the
accuracy decreases in regard to use all clients and it decreases
even more when using 25% of clients (only one client) per round.
In the federated learning context, generally the ratio is set to 10%
because it is more realistic in a practical setup where there are
several available clients [38].

We can conclude that for the IID data partition, using more
clients in each round increases the accuracy at convergence and
the learning process requires less rounds to converge. This result
is observed in our context where the number of clients is limited
and the available data size is small. Such results can be specific
for this context.

4.3.3. Results on non-IID data
In this section, we fix C = 1 and compare the two FL methods
on IID data and non-IID data and provide results in Fig. 6.

We show that the speedups with partitioned non-IID data
(green curve) are smaller but still substantial, this implies that
the performance of the model is random. We notice that despite
the non-IID aspect of the data distribution, our implementation of
FL based methods on non-IID data has shown their robustness by
trying to achieve test-set accuracy of FL methods on IID data (94%
for FL-VGG16 and 95.3% for FL-ResNet50) which in turn surpassed
that of centralized learning method. This small degradation of the
quality of model training is due to the fact that each client has a
lot of data from one class and little data from the other. We also
notice that by increasing the number of rounds, for the non-IID
partition the test accuracy is almost stabilized (0.9 for FL-VGG16
and around 0.92 for FL-ReNet50), in contrast for the case of IID
data partition, it continues to converge.

4.3.4. Results on unbalanced data

Generally, the unbalanced and non-IID distribution of such a
dataset is much more representative of the type of data distri-
bution for medical applications. And since we are manipulating
a method intended for medical applications, we have adopted
our implementation to converge in the case of a distribution of
unbalanced data. As shown in Fig. 7-left, despite the significant
imbalance in numbers of subjects per client (which are parti-
tioned as described in Section 4.1), FL-VGG16 on unbalanced data
(pink curve) achieves test-set accuracy 92% (approaching even
those of the centralized learning model). The same behavior is
observed with FL-ResNet50 trained on unbalanced data (pink
curve in Fig. 7-right) achieving a test-set accuracy 92.7%.

By comparing the two curves of FL (VGG16 and ResNet50) on
balanced data and FL (VGG16 and ResNet50) on unbalanced data,
test accuracy of the first method is higher than test accuracy of
the second one (this is justified by the fact that clients hold very
different amounts of data) which tends to approach it after sev-
eral rounds. The method implemented for unbalanced data shows
its performance in achieving 92% and 92.7% test accuracy for the
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Fig. 7. Comparison of Federated Learning results on balanced data and unbalanced data partitions with C = 1 (all clients are considered at each round). Left: results
using the VGG16 as the model backbone. Right: results using the ResNet50 as the model backbone.

VGG16 and the ResNet50, respectively. We can then conclude that
the heterogeneity of the quantity of data held by each client does
not affect the model’s performance.

5. Conclusion and future work

In this paper, we presented a Federated Learning framework
for COVID-19 detection from Chest X-ray images using deep con-
volutional neural networks (VGG16 and ResNet50). This frame-
work operates in a decentralized and collaborative manner and
allows clinicians everywhere in the world to reap benefits of the
rich private medical data sharing while conserving privacy. We
first presented a comparative study between two medical image
machine learning scenarios: the classical centralized learning and
the federated learning, using two CNN architectures as model
backbone: VGG16 and ResNet50. We then demonstrated that
federated learning can achieve the same performance as central-
ized learning, but without the obligation to share or centralize
private and sensitive data. We also demonstrated that despite
the decentralized data, the non-IID and unbalanced properties
of the data distribution, the proposed Federated Learning frame-
work remains robust and shows comparable performance with a
centralized learning process. We note that the federated learning
framework is validated on COVID-19 screening from Chest X-
ray images, but could be generalized to other medical imaging
applications with large, distributed, and privacy-sensitive data.

Federated learning has the potential to connect all the isolated
medical institutions, hospitals or devices to make them share
their experiences and collaborate with privacy guarantee. Such
collaboration will improve the speed and accuracy in the COVID-
19 positive cases detection. We aim in the future to provide such
a federated platform, where all the hospitals can safely share data
and train models by exploring the differential privacy technique.
Another interesting direction for future work is to consider a
more sophisticated CNN using very large-scale datasets.
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