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Abstract
Survival prognosis is challenging, and accurate prediction of individual survival
times is often very difficult. Better statistical methodology and more data can
help improve the prognostic models, but it is important that methods and data
usages are evaluated properly. The Prostate Cancer DREAM Challenge
offered a framework for training and blinded validation of prognostic models
using a large and rich dataset on patients diagnosed with metastatic castrate
resistant prostate cancer. Using the Prostate Cancer DREAM Challenge data
we investigated and compared an array of methods combining imputation
techniques of missing values for prognostic variables with tree-based and
lasso-based variable selection and model fitting methods. The benchmark
metric used was integrated AUC (iAUC), and all methods were benchmarked
using cross-validation on the training data as well as via the blinded validation.
We found that survival forests without prior variable selection achieved the best
overall performance (cv-iAUC = 0.70, validation-iACU = 0.78), while a
generalized additive model was best among those methods that used explicit
prior variable selection (cv-iAUC = 0.69, validation-iACU = 0.76). Our findings
largely concurred with previous results in terms of the choice of important
prognostic variables, though we did not find the level of prostate specific
antigen to have prognostic value given the other variables included in the data.

 
This article is included in the DREAM Challenges
channel.

  Referee Status:

 Invited Referees

 version 1
published
16 Nov 2016

 1 2

report report

 16 Nov 2016, :2680 (doi: )First published: 5 10.12688/f1000research.8427.1
 16 Nov 2016, :2680 (doi: )Latest published: 5 10.12688/f1000research.8427.1

v1

Page 1 of 16

F1000Research 2016, 5:2680 Last updated: 22 DEC 2016

https://f1000research.com/articles/5-2680/v1
https://f1000research.com/articles/5-2680/v1
https://f1000research.com/channels/DREAMChallenges
https://f1000research.com/channels/DREAMChallenges
https://f1000research.com/articles/5-2680/v1
http://dx.doi.org/10.12688/f1000research.8427.1
http://dx.doi.org/10.12688/f1000research.8427.1
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.8427.1&domain=pdf&date_stamp=2016-11-16


F1000Research

 Niels Richard Hansen ( )Corresponding author: niels.r.hansen@math.ku.dk
 Wengel Mogensen S, H. Petersen A, Buchardt AS and Hansen NR. How to cite this article: Survival prognosis and variable selection: A

  2016, :2680 (doi:case study for metastatic castrate resistant prostate cancer patients [version 1; referees: 2 approved] F1000Research 5
)10.12688/f1000research.8427.1

 © 2016 Wengel Mogensen S . This is an open access article distributed under the terms of the Copyright: et al Creative Commons Attribution
, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Licence

 The author(s) declared that no grants were involved in supporting this work.Grant information:

 Competing interests: No competing interests were disclosed.

 16 Nov 2016, :2680 (doi: ) First published: 5 10.12688/f1000research.8427.1

Page 2 of 16

F1000Research 2016, 5:2680 Last updated: 22 DEC 2016

http://dx.doi.org/10.12688/f1000research.8427.1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.12688/f1000research.8427.1


Introduction
The Prostate Cancer DREAM Challenge1,2, launched March 16, 
2015, was a prediction competition, which challenged the partici-
pating teams to develop better prognostic models for survival of 
patients with metastatic castrate resistant prostate cancer. The full 
competition was divided into two subchallenges, with subchallenge 
1a and 1b on prediction of survival and subchallenge 2 on predic-
tion of discontinuation of treatment. Three of the authors of this 
paper participated in the challenge (as part of team KUStat) and 
made a final submission for subchallenge 1. We report here our 
findings and methodology developed for subchallenge 1a as well  
as in subsequent work carried out after the final submission.

The Prostate Cancer DREAM Challenge offered a large and com-
plex dataset from four clinical trials containing data for around 
2000 patients and with more than 100 potential predictor variables. 
The participating teams were free to develop any model, but predic-
tions – in terms of risk scores – were assessed and compared in 
a fixed framework via submissions of predictions through a web 
interface. For the assessment data used, the survival status was held 
back from the participants, but the assessment system was fully 
disclosed, and we as participants could mimic the assessment 
procedure on the released data to optimize predictive performance.

A reference prognostic model existed3 when the challenge was 
launched, and it was a requirement that the top-performing team 
could demonstrate an improvement over this reference model. The 
main scoring metric for assessing the prognostic models was time 
integrated AUC (iAUC). Halabi and coauthors3 reported iAUC 
estimates of 0.73 and 0.76 for the reference model on a test and 
validation dataset, respectively.

The Prostate Cancer DREAM Challenge included three rounds of 
submissions to a leaderboard prior to the final submission, and we 
submitted predictions for the second round of the leaderboard, which 
achieved an iAUC of 0.8062. This appeared to be a clear improve-
ment of the reference model, which achieved an iAUC of 0.7782 
in the same leaderboard round. Our final submission achieved an 
iAUC of 0.7732, which placed our team roughly in the middle of 
a big group of 15 teams that achieved an iAUC between 0.77 and 
0.78 and well above the reference model, which achieved an iAUC 
of 0.7429 in the final scoring. However, the winning team managed 
to distinguish itself from the rest with an iAUC of 0.7915.

Our submission was based on a variable selection method called 
stability selection and a subsequent fit of a generalized additive 
model. Some ad hoc modifications were made, but it was unclear 
if they had any positive effect on the predictive strength of the 
model. We also experimented with different techniques for impu-
tation as there are a large number of missing values in the dataset 
for some variables. The effect of the imputation technique was, 
however, not fully understood, though we suspected that more 
sophisticated imputation techniques had a negative effect on pre-
dictive performance.

In this paper, we report a systematic evaluation of a total of 24 
combinations of methods for model fitting, variable selection and 
imputation. These include the methods we used for our participation 

in the Prostate Cancer DREAM Challenge, some methods that 
we tried, but found inferior, and some additional methods that we 
afterwards found could potentially improve on the generalized addi-
tive model. The paper is organized as follows: first we present some 
descriptive and exploratory aspects of the dataset, and we describe 
how the dataset was prepared for the model building and evalua-
tion process; then we briefly describe all the different methods we 
considered, the R functions and packages that implement the 
methods used and the analysis pipeline; finally, we present our 
results and conclusions.

Data
The Prostate Cancer DREAM Challenge dataset comprises patient 
baseline data as well as extensive longitudinal data tables from the 
comparator arm of four clinical trials: ASCENT-24, MAINSAIL5, 
VENICE6, and ENTHUSE-337. We will in this paper only consider 
the use of baseline variables for survival prognosis. Data from 
three of the four trials was released as training data for the Prostate 
Cancer DREAM Challenge, see Table 1, which includes followup 
survival and treatment discontinuation information. Data from 
the fourth trial (ENTHUSE-33, 470 patients) was released for 
leaderboard (157 patients) and final scoring (313 patients), and 
did not include followup survival information. The latter dataset 
comprising the 313 patients from the ENTHUSE-33 trial will be 
referred to as the validation data. Though we have not had access to 
survival times for the validation data, predictions for the validation 
data could be assessed via the Prostate Cancer DREAM Challenge 
web interface.

We note that the survival distributions for the three trials in the 
training data are comparable, see Figure 1 in 2 (the p-value for 
the log-rank test of equal survival functions is 0.63), but we also 
note that the followup time for the VENICE trial was considerably 
longer than for the other two trials.

To assess prognostic models, it is important to understand the tar-
get population. The patients included in the four trials were not 
necessarily recruited from the same population, and Table 2, Table 3, 
and Table 4 present breakdowns of the patients in the four trials 
according to age group, geography, and race, respectively. We 
note that the age distribution for the ASCENT-2 trial differs from 
the other three trials with a larger proportion of patients over 75 
years old and a smaller proportion in the group 18–64 years. The 
age distributions for the other three trials are similar. We also note 
that the majority of patients are white and from Europe or North 

Table 1. Number of patients and registered 
deaths from the three clinical trials in the 
training data.

Trial Nr. of patients Nr. of deaths

ASCENT-2 476 138

MAINSAIL 526 92

VENICE 598 433

Total 1600 663
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Table 2. Number of patients stratified according to age 
group and trial.

ASC.-2 MAINSAIL VENICE ENT.-33 Total

18–64 111 171 219 111 612

65–74 211 246 254 141 852

≥75 154 109 125 61 449

Total 476 526 598 313 1913

Table 3. Number of patients stratified according to geographic 
region and trial.

ASC.-2 MAINSAIL VENICE ENT.-33 Total

W. Europe 0 247 212 104 563

N. America 0 139 80 61 280

E. Europe 0 84 127 50 261

S. America 0 0 86 38 124

Asia/Pacific 0 0 0 47 47

Africa 0 0 0 13 13

Other 0 50 93 0 143

Missing 476 6 0 0 482

Total 476 526 598 313 1913

Table 4. Number of patients stratified according to race and 
trial.

ASC.-2 MAINSAIL VENICE ENT.-33 Total

White 419 433 538 225 1615

Asian 5 0 36 49 90

Black 32 25 17 12 86

Hispanic 14 0 0 0 14

Other 6 13 7 27 53

Missing 0 55 0 0 55

Total 476 526 598 313 1913

were filtered and cleaned prior to the model building. The filtering 
consisted of excluding variables that were mostly or entirely 
missing in either the training or the validation data, or had no 
variation. Variables related to treatment and discontinuation were 
excluded as well. The cleaning consisted of consistent registration 
of missing values, correct registration of variable type (categorical 
or numeric), and some recoding. The filtered and cleaned data 
contains 93 predictor variables in addition to the followup survival 
time, the death indicator, and the patient ID, see Table S1. Of the 
93 predictors 72 are binary predictors, 4 are categorical predictors  
with three or more categories, and 20 are numerical predictors, 
which, except for BMI, are laboratory measurements. Table S1 
shows that there are a considerable number of missing values in 
the training data for some of the numerical variables, while the 
validation data set is more complete. In fact, 37 of the 63 missing 
values in the validation data are related to only two patients, for 
whom most laboratory measurements are missing.

Figure 1 shows pairwise correlations between binary predictors 
and correlations and associations between the numerical predictors. 
The variables were ordered by hierarchical clustering based on 
the correlations. We note that there is some correlation among 
the predictors. Among the numerical predictors, the variables CA, 
ALB, HB and NA. are positively correlated and also correlated with 
total protein TPRO. The variables NEU (neutrophils, a white blood 
cell type) and WBC (white blood cells) are unsurprisingly strongly 
positively correlated, and they are both positively correlated 
with PLT (platelets). Finally, the group PSA, ALP, AST, ALT 
and LDH also shows positive correlations with AST (aspartate 
aminotransferase) and ALT (alanine transaminase) being strongly 
correlated. For the binary variables, it is worth noting that the 
correlation pattern is rather weak and does not cluster in any clear 
pattern, though there is a certain weak overall positive correlation 
pattern. We see this pattern most clearly for the variables related to 
medical history (see Supplementary Figure 1 at the end of the paper 
for labels with medical history variables having prefix MH). Some 
of the strongest clustered correlations are unsurprising, such as the 
positive correlation among MI, MHCARD and BETA_BLOCKING 
related to cardiac disorders, the positive correlation between the 
metabolism and diabetes variables MHMETAB and DIAB, and 
the negative correlation between GONADOTROPIN (fertility 
medication) and ORCHIDECTOMY (testicle(s) removed). 

Methods
Imputation
As mentioned above, the training data contains a large number of 
missing values. To deal with the missing values we implemented 
three imputation schemes: imputation under the missing completely 
at random assumption (MCAR), imputation under the missing 
at random assumption using only other predictors (MAR), and 
imputation under the missing at random assumption using other 
predictors as well as the survival response (MARwR). The variable 
to be imputed is denoted VI in the following.

The MCAR assumption means, as the name suggests, that the 
mechanism resulting in missing values is completely random 
and independent of both observed and unobserved variables. The 
corresponding imputation scheme is implemented by drawing 

America. For the ASCENT-2 trial there is no geographic data, but 
it is known that these patients were recruited from North America 
and Europe4. The ASCENT-2 trial is, furthermore, the only trial 
for which the ethnicity group “Hispanic” is registered as race. A 
notable difference between the trials is that the validation data 
from the ENTHUSE-33 trial contains a larger proportion of Asians, 
and there are apparently no patients from the Asian/Pacific region 
in the training data. A further breakdown of the geographic group 
“Other” shows that the majority of these patients are white, but 30 
patients from the VENICE trial are Asians; therefore they could be 
from the Asian/Pacific region. Nevertheless, there is little variabil-
ity in the data in terms of race and geographic region.

All the baseline values for the predictor variables were made 
available for the Prostate Cancer DREAM Challenge participants 
in a data table referred to as CoreTable. The variables in CoreTable 
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observations randomly from the empirical marginal distribution of 
VI.

The two other imputation schemes involve fitting regression models 
with VI as the response variable, and their implementations share 
a number of components. Both schemes can use up to five other 
variables from the dataset to fit a linear regression model of VI. 
The five predictors are selected as the variables having the strongest 
marginal association with VI measured in terms of p-values. Only 
variables with p ≤ 0.05 and no missing values are considered. 
Missing values of VI are then imputed from the fitted regression 
model. The MAR scheme uses only predictor variables whereas the 
MARwR uses the censored survival times as well. Our MARwR 
scheme follows the suggestions by White and Royston8 to use the 
Nelson-Aalen estimate of the cumulative hazard function together 
with the indicator variable for censoring in the imputation model of 
VI.

We did not implement a specific MAR or MARwR scheme for 
categorical variables, and the missing values of RACE_C and 
REGION_C were therefore imputed using the MCAR scheme.

Proportional hazards models
All methods considered except random survival forests are based 
on the proportional hazards model with the hazard function for the 
ith patient being

( )
0 ( )e tλ = λif

i t( ) .
x

Here λ
0
 is a baseline hazard function and f is a function of the vector 

of predictor variables, x
i
 = (x

ij
)

j
 , for the ith patient. We refer to f (x

i
) 

as the risk score for the ith patient. For the purpose of risk predic-
tion in the context of the Prostate Cancer DREAM Challenge, any 
monotonically increasing transformation of f (x

i
) – e.g. exp( f (x

i
)) – 

is an equivalent risk score.

The additive, linear model is given by

.β∑i j i j
j

p

f x
 = 1

( ) =x

The coefficients β
j
 can be estimated by maximizing Cox’s partial 

likelihood using the function coxph from the survival R 
package9,10. However, for a large number of predictors there will 
usually be a favorable bias-variance tradeoff by using shrinkage 
and/or variable selection. Moreover, the additive, linear model may 
not be adequate, since it does not capture nonlinear or interaction 
effects on the log-hazard scale.

The generalized additive model is given by

∑i j i j
j

p

f xf
 = 1

( ) = ,( )x

for functions f
j
 of the univariate predictors. For numerical 

predictors the functions f
j
 are generally assumed to be smooth. 

The model can be fitted to data by minimizing the negative log-
partial-likelihood with a quadratic penalty that penalizes roughness 
of the f

j
 -functions. This can be achieved by the function gam with 

family = cox.ph() from the mgcv R package11. The function 
gam automatically chooses the trade-off between likelihood and 

Figure 1. Correlation plot (left) for all binary predictors. See Supplementary Figure 1 for the correlation plot with labels. Correlations 
(right, below the diagonal) and pairwise associations as given by loess scatter plot smoothers (right, above the diagonal) for the numerical 
predictors.
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penalty (and hence the smoothness) via built-in optimization of an 
unbiased risk estimate.

Lasso
Lasso is a shrinkage and selection estimator that fits a proportional 
hazards model by minimizing the negative log-partial-likelihood 
with an ℓ

1
-penalty. The lasso estimator can be computed using the 

function glmnet with family = "cox" from the glmnet R 
package12,13. It fits models for a sequence of penalty parameters 
(the lasso path), and it supports selection of the penalty parameter 
via built-in cross-validation. Any choice of the penalty parameter 
will generally lead to some coefficients shrunk to 0, which can be 
interpreted as a variable selection procedure. For all the results 
presented in this paper, the penalty parameter for lasso was chosen 
by minimizing the cross-validated partial likelihood loss.

Lasso, with the penalty chosen as describe above, yields an 
additive, linear model and gives resulting estimates of the risk 
score. Some coefficients are shrunk to 0, hence lasso does implicit 
variable selection, but the coefficients for the selected variables 
are, in addition, shrunk toward 0. The debiased lasso re-estimates 
the coefficients for the lasso selected variables without shrinkage, 
and can be computed by coxph based on the variables selected by 
lasso.

Stability selection
Stability selection14 is a variable selection method that works by 
choosing variables that are stably selected on subsampled data by 
e.g. lasso. The method implemented is a slight adaptation of the 
method proposed by Meinshausen and Bühlmann in 14, which 
works as follows: The lasso path is computed for a subsample of 
the training data, cross-validation is used on the subsample to select 
the optimal penalty, and the coefficients not shrunk to 0 are selected 
for the subsample. To obtain the results reported in this paper we 
used the procedure with 100 replications and with each subsample 
being half the size of the full training data. The selection frequency 
was computed for all variables, and a cutoff for stably selected vari-
ables was chosen to be 50%.

Any method for fitting a survival regression model can be combined 
with stability selection by fitting the model using only the stably 
selected variables.

Stochastic gradient boosting
A gradient boosting machine fits base learners sequentially to so-
called pseudo-residuals. A base learner is a simple model of f, e.g. 
one small regression tree, and the ensemble estimate of f consists of 
an aggregate of all the base learners. Regularization by shrinkage 
may be applied for each base learner. A stochastic gradient boosting 
machine samples (without replacement) for each iteration a subset 
of observations uniformly from the training data and uses only this 
subset for fitting a particular base learner15.

We used an implementation of a stochastic gradient boosting 
machine with trees as base learners that directly optimizes a 
smoothed version of the concordance index (C-index) as described 
in 16. The implementation is available on GitHub17, which is a fork 
of an earlier version of the gbm R package18. This implementation 

implicitly applies shrinkage when fitting an individual tree, as an 
optimal solution is not guaranteed16. Pilot experiments indicated 
that additional explicit shrinkage did not improve the predictions, 
and therefore our implementation does not use explicit shrinkage. 
The subsampling fraction (bag fraction) controls the number of 
observations used for each tree fit. Our implementation sets the 
subsampling fraction to 0.5, allows for interactions of up to three 
variables, and uses a minimum node size of 10. The number of 
trees is chosen by built-in cross-validation with a maximum of  
1000.

We fitted gradient boosting machines using all 93 predictor 
variables in the dataset as well as using only the stably selected 
variables.

Random survival forests
A random survival forest is an ensemble method similar to a 
boosting machine that uses trees as base learners19. For each itera-
tion of the algorithm, a dataset of the same size as the original is 
sampled with replacement. A tree is then grown using this data set. 
For each node of the tree, a subset of variables is sampled and con-
sidered for splitting. The splitting is done according to one of the 
variables in order to maximize survival difference as measured by 
the log-rank test statistic. In each terminal node, a Nelson-Aalen 
estimate is calculated and the estimates are then aggregated into an 
ensemble fit of the cumulative hazard function. To obtain a single 
predicted outcome for each subject, we used ensemble mortality as 
defined in 19.

Random survival forests can be fitted using the randomForestSRC 
R package19. Our implementation uses 1000 trees with a minimum 
node size of 6 (number of events in terminal nodes). For each split 
the procedure considers 20 candidate variables, and for each of  
those variables a maximum of 10 potential splitting points are 
randomly chosen. Setting a maximum of potential splitting points 
has two purposes. First, it speeds up computations. Second, it 
counters the fact that the algorithm is biased towards splitting 
on continuous variables as opposed to variables with only a few 
levels20.

As for stochastic gradient boosting, survival forests were fitted 
using all predictor variables as well as only the stably selected 
variables.

The score metric
Survival prognosis can be viewed as a prediction of a binary variable 
(is the patient dead) at each future time point, in which case the 
prognosis by the risk score can be evaluated using the conventional 
AUC score at any given time point. The time integrated AUC 
(iAUC) constitutes a single summary score, and it was the main 
score metric for the DREAM subchallenge 1a. The score can be 
estimated using the timeROC R package21.

The modeling and assessment pipeline
The methods described above for imputation, for fitting a survival 
model, and for variable selection can be combined in a number of 
ways. We implemented all meaningful combinations resulting in a 
total of 24 prognostic models, see Table 5.
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For the iAUC estimates reported in this paper, we replicated the  
5-fold cross-validation 3 times and averaged the results to decrease 
the variation due to the random data splits. For the iAUC esti-
mates based on the validation data we submitted predictions to the 
post-challenge leaderboard to assess the predictions on the 313 
patients from the ENTHUSE-33 trial. We made two submissions 
for each model and averaged the results. Though we only found 
minor variations in the results for the two submissions, the dou-
ble submission was done because several aspects of the model fit-
ting rely on randomness. We wanted the results to be robust to this  
variation.

Results
Figure 2 shows the iAUC score as estimated by cross-validation 
and on the validation data for all 24 combinations of methods. 
First, we observe that, in general, the iAUC was lower when the 
response was used for imputation (MARwR). The two other impu-
tation schemes gave comparable results, and the results reported 
below refer to MCAR as well as MAR imputation in combination. 
Survival forests were overall best with iAUC around 0.78 on 
the validation data and just below 0.70 in the cross-validation. 
Debiased lasso was worst with an iAUC around 0.73 on the vali-
dation data and 0.66 in the cross-validation. The differences are 
small, and we also note a large variation between folds in the  
cross-validation indicating heterogeneity in the training data.

The generalized additive model was the best among those that 
relied on stability selection with iAUC around 0.76 on the valida-
tion data and 0.69 in the cross-validation. The pure lasso predic-
tion did surprisingly well on the validation data, compared to the 

Table 5. The eight used combinations of 
variable selection and methods for fitting 
a survival model. All eight combinations 
were used in combination with all the three 
imputation methods: MCAR, MAR and 
MARwR.

Method All variables Stab. selected 
variables

Lasso ✓
Debias. 
Lasso ✓

Cox ✓
Gam ✓
Forest ✓ ✓
Boosting ✓ ✓

Figure 2. Integrated AUC for different combinations of methods evaluated by three replications of 5-fold cross-validation. Results are 
shown for individual folds (light blue filled circles) and averaged over all folds (red filled circles). The figure also shows iAUC on the validation 
data (purple filled squares) and iAUC for the reference model on the validation data (purple dashed line). The four methods marked with a  
* used variables chosen via stability selection, whereas the other four methods relied on implicit variable selection.

The final submission for the Prostate Cancer DREAM challenge 
from team KUStat was based on a generalized additive model using 
stability selected variables and the MCAR imputation scheme. Some 
hand tuning of the final submission was made, see our write-up22 for 
details. The hand tuning was not implemented for this paper.

The implementation consists of a collection of supporting R func-
tions and a main training and prediction function that fits all the  
24 models on a training data set and returns the risk scores for a 
test data set. The assessment pipeline consists of a 5-fold cross- 
validation step to estimate iAUC using the training data only, and a 
refit step where the models are fitted to the full training dataset and 
risk scores are predicted for the validation dataset.
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cross-validation results and irrespectively of the imputation method, 
and the computationally much more expensive boosting method 
was only just on par with lasso overall.

The results from stability selection are interesting in themselves. 
Figure 3 shows selection proportions for the 20 most often selected 
predictors for each of the imputation methods. These results are 
from one run of the algorithm with 100 subsamples. The variability 
due to the random subsampling was found to be small, though some 
variables would cross the (somewhat arbitrary) threshold of 50% in 
some runs and not in others. Figure 3 is from one of the two replica-
tions used for the validation.

The eight variables AST, HB, ALP, ECOG_C, ADRENAL, LIVER, 
ANALGESICS and ALB were selected in a large proportion of 
the subsamples, irrespective of the imputation scheme. The vari-
able RACE_C just reached the 50% threshold for all three impu-
tation schemes, while BMI, ACE_INHIBITORS and ESTRO-
GENS reached the 50% threshold for some, but not all, imputation 
schemes. Notably, PSA was not stably selected. It is also noteworthy 
that ALB (which has 493 missing values) increased its selection 
proportion considerably when imputed using the response.

Discussion
It is difficult to correctly evaluate how well a prognostic model will 
generalize. We believe that competitions like the Prostate Cancer 
DREAM Challenge have a positive effect on the development of 
systematic approaches to model evaluation. However, the big dif-
ferences between the cross-validated estimates of iAUC and those 
obtained on the validation data demonstrate how difficult it is to 
generalize from one dataset to another. Such differences in pre-
dictive strength, as measured by iAUC, can be explained by dif-
ferences in either the composition of the patients, or in how their 
survival is related to the predictors, but we cannot offer a more 
detailed explanation. In addition, we interpret the large variation 
between the cross-validation folds as evidence of a heterogeneous 
training dataset. This is not surprising, given that the training data 
is pooled from three different trials. Moreover, we noted that the 
majority of patients in the dataset are white and from Europe or 
North America. Thus it is also difficult to tell how well a prognostic 
model based on the Prostate Cancer DREAM Challenge data will 
generalize to other populations.

On the other hand, even if the absolute values of iAUC are 
incomparable, the rankings of the fitted models obtained by either 
cross-validation or validation were roughly the same. Thus we 
believe that our results shed light on which methods are most 
useful for developing prognostic survival models and for selecting 
variables of prognostic value.

For variable selection we believe that the poor performance of 
debiased lasso is a consequence of lasso generally selecting too 
many variables – see Chapter 8 in 23 for an extensive treatment of 
variable selection with lasso – and thus without shrinkage of the 
corresponding coefficients, debiased lasso will overfit. Stability 

Figure 3. Selection proportions for the 20 most stably selected 
variables stratified by imputation method. The threshold of 50% 
(red line) was used for the final variable selection.

MCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCARMCAR

0.4

0.6

0.8

1.0

A
S

T

H
B

A
LP

E
C

O
G

_C

LIV
E

R

A
D

R
E

N
A

L

A
N

A
LG

E
S

IC
S

A
LB

R
A

C
E

_C

A
C

E
_IN

H
IB

ITO
R

S

B
M

I

T
U

R
P

M
H

V
A

S
C

P
S

A

E
S

T
R

O
G

E
N

S

M
I

M
H

C
A

R
D

TA
R

G
E

T

LD
H

N
A

.

Variable

S
el

ec
tio

n 
pr

op
or

tio
n

MARMARMARMARMARMARMARMARMARMARMARMARMARMARMARMARMARMARMARMAR

0.4

0.6

0.8

1.0

A
LP

A
S

T

H
B

E
C

O
G

_C

LIV
E

R

A
D

R
E

N
A

L

A
N

A
LG

E
S

IC
S

A
LB

R
A

C
E

_C

B
M

I

A
C

E
_IN

H
IB

ITO
R

S

T
U

R
P

E
S

T
R

O
G

E
N

S

M
I

M
H

V
A

S
C

R
E

G
IO

N
_C

M
H

C
A

R
D

M
H

M
U

S
C

LE

N
A

.

M
H

P
S

Y
C

H

Variable

S
el

ec
tio

n 
pr

op
or

tio
n

MARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwRMARwR

0.4

0.6

0.8

1.0

A
LP

A
S

T

H
B

A
LB

E
C

O
G

_C

LIV
E

R

A
D

R
E

N
A

L

A
N

A
LG

E
S

IC
S

R
A

C
E

_C

E
S

T
R

O
G

E
N

S

N
A

.

T
U

R
P

B
M

I

M
H

V
A

S
C

M
I

A
C

E
_IN

H
IB

ITO
R

S

M
H

C
A

R
D

R
E

G
IO

N
_C

P
H

O
S

LY
M

P
H

_N
O

D
E

S

Variable

S
el

ec
tio

n 
pr

op
or

tio
n

Page 8 of 16

F1000Research 2016, 5:2680 Last updated: 22 DEC 2016



selection is a more stringent selection criterion, which is less prone 
to select false positives, see Chapter 10 in 23 and 14. The vari-
ables selected by stability selection as having prognostic value also 
largely agree with those found in 3 and used in the reference model. 
One difference is that the DREAM dataset gives nuanced informa-
tion on disease sites, and we found that liver and adrenal lesions, 
in particular, had prognostic value. The PSA variable was, on the 
other hand, not selected. It was a predictor in the reference model, 
but not a very strong one. Based on this study we therefore recom-
mend stability selection as a reliable method for selecting prognos-
tic variables.

For imputation of missing values the use of the response seemed 
to degrade predictive performance. This contradicts the recommen-
dations in e.g. 8, which presents a simulation study showing that 
imputation based on inclusion of an estimate of the cumulative haz-
ard function and the indicator of censoring is superior to a number 
of other imputation schemes. The framework of 8 is, however, 
focused on parameter estimation and hypothesis testing using mul-
tiple imputation, where the objectives differ from those of prognos-
tic modeling. We believe that further investigations into the effect 
of imputation – in particular when using the response – are needed 
to fully understand benefits and pitfalls, but our recommendations 
based on this study is to avoid using the response for imputation 
when building prognostic models.

Finally, the best performing model – the survival forest – is the 
only model considered that is not based directly on the proportional 
hazards assumption. Thus we may speculate that this assumption 
could be violated.

Conclusions
Survival forests without explicit variable selection gave the best 
performance overall in the cross-validation and on the valida-
tion data. When stability selection was used for explicit variable 
selection, the generalized additive model gave the best perform-
ance. Imputation using the response appeared to have a negative 
effect on predictive performance.

The four stably selected laboratory measurements AST, HB, ALP 
and ALB and the ECOG performance status were selected as some 
of the most important prognostic factors, together with liver and 
adrenal lesions and prior use of analgesics.
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Supplementary Figure 1. Correlation plot for all binary predictors.
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Table S1. Descriptions of the 93 predictor variables included in the modeling. The variables selected by 
stability selection by any of the imputation methods are marked with a *.

Variable name Type Description Missing 
in training

Missing in 
validation

AGEGRP2 Cat. (ord) Age Group (3 categories) 0 0

RACE_C* Cat. Race (5 categories) 55 0

REGION_C Cat. Region of the World (5 categories) 482 0

ECOG_C* Cat. (ord) Baseline Patient Performance Status 1 0

NON_TARGET Binary Baseline Non-Target Lesion(s) 0 0

TARGET Binary Baseline Target Lesion(s) 0 0

BONE Binary Baseline Bone Lesion(s) 0 0

RECTAL Binary Baseline Rectal Lesion(s) 0 0

LYMPH_NODES Binary Baseline Lymph Node Lesion(s) 0 0

KIDNEYS Binary Baseline Kidney Lesion(s) 0 0

LUNGS Binary Baseline Lung Lesion(s) 0 0

LIVER* Binary Baseline Liver Lesion(s) 0 0

PLEURA Binary Baseline Pleura Lesion(s) 0 0

OTHER Binary Baseline Other Lesion(s) 0 0

PROSTATE Binary Baseline Prostate Lesion(s) 0 0

ADRENAL* Binary Baseline Adrenal Lesion(s) 0 0

BLADDER Binary Baseline Bladder Lesion(s) 0 0

PERITONEUM Binary Baseline Peritoneum Lesion(s) 0 0

COLON Binary Baseline Colon Lesion(s) 0 0

SOFT_TISSUE Binary Baseline Soft Tissue Lesion(s) 0 0

ORCHIDECTOMY Binary Prior Orchidectomy(includes bilateral) 0 0

PROSTATECTOMY Binary Prior Prostatectomy 0 0

TURP Binary Prior Turp 0 0

LYMPHADENECTOMY Binary Prior Bilateral Lymphadenectomy 0 0

SPINAL_CORD_SURGERY Binary Prior Spinal Cord Surgery 0 0

BILATERAL_ORCHIDECTOMY Binary Prior Bilateral Orchidectomy 0 0

PRIOR_RADIOTHERAPY Binary Prior Radiotherapy 0 0

ANALGESICS* Binary Prior analgesics 0 0

ANTI_ANDROGENS Binary Prior Anti-Androgens 0 0

GLUCOCORTICOID Binary Prior Glucocorticoids 0 0

GONADOTROPIN Binary Prior Gomadotropin 0 0

BISPHOSPHONATE Binary Prior Bisphosponate 0 0

CORTICOSTEROID Binary Prior Corticosteroid 0 0

IMIDAZOLE Binary Prior Imidazole 0 0

ACE_INHIBITORS Binary Prior ACE Inhibitors 0 0

BETA_BLOCKING Binary Prior Beta Blocking Agents 0 0

HMG_COA_REDUCT Binary Prior HMG COA Reductase Inhibitors 0 0

ESTROGENS Binary Prior Estrogens 0 0

ANTI_ESTROGENS Binary Prior Anti-Estrogens 0 0

CEREBACC Binary Cerebrovascular accident 0 0

CHF Binary Congestive heart failure 0 0

DVT Binary Deep venous thrombosis 0 0

DIAB Binary Diabetes 0 0

GASTREFL Binary Gastroesophageal reflux disease 0 0

GIBLEED Binary Gastrointestinal bleed 0 0
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Variable name Type Description Missing 
in training

Missing in 
validation

MI Binary Myocardial infarction 0 0

PUD Binary Peptic ulcer disease 0 0

PULMEMB Binary Pulmonary embolism 0 0

PATHFRAC Binary Pathological bone fractures 0 0

SPINCOMP Binary Spinal cord compression 0 0

COPD Binary Chronic obstructive pulmonary disease 0 0

MHBLOOD Binary Blood & lymphatic system 0 0

MHCARD Binary Cardiac disorders 0 0

MHCONGEN Binary Congenital, familial & genetic 0 0

MHEAR Binary ear & Labyrinth 0 0

MHENDO Binary Endocrine disorders 0 0

MHEYE Binary Eye disorders 0 0

MHGASTRO Binary Gastrointestinal disorders 0 0

MHGEN Binary Gen. disord & admin site 0 0

MHHEPATO Binary Hepatobiliary disorders 0 0

MHIMMUNE Binary Immune system disorders 0 0

MHINFECT Binary Infections & infestations 0 0

MHINJURY Binary Injury, poison & procedural 0 0

MHINVEST Binary Investigations 0 0

MHMETAB Binary Metabolism & nutrition 0 0

MHMUSCLE Binary Musc./skeletal & connect tissue 0 0

MHNERV Binary Nervous system disorders 0 0

MHPSYCH Binary Psychiatric disorders 0 0

MHRENAL Binary Renal & urinary disorders 0 0

MHRESP Binary Resp., thoracic & mediastinal 0 0

MHSKIN Binary Skin & subcutaneous tissue 0 0

MHSOCIAL Binary Social circumstances 0 0

MHSURG Binary Surgical & medical procedures 0 0

MHVASC Binary Vascular disorders 0 0

BMI* Numerical Baseline body mass index (kg/m2) 10 1

ALP* Numerical Alkaline phosphatase u/l 5 2

ALT Numerical Alanine transaminase u/l 5 3

AST* Numerical Aspartate aminotransferase u/l 13 3

CA Numerical Calcium mmol/l 11 2

CREAT Numerical Creatinine umol/l 3 2

HB* Numerical Hemoglobin g/dl 13 4

LDH Numerical Lactate dehydrogenase u/l 610 4

NEU Numerical Neutrophils 109/l 21 4

PLT Numerical Platelet count 109/l 17 10

PSA Numerical Prostate specific antigen ng/ml 11 10

TBILI Numerical Total bilirubin umol/l 23 2

TESTO Numerical Testosterone nmol/l 855 2

WBC Numerical White blood cells 109/l 13 4

NA. Numerical Sodium mmol/l 481 2

MG Numerical Magnesium mmol/l 510 2

PHOS Numerical Phosphorus mmol/l 504 2

ALB* Numerical Albumin g/l 493 2

TPRO Numerical Total protein g/l 504 2
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This paper deals with the very hard and important problem of cancer survival prognosis with focus on
evaluation of methods and data usages. Common prognosis models are assessed in a full-scale analysis,
that is, in combination with imputation techniques and variable selection methods.

The data stems from the prostate cancer DREAM challenge and the stage is set for achieving best
prognosis performance in terms of the integrated AUC in case of cross-validation using the training data
or for the validation dataset. The authors provide a thoroughly description of predictors and their mutual
relationship.

Combined Methods: The missingness taxonomy, which sets the range for imputation, is chosen
sufficiently exhaustive and is then combined with the modelling and variable selection approaches. The
chosen stability selection is appropriate and interesting given the wide range of chosen models. Some of
the models have implicit variable selection and comparisons are made.

Interestingly the debiased lasso is shown to perform rather poorly in the comparison scenario as well as
the boosting methods that optimizes a concordance measure, but are low on the iAUCs, somewhat
unexpected.  Explaining why the methods differ in performance is not straightforward but the general
purpose of comparison is fully met and very interesting claims are provided useful for developing
prognostic survival models. The stability selection procedure is recommended as a reliable method for
selecting prognostic variables.

The authors point at ad-hoc choices and "hand tuning" during the process, but manage to convey and
address very well the great many choices to be made for survival prognosis in action.

There is a comprehensive explanation of study design, chosen methods, analysis, and results. The paper
is clearly written and may in combination with the supplied material serve as a very good tutorial on the
topic - the case study presented seems to have very general scope for application. Papers of this type are
welcomed in general.

Misc:
A typo of AUC in abstract.

A specification of how mutual dependence of binary predictors is obtained.
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1.  

2.  

3.  

4.  

A specification of how mutual dependence of binary predictors is obtained.
Not important: the estimation of the iAUC was not to be found in the supplied material - maybe a closer
look is needed.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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 30 November 2016Referee Report

doi:10.5256/f1000research.9071.r17681

 Sarah Lemler
Laboratory of Mathematics in Interaction with Computer Science, Ecole Centrale Supélec,
Châtenay-Malabry, France

The authors have participated to the Prostate Cancer DREAM challenge. They report in this paper the
methodology developed to predict the survival of patients with prostate cancer. They detail different
methods, combining imputation techniques to replace missing values in the dataset with selection and
model fitting procedures to predict the survival. They compare these methods to each other using the
integrated AUC and give their conclusion about the best method in terms of prediction.  

My opinion on the paper is the following. First of all, the paper is very well written and pleasant to read. It
is clear and understandable. The procedures and methodologies followed by the authors are well
explained in a concise way. In addition, the different methods considered in the paper to deal with the
Prostate Cancer data are interesting not only for the dataset of the challenge, but also for other types of
data. The paper gives some methodology that can be applied to any other dataset to study the
survival. Lastly, the comparison of those methods shows that the best procedure is not always the one
that we thought, but depends on the objective. This paper shows for example that the random survival
forest is better in prediction than the Lasso, which is good in selection. As a conclusion, I strongly approve
the publication of this paper.

Some questions and little comments to improve the form:
Page 3, line 3: the verb "found" has to be removed.
 
Does the choice of the training, test and validation data influence the results? Would it be
interesting to compare the results by changing these different samples?
 
Table 2: maybe, it would be easier for the reader to detect the differences of the age distribution in
the four trials with the proportion by age class instead of the number of patients.
 
Figure 3 and paragraph 2: should we not remove the variables with lots of missing values when we
do stability selection? How could you explain that the variable ALB with many missing values has
been selected for example and does one really need to select this variable? 

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Page 15 of 16

F1000Research 2016, 5:2680 Last updated: 22 DEC 2016

http://dx.doi.org/10.5256/f1000research.9071.r17681


F1000Research

 No competing interests were disclosed.Competing Interests:

Page 16 of 16

F1000Research 2016, 5:2680 Last updated: 22 DEC 2016


