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Abstract 

Background  Recent studies have shown that both metabolic syndrome and circadian rhythm syndrome are firmly 
associated with the occurrence of cardiovascular disease (CVD), with insulin resistance playing a significant role. The 
estimated glucose disposal rate (eGDR) is considered to be a reliable surrogate marker for insulin resistance. However, 
the relationship between eGDR and CVD under different metabolic and circadian rhythm states has not been 
thoroughly studied, and large-scale prospective cohort studies are needed to clarify this relationship.

Methods  This study is based on the China Health and Retirement Longitudinal Study (CHARLS), recruiting individuals 
aged 45 and above with complete eGDR data. The eGDR was calculated by the formula: eGDR(mg/kg/min) = 21.158 − 
(0.09 × WC) − (3.407 × hypertension) − (0.551 × HbA1c) [WC (cm), hypertension (yes = 1/no = 0), and HbA1c (%)] (Zabala 
et al. in Cardiovasc Diabetol 20(1):202; 2021).Participants were divided into four subgroups based on the quartiles (Q) 
of eGDR.The cumulative incidence rates and hazard ratios (HR) with 95% confidence intervals (CI) were calculated, 
with the lowest eGDR quartile (representing the highest degree of insulin resistance) as the reference. Participants 
were further divided into subgroups based on the diagnosis of Metabolic syndrome (MetS) or circadian syndrome 
(CircS) to explore the relationship between eGDR and CVD under different metabolic and circadian rhythm 
conditions. The dose–response relationship between eGDR and CVD incidence was investigated using a restricted 
cubic spline (RCS) based on a Cox regression model. Receiver operating characteristic (ROC) curves were generated 
to assess the predictive value of eGDR for CVD incidence. A clinical decision curve analysis (DCA) was also conducted 
to assess the clinical utility of the basic model.

Results  6507 participants were included, with a median age of 58 years [52 years, 64 years], and 55% were female. 
Over a median follow-up duration of 87 months, 679 first-episode CVD events were recorded, including heart disease 
and stroke. The RCS curves demonstrated a significant dose–response relationship between eGDR and the incidence 
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Introduction
Cardiovascular disease is the primary cause of illness 
and death worldwide, significantly impacting healthcare 
systems and individual well-being. Over the last three 
decades, the burden of CVD has grown consistently, with 
a 92.3% rise in total prevalence and a 53.7% increase in 
the number of deaths [2].

Metabolic syndrome (MetS) is a collection of risk 
factors and associated conditions that contribute 
to cardiovascular disease [3], including elevated 
blood pressure, dyslipidemia (characterized by 
high triglycerides and low high-density lipoprotein 
cholesterol), increased fasting glucose levels, and 
central obesity [4]. It is a significant contributor to non-
communicable diseases such as obesity, type 2 diabetes, 
cardiovascular disease, cancer, and mood disorders, 
imposing substantial health and socioeconomic costs 
in most countries. Research indicates that metabolic 
syndrome is frequently associated with comorbidities like 
sleep disorders, depression [5–7], cognitive impairment, 
and non-alcoholic fatty liver disease (NAFLD) [8, 9]. 
Given this, circadian rhythm disturbances have been 
proposed as a potential common cause of metabolic 
syndrome. Circadian rhythm syndrome (CircS) is 
characterized by the presence of at least four out of the 
following seven features: enlarged waist circumference, 
high triglyceride levels, low high-density lipoprotein 
(HDL) cholesterol, high blood pressure, elevated fasting 
glucose, insufficient sleep duration (less than 6 h per day), 
and symptoms of depression [10]. Studies such as the one 
by Shi et al. suggest circadian rhythm syndrome strongly 
predicts CVD [11, 12].

Insulin resistance (IR) is an independent risk factor 
for cardiovascular disease, as it elevates cardiovascular 

risk by facilitating the onset of metabolic disorders (such 
as hyperglycemia, hypertension, and dyslipidemia), 
contributing to endothelial dysfunction, and promoting 
low-grade inflammation [14].IR is defined by a reduced 
sensitivity or responsiveness of tissues to circulating 
insulin, which plays a crucial role in developing metabolic 
syndrome [15]. Meanwhile, circadian rhythm disruptions 
can impair glucose homeostasis, reducing insulin 
sensitivity. Disruptions in circadian rhythms may act as 
a mediator in the relationship between insulin resistance 
and cardiovascular disease. Moreover, it is essential to 
study insulin resistance in different populations under 
varying metabolic and circadian rhythm statuses to 
predict CVD events [16]. The estimated glucose disposal 
rate is an innovative, non-insulin-based surrogate marker 
for insulin resistance, calculated using a combination of 
waist circumference (WC), hypertension, and glycated 
hemoglobin (HbA1c) [17]. Unlike traditional measures 
such as the Homeostasis Model Assessment of Insulin 
Resistance (HOMA-IR), which focuses solely on 
fasting glucose and insulin levels, eGDR incorporates 
blood pressure and waist circumference, reflecting 
an individual’s long-term physical condition. At the 
same time, glycated hemoglobin (HbA1c) captures 
extended blood glucose control. This makes eGDR a 
more comprehensive indicator of metabolic health 
[1]. Previous research indicates that eGDR (estimated 
Glucose Disposal Rate) is minimally affected by single 
glucose fluctuations and less influenced by factors such 
as diet, exercise, medication, or emotional changes 
[18]. This demonstrates the stability of eGDR as a 
predictive marker. Moreover, multiple studies have 
shown that eGDR has more substantial predictive 
power for cardiovascular disease risk [19], especially in 

of first-presentation CVD in different metabolic and circadian rhythm subgroups (all P-values < 0.001, non-linearity 
P > 0.05). eGDR exhibited a significant linear relationship with all outcomes (non-linearity P < 0.05). The Kaplan–Meier 
cumulative incidence curves showed that as eGDR levels increased, the cumulative incidence rates of first CVD, 
heart disease, and stroke gradually decreased from Q1 to Q4 groups. Significant differences were observed across all 
metabolic and circadian rhythm subgroups (log-rank test P < 0.001). Through the Cox proportional hazards model, 
we confirmed a significant association between baseline eGDR levels and first-onset CVD, heart disease, and stroke. 
Subgroup analyses indicated that the predictive ability of eGDR for CVD risk varied across different Body mass index 
(BMI) (P for interaction = 0.025) and age (P for interaction = 0.045) subgroups. Mediation analysis revealed that CircS 
partially mediated this association. Furthermore, time-dependent ROC curves demonstrated the potential of eGDR 
as a predictor of CVD risk, revealing possible differences in the model’s application across different cardiovascular 
conditions.

Conclusion  eGDR is an independent predictor of CVD risk, with lower eGDR levels being closely associated 
with a higher risk of CVD (including heart disease and stroke). In populations with MetS or CircS, the association 
between lower eGDR levels and increased risk is more pronounced.

Keywords  Insulin resistance, Cardiovascular disease, Estimated glucose disposal rate, Metabolic syndrome, Circadian 
rhythm syndrome
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non-diabetic populations [21, 22]. Research indicates 
that eGDR is more effective than traditional methods, 
which rely solely on fasting glucose or insulin levels, in 
predicting complications such as atherosclerosis and 
heart disease [22]. For example, eGDR has been shown 
to outperform HOMA-IR in assessing cardiovascular risk 
in patients with type 1 diabetes [20]. Additionally, prior 
research has found that eGDR provides greater accuracy 
in evaluating insulin resistance [23], further highlighting 
its broader clinical relevance.

Nevertheless, the connection between eGDR and 
CVD across various metabolic conditions and circadian 
rhythm states still needs to be studied more.  Therefore, 
in this study, we aim to assess  the relationship between 
insulin resistance (evaluated by eGDR) and the risk of 
new-onset cardiovascular diseases (stroke or cardiac 
events) in middle-aged and elderly Chinese populations 
under varying metabolic and circadian rhythm 
conditions.

Methods
Study design and population
We extracted data from the CHARLS cohort study of 
the Chinese population aged 45 and above [24]. Detailed 
information on the study design and enrollment criteria 
has been reported previously. In short, the baseline 
survey was conducted from June 2011 to March 2012, and 
a nationally representative sample of 17,708 individuals 
from 10,257 households was selected. These participants 
were regularly followed up every two years with face-
to-face interviews conducted by trained interviewers 
using computer-assisted guidance. Subsequent waves of 
follow-up were conducted in 2013, 2015, 2018, and 2020, 
but the latest wave of data has not yet been released. In 
this study, we included data from 2013, 2015, and 2018, 
with 6,507 participants included in the analysis, further 
divided into four subgroups based on the quartiles (Q) of 

eGDR. Another 11,201 participants were excluded from 
the study for the following reasons: loss to follow-up by 
2018 and participants who did not have fasting blood 
samples (n = 7,720); missing baseline information and 
no blood sample provided in 2011 (n = 2,639); diagnosed 
at baseline as age < 45 (n = 235) and cancer (n = 47), or 
age data unavailable (n = 298); (Supplementary File 1, 
Fig. 1). The Peking University Ethics Review Committee 
approved the CHARLS protocol, and all CHARLS 
participants provided written informed consent.

Exposure and related definitions
The calculation formula for eGDR [mg/(kg·min)] is: 
eGDR = 21.158—[0.09 × waist circumference (cm)]—
[3.407 × hypertension (yes/no)]—[0.551 × glycated 
hemoglobin (HbA1c, %)]. The lower the eGDR, the 
poorer the body’s ability to process glucose and a higher 
level of insulin resistance. ’Harmonizing the Metabolic 
Syndrome: A Joint Interim Statement of the International 
Diabetes Federation Task Force on Epidemiology and 
Prevention; National Heart, Lung, and Blood Institute; 
American Heart Association; World Heart Federation; 
International Atherosclerosis Society; and International 
Association for the Study of Obesity [25]. MetS is defined 
as having ≥ 3 of the following components: increased 
waist circumference (≥ 85  cm for men, ≥ 80  cm for 
women), hypertension (systolic blood pressure ≥ 130 and 
diastolic blood pressure ≥ 85 mmHg) or antihypertensive 
treatment, high lipoprotein cholesterol (LDL) cholesterol 
(≥ 130  mg/dL) or treatment for high LDL, low HDL 
cholesterol (men < 40  mg/dL, women < 50  mg/dL) or 
treatment for low HDL cholesterol, and high triglycerides 
(≥ 150  mg/dL) or treatment for high triglycerides. 
Lipid-lowering agents were based on self-report use of 
Western medication for the treatment of dyslipidemia. 
CircS is defined based on seven components: short sleep 
duration (< 6 h/day), depression, and the five components 

Fig. 1  The restricted cubic spline curves for CVD based on eGDR [for all participants (A), stratified by CircS (B), and stratified by MetS(C)]. Hazard 
ratios are indicated by solid lines and 95% CIs by shaded areas. The hori-zontal dotted line represents the hazard ratio of 1.0. The adjusted models 
adjusted age, gender, marital, education, smoking, drinking, local, HDL, BUN, UA, hsCRP, Chronic kidney disease
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used to define MetS. Individuals with a score of ≥ 4 are 
considered to have CircS [13, 26, 27].

Covariates
We collected demographic information of 
participants from the CHARLS database. Specifically, 
socioeconomic characteristics were collected, 
including gender (male or female), age, marital status 
(single or married), education level (≤ high school, 
college, or > college), and residence (urban or rural). 
Additionally, lifestyle habits and comorbidity history 
were further collected, including smoking status 
(current smoker, former smoker, or non-smoker), 
alcohol consumption (non-drinker, former drinker, 
or drinker), history of cancer, Chronic kidney disease 
(CKD), CVD, hypertension, and diabetes (yes or no). 
Additionally, physical examinations and lab tests, 
including blood pressure (BP), weight, height, total 
cholesterol (TC), low-density LDL, uric acid (UA), HDL 
levels, triglycerides (TG), and fasting blood glucose 
(FBG), high-sensitivity C-reactive protein (hs-CRP), 
Blood Urea Nitrogen (BUN), WC,  HbA1c, and lipid 
profiles, were considered as potential confounding 
variables. The participant’s blood pressure was 
documented as the average of three readings taken 
while seated after a 5-min rest. Weight, height, and 
waist circumference were measured with participants 
dressed in light clothing and without shoes. At 
baseline, trained personnel collected blood samples 
from CHARLS participants after an overnight fast. 
The samples were stored at −20  °C and transported to 
Beijing, where additional measurements were carried 
out following standard protocols.

Hypertension was defined as self-reported physician-
diagnosed hypertension, the use of any antihypertensive 
medication, and BP ≥ 140/90  mmHg [27]. Hypertension 
was defined as either self-reported physician-diagnosed 
hypertension, the use of antihypertensive drugs, and 
a blood pressure reading of 140/90  mmHg or higher 
[28]. Chronic kidney disease was identified based on 
eGFR < 60  mL  min-1/1.73m2 [29] or a self-reported 
physician diagnosis: Have you been diagnosed with 
Kidney disease (except for tumor or cancer) by a 
doctor? Kidney function was evaluated by the estimated 
glomerular filtration rate(eGFR) using serum creatinine. 
The CKD-EPI creatinine equation was used to calculate 
eGFR [30]. Body mass index (BMI) was determined using 
the formula: BMI (kg/m2) = weight/height2. Depressive 
symptoms were evaluated through the 10-item version 
of the Center for Epidemiologic Studies Depression Scale 
(CES-D). Participants with a CES-D score of 10 or above 
were classified as having depressive symptoms [31].

Ascertainment of outcomes
The primary outcome of this study is the incidence 
of new-onset cardiovascular disease, with secondary 
outcomes including the occurrence of new-onset stroke 
and cardiac events. In line with established precedents 
[32], the diagnosis of new-onset CVD was made when 
new-onset stroke or cardiac events were identified. New-
onset stroke and cardiac events were assessed through 
the following questions: "Have you been diagnosed with 
a stroke by a doctor?"; "Since the last follow-up visit, 
have you been diagnosed with a stroke by a doctor?"; 
"Compared to the last time we interviewed you, has 
your stroke condition improved, stayed the same, or 
worsened?" The timing of stroke events was determined 
by participants’ responses to the following questions: 
"When was the first time you were diagnosed with a 
stroke?"; "When was your most recent stroke?" The 
assessment of new-onset cardiac events was conducted 
similarly to that of new-onset stroke. Participants were 
followed up in four waves of interviews from 2011 until 
the onset of CVD or up to 2018, whichever occurred first 
[33].

Statistical analysis
All statistical analyses were performed using RStudio 
version 4.3.3. A two-tailed P-value of less than 0.05 was 
deemed statistically significant. Continuous variables 
were expressed as either mean ± standard deviation (SD) 
or median with interquartile range, depending on the 
data distribution. Baseline comparisons were made using 
analysis of variance (ANOVA) for normally distributed 
variables and the Kruskal–Wallis H test for non-normally 
distributed variables. Categorical data were presented 
as counts and percentages, with differences assessed 
using the chi-square test. A trend test was carried out 
using the median of each eGDR quartile. Kaplan–Meier 
curves were used to depict the cumulative incidence 
of CVD, with differences compared via the log-rank 
test. The incidence rate of CVD events was reported 
per 1000 person-years. Three Cox proportional hazard 
models were employed to estimate hazard ratios (HR) 
between eGDR and CVD, along with corresponding 
95% confidence intervals (CI). The proportional hazards 
assumption for each variable in the model was tested 
using the Schoenfeld residuals test, and no violations 
were found. Collinearity among continuous variables was 
assessed using the variance inflation factor (VIF) before 
Cox regression analysis. Model 1 was unadjusted; Model 
2 included adjustments for age, gender, rural residence, 
marital status, education level, and smoking and drinking 
status; and Model 3 was further adjusted for HDL, BUN, 
UA, high-sensitivity hsCRP, and chronic kidney disease 



Page 5 of 15Le et al. Diabetology & Metabolic Syndrome          (2024) 16:257 	

(Participants were also stratified based on the presence of 
MetS or CircS. To explore the dose–response relationship 
between eGDR and CVD incidence, restricted cubic 
splines (RCS) were used within the Cox regression 
model, adjusting for covariates in Model 3. Receiver 
operating characteristic (ROC) curves were generated to 
evaluate the predictive value of eGDR for CVD incidence, 
and a calibration curve was created to assess model 
accuracy. Furthermore, decision curve analysis (DCA) 
was conducted to estimate the clinical utility of the 
model. Subgroup analysis examined differences in CVD 
incidence across various eGDR subgroups. Sensitivity 
analysis was performed by redefining hypertension 
(130/80  mm Hg) in the eGDR calculation to assess the 
robustness of the main findings.

Results
Baseline characteristics
Baseline characteristics stratified by eGDR quartiles are 
shown in Table  1 (Q1: 6.29 [5.76, 6.71]; Q2: 7.91 [7.49, 
8.49]; Q3: 10.47 [10.08, 10.77]; Q4: 11.58 [11.30, 11.95]). 
A total of 6,507 participants were included in this study, 
with a median age of 58.00 [52.00, 64.00] years, and 55% 
were female. Compared with the lowest quartile (Q1), 
participants in the higher quartiles (Q2-Q4) were younger 
on average. They had lower systolic and diastolic blood 
pressure, body mass index (BMI), waist circumference, 
HbA1c, TC, LDL), UA, hs-CRP, and HDL levels, as well as 
blood pressure, TG, and FBG, with lower rates of obesity 
(all P < 0.001). Meanwhile, participants in the lower 
eGDR quartiles had a higher prevalence of hypertension, 
diabetes, heart disease, stroke, and depression. Notably, 
individuals with higher eGDR were more likely to be 
married, have higher educational attainment, and tend 
to live in rural areas, with the highest rates of smoking 
(40.7%) and alcohol consumption (40.0%). Additionally, 
there were no significant differences in BUN and kidney 
disease across the quartiles. The baseline characteristics 
of individuals included in the CVD analysis are as follows 
(Supplementary File 1, Table S1).

Associations of baseline eGDR with incident CVD
Over a median follow-up period of 87 months, 679 first 
CVD events (10.4%) were recorded, including heart 
disease and stroke. The incidence rates of CVD among 
Q1-Q4 participants were 15, 11, 8.3, and 7.3 per 1000 
person-years, respectively. The dose–response curve 
between eGDR and CVD is illustrated in Fig.  1. Across 
different metabolic and circadian rhythm subgroups, and 
irrespective of covariate adjustments, the multivariable-
adjusted restricted cubic spline analysis also revealed a 
significant dose–response relationship between eGDR 
and the incidence of first CVD (all P < 0.001, P for 

non-linearity > 0.05). Kaplan–Meier cumulative incidence 
curve analysis indicated that from Q1 to Q4 groups, 
individuals with higher eGDR had lower cumulative 
incidences of first CVD(Supplementary File 1, Fig.  2), 
with statistically significant differences observed across 
different metabolic and circadian rhythm subgroups 
(log-rank test P < 0.001)(Fig.  2, Supplementary File 1, 
Fig.  3). The Cox proportional hazards model confirmed 
a significant association between baseline eGDR levels 
and the incidence of first CVD, first heart disease, and 
first stroke. After adjusting for potential confounders, in 
Model 3, each 1.0-SD increase in eGDR was associated 
with a 7% reduction in CVD risk [HR 0.93 (95% CI 0.89, 
0.97)], a 12% reduction in stroke risk (HR 0.88 [95% CI 
0.83, 0.94]), and a 6% reduction in heart disease risk [HR 
0.94 [95% CI 0.89, 1.00)](Table 2).

The relationship between eGDR and CVD risk 
under different metabolic and circadian rhythm conditions
Throughout the follow-up period, we tracked new-
onset CVD events among the participants. Among 
the 2,470 participants with MetS, 361 cases (14.6%) 
experienced their first CVD event, while 318 cases 
(7.88%) were recorded among the 4,037 non-MetS 
participants. Similarly, among the 2,882 participants 
with circadian rhythm disturbances (CircS), 329 cases 
(11.4%) experienced their first CVD event, whereas 
350 cases (9.66%) were observed among the 3,625 non-
CircS participants. Further analysis revealed that the 
incidence rates of first coronary heart disease (CHD) 
and first stroke in the MetS and CircS groups were 
8.22%, 7.21%, and 5.18%, 3.12%, respectively, while 
the rates in the non-MetS and non-CircS groups were 
7.88%, 5.07%, and 5.21%, 4.25%, respectively. As shown 
in Table 3, compared to the lowest eGDR quartile (Q1), 
the other eGDR groups were significantly associated 
with a reduced incidence of first CVD in the MetS, 
non-MetS, CircS, and non-CircS groups in Model 3. 
Specifically, in the MetS group, the HRs (95% CI) for 
the first CVD in Q2, Q3, and Q4 were 0.78 (0.61, 1.01), 
0.52 (0.38, 0.73), and 0.73 (0.45, 1.17), respectively, 
with a trend test P-value of 0.007. In the non-MetS 
group, the corresponding HRs (95% CI) were 0.76 
(0.51, 1.15), 0.67 (0.44, 1.01), and 0.51 (0.34, 0.76), with 
a trend test P-value of 0.001. In the non-CircS group, 
the corresponding HRs (95% CI) were 0.74 (0.53, 1.04), 
0.69 (0.50, 0.96), and 0.55 (0.39, 0.76), with a trend test 
P-value of 0.001. In the CircS group, the corresponding 
HRs (95% CI) were 0.85 (0.66, 1.10), 0.54 (0.38, 0.76), 
and 0.69 (0.42, 1.13), with a trend test P-value of 
0.022. Furthermore, in the CircS group, higher eGDR 
levels were associated with a 12% reduction in CVD 
risk compared to a 7% reduction in the non-CircS 
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Table 1  Baseline characteristics of participants stratified by quartiles of estimated glucose disposal rate

Characteristic Overall
N = 6,507

Quartiles of eGDR p-value

Q1
N = 1,627

Q2
N = 1,627

Q3
N = 1,629

Q4
N = 1,624

Gender, n (%) 0.015

 Female 3,564 (55) 935 (57) 875 (54) 907 (56) 847 (52)

 Male 2,943 (45) 692 (43) 752 (46) 722 (44) 777 (48)

Age,years 58.00 (52.00,64.00) 60.00 (54.00,66.00) 60.00 (54.00,66.00) 56.00 (49.00,62.00) 57.00 (50.00,63.00)  < 0.001

Marital, n (%) 5,817 (89) 1,447 (89) 1,388 (85) 1,505 (92) 1,477 (91)  < 0.001

Local, n (%)  < 0.001

 City 2,229 (34) 678 (42) 516 (32) 553 (34) 482 (30)

 Rural 4,278 (66) 949 (58) 1,111 (68) 1,076 (66) 1,142 (70)

Education, n (%)  < 0.001

 Elementary school 
and below

4,528 (70) 1,133 (70) 1,213 (75) 1,069 (66) 1,113 (69)

 Junior high school 1,314 (20) 320 (20) 288 (18) 382 (23) 324 (20)

 High school 
and above

665 (10) 174 (11) 126 (7.7) 178 (11) 187 (12)

Hypertension, n (%) 2,995 (46) 1,622 (100) 1,317 (81) 9 (0.6) 47 (2.9)  < 0.001

Diabetes, n (%) 956 (15) 429 (26) 246 (15) 181 (11) 100 (6.2)  < 0.001

Chronic kidney 
disease, n (%)

1,344 (21) 356 (22) 373 (23) 321 (20) 294 (18) 0.003

CES-D, scoring 7.00 (3.00, 12.00) 7.00 (3.00, 12.00) 7.00 (3.00, 13.00) 7.00 (3.00, 12.00) 8.00 (3.00, 12.00) 0.033

Sleep time, hours 6.00 (5.00, 8.00) 7.00 (5.00, 8.00) 6.00 (5.00, 8.00) 7.00 (5.00, 8.00) 6.75 (5.00, 8.00) 0.052

Drinking, n (%)  < 0.001

 Never 3,984 (61) 1,004 (62) 973 (60) 1,020 (63) 987 (61)

 Former 512 (7.9) 170 (10) 140 (8.6) 94 (5.8) 108 (6.7)

 Current 2,011 (31) 453 (28) 514 (32) 515 (32) 529 (33)

Smoking, n (%)  < 0.001

 Never 4,035 (62) 1,068 (66) 960 (59) 1,051 (65) 956 (59)

 Former 521 (8.0) 169 (10) 124 (7.6) 135 (8.3) 93 (5.7)

 Current 1,951 (30) 390 (24) 543 (33) 443 (27) 575 (35)

SBP, mmHg 125.00 (113.00, 140.00) 142.00 (132.00, 153.50) 137.00 (125.00, 149.50) 116.50 (109.00, 124.00) 113.50 (106.00, 121.75)  < 0.001

DBP, mmHg 74.00 (66.50, 82.50) 83.00 (74.50, 90.00) 79.00 (72.00, 87.00) 70.00 (64.50, 76.00) 67.50 (62.00, 73.50)  < 0.001

Waist,cm 84.50 (77.80, 92.00) 94.20 (90.00, 99.10) 81.50 (76.40, 87.00) 87.00 (84.00, 91.00) 75.20 (71.20, 78.35)  < 0.001

BMI, kg/m2 23.22 (20.96, 25.88) 26.31 (24.31, 28.57) 22.28 (20.32, 24.66) 24.01 (22.43, 25.63) 20.70 (19.25, 22.17)  < 0.001

BUN, mg/dL 15.07 (12.55, 18.15) 15.04 (12.72, 18.12) 15.27 (12.52, 18.35) 15.04 (12.44, 18.07) 14.99 (12.46, 17.95) 0.47

FBG, mg/dL 102.06 (94.50, 111.96) 106.74 (98.46, 120.24) 102.42 (95.22, 112.14) 101.52 (94.32, 109.98) 98.37 (91.80, 106.38)  < 0.001

TC, mg/dL 191.37 (168.17, 216.11) 199.49 (175.90, 225.39) 190.98 (168.94, 214.56) 190.59 (168.17, 214.95) 184.41 (161.99, 208.18)  < 0.001

TG, mg/dL 103.54 (74.34, 150.45) 130.98 (92.93, 191.16) 101.78 (74.34, 148.68) 103.54 (73.46, 144.26) 85.85 (63.72, 120.36)  < 0.001

HDL, mg/dL 49.48 (40.98, 59.92) 44.85 (37.50, 53.35) 51.42 (41.75, 61.47) 49.10 (40.59, 58.76) 54.51 (45.23, 64.56)  < 0.001

LDL, mg/dL 115.59 (94.72, 138.40) 121.78 (99.36, 145.36) 114.05 (93.17, 135.70) 117.14 (96.26, 138.79) 110.18 (91.24, 132.22)  < 0.001

hs-CRP, mg/L 0.99 (0.53, 2.04) 1.46 (0.79, 2.84) 0.96 (0.51, 1.95) 0.92 (0.54, 1.78) 0.72 (0.42, 1.47)  < 0.001

HbA1c, % 5.20 (4.90, 5.40) 5.30 (5.00, 5.70) 5.10 (4.80, 5.40) 5.20 (4.90, 5.40) 5.00 (4.80, 5.30)  < 0.001

UA, mg/dL 4.25 (3.54, 5.08) 4.56 (3.78, 5.42) 4.28 (3.55, 5.09) 4.18 (3.53, 5.00) 4.02 (3.39, 4.78)  < 0.001

eGDR 9.48 (7.08, 11.04) 6.29 (5.76, 6.71) 7.91 (7.49, 8.49) 10.47 (10.08, 10.77) 11.58 (11.30, 11.95)  < 0.001

Elevated waist 
circumference, n (%)

3,809 (59) 1,601 (98) 764 (47) 1,304 (80) 140 (8.6)  < 0.001

Elevated serum 
triglycerides, n (%)

1,637 (25) 654 (40) 400 (25) 363 (22) 220 (14)  < 0.001

Reduced serum HDL-
C, n (%)

2,508 (39) 877 (54) 577 (35) 655 (40) 399 (25)  < 0.001
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group. Similarly, in the MetS group, the predictive 
effect of eGDR was slightly more substantial (12% risk 
reduction) compared to a 9% risk reduction in the non-
MetS group. Similar results were observed in the eGDR 
models predicting the first stroke across the MetS, non-
MetS, CircS, and non-CiscS groups (Supplementary 
File 1, Table S2). However, in the models predicting the 

first CHD events based on eGDR, the results were not 
significant (p > 0.05) (Supplementary File 1, Table S3).

Mediation analyses
In the mediation analysis of this study, we found 
that CircS significantly mediated the relationship 
between eGDR and new-onset CVD events. In the 

Table 1  (continued)

Characteristic Overall
N = 6,507

Quartiles of eGDR p-value

Q1
N = 1,627

Q2
N = 1,627

Q3
N = 1,629

Q4
N = 1,624

Elevated blood 
pressure, n (%)

3,342 (51) 1,624 (100) 1,367 (84) 183 (11) 168 (10)  < 0.001

Elevated plasma 
glucose, n (%)

3,780 (58) 1,160 (71) 968 (59) 908 (56) 744 (46)  < 0.001

Short sleep, n (%) 1,889 (29) 423 (26) 504 (31) 472 (29) 490 (30) 0.010

Depression, n (%) 2,390 (37) 567 (35) 628 (39) 574 (35) 621 (38) 0.044

Metabolic syndrome, 
n (%)

2,801 (43) 1,397 (86) 730 (45) 531 (33) 143 (8.8)  < 0.001

Circadian syndrome, 
n (%)

2,384 (37) 1,154 (71) 628 (39) 476 (29) 126 (7.8)  < 0.001

Heart Disease, n (%) 416 (6.4) 124 (7.6) 118 (7.3) 96 (5.9) 78 (4.8) 0.003

Stroke, n (%) 304 (4.7) 136 (8.4) 79 (4.9) 47 (2.9) 42 (2.6)  < 0.001

Cardiovascular 
diseases, n (%)

679 (10) 244 (25) 182 (11) 135 (8) 118 (7)  < 0.001

BMI body mass index, BUN blood urea nitrogen, DBP diastolic blood pressure, DM diabetes mellitus, eGDR estimated glucose disposal rate, FBG fasting blood glucose, 
HbA1c glycosylated hemoglobin A1c, HDL high density lipoprotein, hsCRP high-sensitivity C-reactive protein, LDL low density lipoprotein, SBP systolic blood pressure, 
TC total cholesterol, TG triglycerides, UA uric acid, WC waist circumference

Fig. 2  The Kaplan–Meier analysis for CVD was based on eGDR quartiles for CircS participants (A), participants with No-CircS(B)
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unadjusted model, CircS accounted for 18.03% of 
the association between eGDR and new-onset CVD 
events; this proportion slightly increased to 19.53% in 
the model adjusted for all covariates (Supplementary 
File 1, Figure S4). Further exploration of CircS as a 
mediator in the relationship between eGDR and new-
onset CHD and stroke events revealed that CircS did 
not achieve statistical significance as a mediator in 
either the unadjusted or covariate-adjusted models 
(Supplementary File 1, Figure S5- S6). MetS also did not 
exhibit a significant mediating effect in the association 
between eGDR and new-onset CHD and stroke events 
(Supplementary File 1, Figure S7-S9).

Subgroup analysis
In this study, we conducted extensive subgroup analyses 
to explore the association between eGDR and CVD risk 
across different subgroups. The analysis considered 
several factors, including sex, age, marital status, BMI, 
CircS, MetS, increased waist circumference, elevated 

serum triglycerides, reduced serum HDL-C, elevated 
blood pressure, elevated plasma glucose, short sleep 
duration, and depression. The study results showed 
a significant negative correlation between eGDR and 
CVD risk in most subgroups. However, statistical 
significance was not achieved in the subgroups of 
marital status and BMI ≥ 24  kg/m2 (p > 0.05). In 
contrast, the relationship between eGDR and CVD 
incidence was consistent with the overall analysis 
results in most other subgroups. Notably, eGDR showed 
variability in predicting CVD risk across different BMI 
subgroups. Specifically, the subset with a BMI between 
18.5 and 24 kg/m2 demonstrated a stronger association 
between eGDR and CVD risk [HR: 0.90, 95% CI 0.86–
0.93], and this difference was statistically significant 
in the adjusted model (P for interaction = 0.025). 
Additionally, there was some variation across age 
groups (P for interaction = 0.045). However, apart from 
the BMI and age subgroups, there were no significant 
interactions in other subgroups (Fig. 3).

Table 2  Multivariate-adjusted hazard ratios (95% confidence intervals) of estimated glucose disposal rate for cardiovascular diseases

Model 1: unadjusted

Model 2: adjusted for age, sex, local, marital, education, smoking, and drinking

Model 3: model 2 + further adjusted for HDL, BUN, UA, hsCRP, Chronic kidney disease, BUN blood urea nitrogen, CI confidence interval, eGDR estimated glucose 
disposal rate, HDL high density lipoprotein, HR hazard ratio, hsCRP high-sensitivity C-reactive protein, LDL low density lipoprotein, Ref reference, TC total cholesterol, 
TG triglyceride, UA uric acid aIncident rate was presented as per 1000 person-years of follow-up (TG,LDL,TC, and eGDR all exhibit multicollinearity, hence they are not 
included)

Characteristic CVD Stroke CHD

HR (95% CI) p-value P for trend HR (95% CI) p-value P for trend HR (95% CI) p-value P for trend

Model1

 eGDR 0.88 (0.85, 0.91)  < 0.001  < 0.001 0.81 (0.77, 0.85)  < 0.001  < 0.001 0.93 (0.89, 0.97)  < 0.001  < 0.001

 eGDR4

  Q1 Ref Ref Ref

  Q2 0.73 (0.60, 0.88) 0.001 0.57 (0.43, 0.75)  < 0.001 0.95 (0.74, 1.22) 0.672

  Q3 0.53 (0.43, 0.65)  < 0.001 0.33 (0.24, 0.47)  < 0.001 0.76 (0.58, 0.99) 0.043

  Q4 0.46 (0.37, 0.58)  < 0.001 0.30 (0.21, 0.42)  < 0.001 0.62 (0.46, 0.82)  < 0.001

Model2

 eGDR 0.89 (0.86, 0.92)  < 0.001  < 0.001 0.94 (0.90, 0.98) 0.004  < 0.001 0.82 (0.78, 0.86)  < 0.001  < 0.001

 eGDR4

  Q1 Ref Ref Ref

  Q2 0.76 (0.62, 0.92) 0.005 0.96 (0.75, 1.24) 0.778 0.60 (0.45, 0.79)  < 0.001

  Q3 0.59 (0.48, 0.73)  < 0.001 0.81 (0.62, 1.06) 0.132 0.39 (0.28, 0.55)  < 0.001

  Q4 0.50 (0.40, 0.63)  < 0.001 0.67 (0.50, 0.89) 0.005 0.32 (0.22, 0.46)  < 0.001

Model3

 eGDR 0.89 (0.86, 0.92)  < 0.001  < 0.001 0.93 (0.89, 0.98) 0.003 0.0011 0.82 (0.78, 0.87)  < 0.001  < 0.001

 eGDR4

  Q1 Ref Ref Ref

  Q2 0.76 (0.62, 0.93) 0.007 0.95 (0.73, 1.23) 0.698 0.62 (0.47, 0.82)  < 0.001

  Q3 0.59 (0.48, 0.73)  < 0.001 0.80 (0.61, 1.05) 0.113 0.40 (0.29, 0.56)  < 0.001

  Q4 0.50 (0.40, 0.63)  < 0.001 0.65 (0.48, 0.87) 0.004 0.33 (0.23, 0.48)  < 0.001
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Sensitivity analyses
In the sensitivity analysis, when only individuals with 
normal glycemic status were included, the results 
did not change substantially (Supplementary File 1, 
Table  S4). Similar results were observed when we 
recalculated eGDR using the redefined hypertension 
criteria (≥ 130/80 mm Hg).

Predictive performance of eGDR in the incident CVD
In this study, we plotted time-dependent ROC curves 
based on Model 3 to assess the predictive performance 
for CVD, CHD, and stroke risks at different follow-up 
time points (1 year, 3 years, 5 years, 7 years). As shown 
in Fig.  4, at the 1-year follow-up, the predictive model 
for CVD events showed an AUC value of 0.615 (95% 

Table 3  Analysis of the relationship between eGDR and CVD risk based on metabolic and circadian rhythm states

Model 1: unadjusted

Model 2: adjusted for age, sex, local, marital, education, smoking, and alcohol

Model 3:model 2 + further adjusted for HDL,BUN, UA, hsCRP, Chronic kidney disease, MetS Metabolic Syndrome group, NO-MetS Non-Metabolic Syndrome group, CircS 
Circadian Rhythm Syndrome group, No-CircS Non-Circadian Rhythm Syndrome group. Ref reference, BUN blood urea nitrogen, CI confidence interval, eGDR estimated 
glucose disposal rate, HDL high density lipoprotein, HR hazard ratio, hsCRP high-sensitivity C-reactive protein, LDL low density lipoprotein, Ref reference, TC total 
cholesterol, TG triglyceride, UA uric acid aIncident rate was presented as per 1000 person-years of follow-up (TG,LDL,TC, and eGDR all exhibit multicollinearity, hence 
they are not included)

Characteristic Event, n(%) Model1 Model2 Model3

MetS HR (95% CI)1 p-value HR (95% CI)1 p-value HR (95% CI)1 p-value

eGDR 361 (5.55%) 0.88 (0.83,0.92)  < 0.001 0.88 (0.83, 0.93)  < 0.001 0.88 (0.83, 0.93)  < 0.001

eGDR4

 Q1 208 (57.6%) Ref Ref Ref

 Q2 91 (25.2%) 0.78 (0.61,1.00) 0.052 0.78 (0.61, 1.00) 0.05 0.78 (0.61, 1.01) 0.055

 Q3 43 (11.9%) 0.50 (0.36, 0.70)  < 0.001 0.53 (0.38, 0.73)  < 0.001 0.52 (0.38, 0.73)  < 0.001

 Q4 19 (5.3%) 0.74 (0.46, 1.18) 0.199 0.75 (0.47, 1.20) 0.228 0.73 (0.45, 1.17) 0.187

P for trend  < 0.001 0.00361 0.007

No-MetS

 eGDR 318 (4.89%) 0.90 (0.85, 0.96)  < 0.001 0.91 (0.86, 0.97) 0.002 0.91 (0.86, 0.97) 0.003

 Egdr (Q1) 31 (9.7%) Ref Ref Ref

  Q2 92 (28.9%) 0.77 (0.51, 1.16) 0.209 0.77 (0.51, 1.16) 0.211 0.76 (0.51, 1.15) 0.195

  Q3 95 (29.9%) 0.62 (0.42, 0.94) 0.023 0.66 (0.44, 1.00) 0.05 0.67 (0.44, 1.01) 0.053

  Q4 100 (31.4%) 0.48 (0.32, 0.72)  < 0.001 0.51 (0.34, 0.76)  < 0.001 0.51 (0.34, 0.76) 0.001

P for trend  < 0.001  < 0.001  < 0.001

No-CircS

 eGDR 350 (5.38%) 0.91 (0.87, 0.96)  < 0.001 0.92 (0.88, 0.97) 0.003 0.93 (0.88, 0.98) 0.003

 eGDR4

  Q1 57 (16.3%) Ref Ref Ref

  Q2 94 (26.9%) 0.74 (0.53, 1.03) 0.077 0.74 (0.53, 1.04) 0.08 0.74 (0.53, 1.04) 0.08

  Q3 97 (27.7%) 0.64 (0.46, 0.88) 0.007 0.68 (0.49, 0.95) 0.024 0.69 (0.50, 0.96) 0.029

  Q4 102 (29.1%) 0.52 (0.37, 0.72)  < 0.001 0.55 (0.39, 0.76)  < 0.001 0.55 (0.39, 0.76)  < 0.001

P for trend  < 0.001  < 0.001  < 0.001

CircS

 eGDR 329 (5.06%) 0.89 (0.84, 0.94)  < 0.001 0.89 (0.84, 0.94)  < 0.001 0.88 (0.83, 0.93)  < 0.001

 eGDR4

  Q1 182 (55.3%) Ref Ref Ref

  Q2 89 (27.1%) 0.87 (0.67, 1.12) 0.266 0.86 (0.66, 1.11) 0.242 0.85 (0.66, 1.10) 0.224

  Q3 41 (12.5%) 0.54 (0.38, 0.75)  < 0.001 0.54 (0.39, 0.77)  < 0.001 0.54 (0.38, 0.76)  < 0.001

  Q4 17 (5.2%) 0.71 (0.43, 1.16) 0.173 0.70 (0.42, 1.15) 0.161 0.69 (0.42, 1.13) 0.142

P for trend  < 0.001 0.00772 0.0224
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CI 0.511–0.720), whereas the stroke predictive model 
exhibited a higher AUC value of 0.745 (95% CI 0.656–
0.835). Moreover, we observed that the predictive 
performance for CVD gradually improved with 
increasing follow-up time. Additionally, the calibration 
curves for the CVD and stroke predictive models were 
highly consistent with actual observations (Fig.  5), 
validating the match between predicted values and actual 
occurrence probabilities. Furthermore, decision curve 
analysis indicated that at the thresholds corresponding to 
a 9–24% incidence rate for CVD and a 3–15% incidence 
rate for stroke, our decision curves were above the "no 
intervention" and "all intervention" lines (Supplementary 

File Figure S10). However, it is noteworthy that 
compared to the CVD and stroke predictive models, the 
performance of the CHD model was suboptimal, with 
consistently lower AUC values.

Discussion
In our study, we were the first to confirm the predictive 
value of eGDR for CVD risk in populations with 
different metabolic and circadian rhythm profiles.  The 
main conclusions are as follows: (1) eGDR has been 
demonstrated to be an independent predictor of CVD 
risk, with lower eGDR levels significantly associated 
with higher cardiovascular disease risk (including heart 

Fig. 3  Subgroup and interaction analyses among the quartile 1 − 4 and CVD across various subgroups
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disease and stroke), particularly in groups with MetS 
or CircS, where the association between reduced eGDR 
levels and increased risk is more pronounced. (2) The 
correlation between eGDR and CVD risk shows a linear 
trend, and this relationship is unaffected by factors such 
as age, gender, smoking, or alcohol consumption. (3) 
CircS partially mediates the relationship between eGDR 
and CVD risk. (4) The results of the ROC curve and 
calibration curve indicate that the predictive model has 
good performance and accuracy. In summary, our study 
findings reinforce the hypothesis that eGDR is a crucial 
predictor of CVD and underscore its potential as a 
target for preventing CVD in individuals with metabolic 
and circadian rhythm disturbances. This offers a novel 
perspective for future research and clinical interventions.

In light of human circadian clock disruption, circadian 
rhythm disorders have become a significant phenomenon 
of widespread concern [34]. Circadian rhythm disorders 
are misaligned between the central circadian pacemaker 

and the 24-hour behavioral rhythms, influenced by light 
exposure, feeding, and fasting cycles [35]. Disruptions 
in circadian rhythm can affect glucose metabolism by 
modulating the secretion of various hormones, including 
insulin, glucocorticoids, growth hormone (GH), 
thyroid hormones, and melatonin [36]. Consequently, 
such disruptions may result in glucose metabolism 
dysfunctions. In a randomized crossover study, Morris 
et  al. found that circadian rhythm disorders can lead 
to decreased glucose tolerance [35, 37–43], thereby 
increasing the risk of diabetes. Studies on animal models 
have further validated the strong connection between 
circadian rhythm disruptions and metabolic disorders. 
Turek et  al. discovered that in the early stages of 
circadian rhythm disruption, mice displayed swallowing 
difficulties along with symptoms of MetS, such as 
hyperlipidemia, hyperglycemia, and hypoinsulinemia [44, 
45]. These findings reveal the potential negative impacts 
of circadian rhythm disruptions on metabolic health. In 

Fig. 4  The receiver operating characteristic curves of the eGDR as an IR marker to predict MACCEs (A-CVD, B-CHD,C-Stroke). The basic model 
adjusted age, gender, marital, education, smoking, drinking, local, HDL, BUN, UA, hsCRP, chronic kidney disease

Fig. 5  Based on Model 3, the calibration curves for 87-month CVD (A), CHD (B), and Stroke (C) event survival are presented. The dashed line 
represents an excellent match between the nomogram prediction (X-axis) and the actual survival outcome (Y-axis). The closer the points are 
to the dashed line, the higher the prediction accuracy
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an adult cohort study, it was found that individuals with 
shorter sleep durations are more prone to MetS-related 
mortality risks and are more likely to develop central 
autonomic and metabolic dysfunctions compared to 
those with average sleep durations [44]. These findings 
further emphasize the close relationship between 
circadian rhythms and MetS. Several aspects of modern 
life, such as widespread artificial lighting, regulated 
indoor temperatures, continuous food availability, shift 
work, and frequent travel across time zones, can disrupt 
circadian rhythms. These factors are closely related to 
the components of MetS and CircS and the occurrence 
of CVD [46, 47]. Moreover, research indicates a potential 
causal relationship between circadian rhythm disruptions 
and IR, which is closely tied to the development of type 
2 diabetes and CVD [48, 49]. Recent research has also 
found that the coexistence of IR and MetS significantly 
raises the risk of developing diabetes or CVD, thus 
making the accurate assessment of IR more effective 
in identifying CVD risk in MetS patients [50, 51]. In 
conclusion, metabolic and circadian rhythm disruptions 
are closely related to CVD risk, and such disruptions may 
exacerbate insulin resistance, further elevating the risk of 
developing CVD.

IR plays a significant role as a potential mechanism for 
increased CVD risk by leading to chronic inflammation, 
oxidative stress, and endothelial dysfunction by 
activating inflammation-related genes and disrupting 
insulin signaling, thereby damaging vascular health and 
promoting CVD. Earlier research has demonstrated a 
strong link between insulin resistance and conditions 
like diabetes, lipid metabolism disorders, and 
hypertension, all of which are significant risk factors for 
cardiovascular events [50]. Thus, in assessing chronic 
vascular complications and mortality in both the general 
population and patients with specific conditions, the 
evaluation of insulin resistance has emerged as an 
essential and additional risk factor for cardiovascular 
disease. Since traditional IR assessment methods are 
typically invasive and expensive, eGDR presents a more 
convenient and economical alternative. Moreover, a 
systematic review and meta-analysis of randomized 
controlled trials showed that sleep restriction decreases 
whole-body insulin sensitivity measured by the 
hyperinsulinemic-euglycemic clamp method, implying 
that sleep disturbances could negatively affect glucose 
metabolism [51]. Since sleep disturbances are generally 
regarded as a manifestation of circadian rhythm 
disruption, these findings underscore that eGDR shows 
excellent potential as a CVD risk assessment tool in 
populations with circadian rhythm disorders.

In a study of 191 type 1 diabetes (T1D) patients 
without a history of cardiovascular disease, eGDR was 

independently associated with the presence of two or 
more plaques (P = 0.018) and the maximum plaque 
height (P < 0.01). These findings indicate that eGDR 
may serve as a significant predictor of subclinical carotid 
atherosclerosis and cardiovascular risk [52]. Furthermore, 
Shi et al. [11]investigated the relationship between CircS 
and CVD, revealing that at baseline, the incidence of 
CKD in the CircS-only group was 25.3%, significantly 
higher than in the healthy group (13.5%), the MetS-
only group (12.2%), and the group with both CircS and 
MetS (16.5%). Xiong et al. [53] reported similar findings, 
indicating that the CKD incidence rate in the CircS group 
was 5.03%, higher than in the healthy group (3.06%) 
and the MetS group (3.87%). Other studies have also 
indicated that participants with CircS have a significantly 
increased risk of developing CKD and a rapid decline 
in renal function compared to those without CircS 
[54]. Our study also found similar results using COX 
regression model analysis, with the CVD prevalence rate 
being 11.4% in the CircS group, higher than 9.66% in the 
non-CircS group, and the CVD prevalence rate being 
14.6% in the MetS group, higher than 7.8% in the non-
MetS group. These findings support the view that CircS 
and MetS are risk factors for CVD. In a UK study of 32 
patients with type 1 diabetes, eGDR was found to be 
linked to an increased risk of thrombosis [55]. Xuan et al. 
[56]further validated the relationship between eGDR and 
ischemic heart disease, highlighting that eGDR could 
improve diagnostic accuracy for ischemic heart disease 
in the general population. Sun et  al. [57] discovered a 
correlation between eGDR and arterial stiffness and 
found that it could predict long-term all-cause mortality. 
Mediation analysis revealed that arterial stiffness partially 
mediates the association between eGDR and mortality. 
Our study obtained similar results; after controlling 
for confounding factors, CircS partially mediated the 
relationship between eGDR and CVD, contributing 
19.53%. Based on a review of published literature, eGDR 
has been proven to have considerable value in diagnosing 
and predicting CVD. Our findings are consistent 
with existing studies, particularly in populations with 
metabolic disorders and circadian rhythm disruptions, 
where eGDR shows excellent potential in predicting 
CVD events.

In this study, we found that higher eGDR levels were 
significantly correlated with a decreased risk of CVD 
incidence. The analysis of the clinical decision curve 
showed that, particularly within the threshold range 
of 8-24%, our model outperformed the ’Treat All’ and 
’Treat None’ strategies. Moreover, our study found that 
among those diagnosed with CircS, high eGDR levels 
resulted in a 12% reduction in CVD risk, which was 
more pronounced than the 7% reduction in non-CircS 
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individuals. Similarly, when comparing MetS (12%) with 
the non-MetS group (9%), individuals in the MetS group 
exhibited a slightly more substantial risk reduction effect 
at high eGDR levels. In subgroup analysis, we found a 
significant interaction between eGDR, age, and BMI 
on CVD risk, consistent with previous studies. These 
findings suggested that eGDR could serve as a valuable 
marker for predicting CVD risk in MetS and CircS 
populations, with potential clinical applications, and we 
further expanded the existing literature by examining the 
role of eGDR in predicting CVD risk among individuals 
with metabolic disorders and circadian rhythm 
disruptions. Additionally, the research found that the 
relationship between eGDR levels and CVD risk might 
differ among various types of cardiovascular diseases. 
Furthermore, the findings suggest that CircS partially 
mediates this relationship. Previous studies [36] have 
established a causal link between insulin resistance and 
circadian rhythm disruptions, indicating that mitigating 
circadian rhythm disturbances could alleviate the adverse 
cardiovascular effects of IR. However, this relationship 
might be influenced by the overlap between components 
used to diagnose circadian rhythm disorders and those 
used in eGDR calculations. Therefore, carefully designed 
experimental studies and prospective clinical trials are 
needed to clarify the underlying biological mechanisms 
and provide more rigorous interpretations.

This study is based on data from the CHARLS, a 
large, nationally representative cohort study with a 
high response rate. The study effectively controlled for 
potential confounding factors through multivariable 
models. Our findings offer additional evidence 
supporting the clinical application of eGDR, suggesting 
that incorporating eGDR into routine practice could 
help healthcare professionals and patients recognize the 
significance of risk factors beyond blood glucose levels. 
However, several limitations should be considered. 
Firstly, there were significant differences in most baseline 
characteristics between the included and excluded 
groups, potentially reducing the results’ reliability. As 
a result, our study may primarily suggest hypotheses 
for future research rather than definitive conclusions. 
Secondly, despite adjusting for many covariates in 
our model, residual confounding cannot be entirely 
ruled out, a common issue in observational studies. 
Thirdly, the endpoint events in this study were self-
reported by participants based on a doctor’s diagnosis, 
which may introduce recall bias and lead to inevitable 
misclassification [58]. However, this approach is widely 
accepted in cohort studies and has been shown to have 
minimal impact. Lastly, our study only included Chinese 
individuals aged 45 and above, which may limit the 
generalizability of our conclusions.

In summary, this study not only confirmed that 
low eGDR—a simple measure of insulin  resistance—
significantly increases the risk of incident CVD, stroke, 
and CHD events in the general Chinese population but 
also found that low eGDR is closely related to a higher 
risk of new-onset CVD events among populations 
with MetS and CircS. Additionally, the study found 
that eGDR has broad predictive ability for different 
types of cardiovascular diseases. Therefore, eGDR is 
expected to become an important predictive marker 
for the early identification of high-risk individuals for 
cardiovascular diseases, particularly in populations 
with metabolic and circadian rhythm disorders. In 
clinical practice, incorporating eGDR assessment into 
routine screenings for these high-risk populations could 
facilitate early intervention. Additionally, repeating this 
study in European populations and other demographic 
groups may yield similar results. Future research should 
continue to explore the interaction of eGDR with other 
cardiovascular risk factors and validate its predictive 
value in different races and populations.
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