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Abstract 

 

Motivation: The recognition that transposable elements (TEs) play important roles in many 

biological processes has elicited growing interest in analyzing sequencing data derived from this 

‘dark genome’. This is however complicated by the highly repetitive nature of these sequences in 

genomes, requiring the deployment of several problem-specific tools as well as the curation of 

appropriate genome annotations. This pipeline aims to make the analysis of TE sequences and 

their expression more generally accessible. 

Results: The TE-Seq pipeline conducts an end-to-end analysis of RNA sequencing data, 

examining both genes and TEs. It implements the most current computational methods tailor-

made for TEs, and produces a comprehensive analysis of TE expression at both the level of the 

individual element and at the TE clade level. Furthermore, if supplied with long-read DNA 

sequencing data, it is able to assess TE expression from non-reference (polymorphic) loci. As a 

demonstration, we analyzed proliferating, early senescent, and late senescent lung fibroblast 

RNA-Seq data, and created a custom reference genome and annotations for this cell strain using 

Nanopore sequencing data. We found that several retrotransposable element (RTE) clades were 

upregulated in senescence, which included non-reference, intact, and potentially active elements. 

Availability and implementation: TE-Seq is made available as a Snakemake pipeline which 

can be obtained at https://github.com/maxfieldk/TE-Seq. All software dependencies besides 

Snakemake and Docker/Singularity are packaged into a container which is automatically built 

and deployed by the pipeline at runtime. 
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1 Introduction 

Transposable elements (TEs) are mobile genetic elements that share a unique ability, using a 

variety of mechanisms, to move throughout genomes. These processes can increase TE genomic 

copy-number, so much so that TEs comprise roughly half of the human genome, and similarly 

large fractions of other mammalian and eukaryotic genomes (Almojil et al., 2021). Their impact 

on biological processes is hard to overstate: they are involved in many fundamental cell-

physiological processes, including chromosome-segregation, gene-regulation, and telomere 

function (Almojil et al., 2021; Bourque et al., 2018). Their less welcome participation in patho-

physiological processes is also well documented, wherein they have been shown to promote 

chronic inflammation, tumorigenesis, and neurodegeneration (Frost and Dubnau, 2024; 

Gorbunova et al., 2021; Mendez-Dorantes and Burns, 2023). 

While the broad relevance of TEs is clear, the repetitive nature of their sequences 

imposes analytical challenges, and hence they are often neglected in RNA-Seq workflows and 

analyses (Lanciano and Cristofari, 2020). This pipeline aims to render TE investigation more 

tractable by addressing concerns pertaining to: i) imperfect alignment of repetitive elements, ii) 

non-reference elements, iii) non-autonomous transcription of TEs driven by adjacent genes, and 

iv) the quality of TE annotations. 

Retrotransposable elements (RTEs), in particular Long Interspersed Nuclear Elements 

(LINEs), Short Interspersed Nuclear Elements (SINEs) and Endogenous Retroviruses (ERVs) are 

of considerable interest because their abundance and activity in many mammalian genomes. 

They are classified into superfamilies (e.g. LINE), families (e.g. LINE-1), and subfamilies (e.g. 

L1HS, specific for Homo sapiens).  
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RTE-count quantification has to confront the issue of multimapping reads: if two 

insertions in a genome are identical in sequence, it is impossible to uniquely assign reads derived 

from them to either of the loci. In practice, however, almost all RTE copies contain some 

polymorphic sites (such as SNPs or indels), allowing some fraction of their reads to be uniquely 

mappable. A strategy of examining only uniquely mapped reads may at first glance appear 

attractive, but this approach is biased against evolutionarily young RTE elements, which are less 

polymorphic than older elements (Kaul et al., 2020; Teissandier et al., 2019). However, the 

young RTE subfamilies are of greatest interest because they are the most mobile, and thus tools 

have been developed to deal with reads derived from non-uniquely mappable sequences.  

This problem was recognized early on and programs such as TEtools randomly assigned 

a multi-mapper read to one locus; this greatly improved quantification accuracy (Lerat et al., 

2017). Other tools such as RepEnrich (Criscione et al., 2014) focused on providing accurate 

assessments of expression at the TE subfamily level, by pooling all uniquely mapped reads to a 

given TE subfamily, and remapping multi-mappers to TE subfamily consensus sequences. As 

sequencing read lengths improved, with 150 bp paired-end reads becoming standard, the yield of 

uniquely mapping reads increased, and new strategies to deal with the remaining multi-mapping 

problem were developed, such as TElocal (https://github.com/mhammell-laboratory/TElocal), 

L1EM (McKerrow and Fenyö, 2020), and Telescope (Bendall et al., 2019). These programs 

implemented iterative, expectation-maximization based assignments of multi-mappers to single 

loci. They rely on the assumption that loci which have uniquely mapped reads are likely truly 

expressed, and therefore multi-mapping reads are iteratively assigned to TE loci which accrue 

the largest number of uniquely mapped reads. Our TE-Seq pipeline utilizes the Telescope tool 

since it accepts user-provided, gene-transfer format (GTF) formatted TE annotations, making it 
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more flexible than either TElocal or L1EM; the former relies on pre-built custom-TE indices and 

the latter focuses solely on LINE-1 elements. 

A complete account of every TE insertion in a genome would greatly increase the quality 

and interpretability of TE RNA-Seq results. Currently mobile RTE subfamilies, such as L1HS, 

are constantly evolving and generating new germline insertions. Each individual human has 

approximately 100 L1 insertions which are not captured by a given reference genome (e.g. 

Hg38). Analytically, this means that reads derived from such elements will necessarily be 

mistakenly assigned to other, reference elements. This problem is particularly acute since the 

polymorphic, non-reference RTEs are likely some of the most active elements in the genome. As 

a solution to this problem, our TE-Seq pipeline allows for the optional injection of Nanopore 

DNA sequencing data in order to call non-reference TE insertions and include them in 

downstream analyses. 

Recognition of an element’s ‘genic context’, or its spatial relationship to cellular genes, 

helps to estimate potential regulatory influences between TEs and the surrounding host genome, 

in particular, whether an element was autonomously expressed (transcribed by its own promoter) 

or whether it was passively transcribed by gene read-through is of interest. The latter possibility 

is diminished if no adjacent genes exist. To this end, the TE-Seq pipeline categorizes elements 

according to their relationship with cellular genes. This information serves another diagnostic 

function: if libraries differ greatly in terms of intronic content (a potential technical artifact 

owing to differences in sample preparation), this can lead to a spurious apparent increase in TE 

expression. The degree to which this pitfall may affect a dataset is assessed by comparing 

changes in intergenic-TE expression to changes in intronic-TE expression. 
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2 Implementation 

2.1 Overall design 

The TE-Seq pipeline consists of two overarching modules, Annotate Reference (AREF), and 

Short-read RNA-Seq (SRNA). Here we outline the overall workflow and in the next section we 

provide extended details for selected steps (see Fig. 1 for a schematic outline of TE-Seq). 

The AREF module begins by fully annotating a user-provided genome for TE content and 

identifying functionally important groupings of elements. This enriched annotation set allows the 

subsequent analysis to probe distinctions in expression between truncated, full-length, and full-

length open reading frame intact TEs, as well as to distinguish between intergenic versus 

intragenic elements. If provided with long-read Nanopore DNA-Seq data derived from the 

specimens under investigation, this pipeline will call non-reference TE insertions (polymorphic 

TEs not captured by the reference genome) and create an augmented reference genome 

containing sequences and associated annotations describing all non-reference TE element 

insertions. This enables the analysis of polymorphic TE elements, which are likely to include 

some of the most active elements. For use-case flexibility, the AREF module has a number of 

workflow modifying parameters. These parameters allow users to choose whether to create new 

annotations from scratch, to update annotations using long-read sequencing data, or to use 

existing annotations previously created during a previous run of the pipeline in another project. 

Starting with raw sequencing reads, the SRNA module performs standard read-level 

quality control, genomic alignment, and quantification of gene counts. Repeat-specific tools are 

then deployed to quantify repeat element expression, either by using only uniquely mapped 

reads, or, by using the information provided by unique mappings to guide probabilistic 

assignment of multi-mapping reads to specific TEs. Differential transcript expression of 
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repetitive and non-repetitive elements is assessed using DESeq2. Gene set enrichment analyses 

are performed for both genes and families of repetitive elements. 

 

2.2 Annotation set creation and refinement 

Annotation curation begins with a user-provided reference genome. If a precomputed 

RepeatMasker.out file is not provided, RepeatMasker (www.repeatmasker.org) will be run on 

each chromosome to annotate repetitive elements. Next, this RepeatMasker.out file is converted 

to GTF format with a Bash script, and is then checked for errors and converted to GTF, GFF3 

and BED file formats. User provided RefSeq gene annotations undergo a similar process, and 

ultimately RepeatMasker-derived and RefSeq-derived annotations are merged to create a TxDb 

R object. 

Next, RepeatMasker-derived annotations are processed by R scripts to enable 

downstream analyses. By default, RepeatMasker splits annotations for fragmented repetitive 

elements. Adhering to ‘tidy’ data conventions, we consolidate these split annotations in an R data 

frame, taking note of their fragmented status. TEs are then further annotated on the basis of their 

inclusion in phylogenetic and functional classes. RTEs are grouped at the superfamily, family, 

and subfamily levels. Elements are denoted as full-length or truncated depending on whether 

they cover at least 95% of their representative consensus sequence. TE subfamilies are deemed 

‘young’ if the average percent divergence (as determined by RepeatMasker) of all subfamily 

members is less than 3% for LINEs, 8% for SINEs, 12% for ERVs, and 15% for all others. These 

thresholds are user-tunable parameters, and are set by default, where possible, to denote as 

‘young’ those subfamilies capable of retrotransposition (e.g. L1HS and L1PA2 for human 
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LINEs). Evolutionarily young, potentially active elements of two retrotransposon clades, LINEs 

and ERVs, are further examined below. 

Young, potentially active L1 element sequences are analyzed for protein coding potential 

(in the human: L1HS and L1PA2; in the mouse: L1Md, L1Tf, L1 Gf and L1A subfamilies; in 

other species: the least diverged 7 LINE subfamilies). For each full-length sequence, open 

reading frames (ORFs) are identified. Not all ORFs in all elements will be intact, in fact, many 

will contain SNPs or indels as a result of genetic drift. To identify consensus ORFs, ORF length 

frequencies are tabulated, Z-scores are computed, and ORF lengths with a Z-score > 4 are 

selected for consensus sequence generation. All ORFs are subsequently aligned to these 

consensus sequences, and their percent amino acid difference is computed. ORFs which are less 

than 5% diverged are considered intact, and elements are considered intact if they possess a full 

complement of intact ORFs. 

Endogenous retrovirus (ERV) elements are composed of long terminal repeat (LTR) 

sequences and internal (Int) sequences. RepeatMasker does not annotate whole proviruses, but 

instead splits them into LTRs and Ints. Most LTRs in genomes are present as ‘solo’ LTRs that do 

not flank an internal ERV sequence (solo LTRs result from host recombination between two 

LTRs of a provirus). The TE-Seq pipeline thus distinguishes between proviral and solo LTRs, as 

well as between 5’LTR-flanked and 5’LTR-deficient ERV sequences. For all LTRs, we determine 

whether they are flanked by full-length (FL) or truncated (Trnc) Ints (+/- 500bp), thereby 

generating the following categories: LTR (Solo), 5'LTR (Trnc Int), 3'LTR (Trnc Int), 5'LTR (FL 

Int), 3'LTR (FL Int). For all Ints, we determine whether these have a 5’LTR and mark them 

accordingly: Int (Has 5'LTR), or Int (No 5'LTR). Additionally, for young, potentially intact ORF 

encoding ERV element subfamilies (in the human: HERVK, HERVL, HERVW (Garcia-Montojo 
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et al., 2018; Jakobsson and Vincendeau, 2022); in the mouse: MMTV, ETn, IAP, MMVL, 

MMERGLN, MuRRs, MuLV, MERVL subfamilies (Stocking and Kozak, 2008); in other 

species: the least diverged 7 LTR subfamilies), we assign each Int and adjacent (+/- 500bp) LTRs 

of the same family a unique “proviral_group_id”, such that their counts can be pooled and/or 

assessed for concordance. 

All repetitive elements are examined for their proximity to non-repetitive genetic 

elements (such as cellular genes). The distance to the most proximal transcript is recorded, and 

the repetitive element is categorically denoted as either exonic, intronic, coding/non-coding gene 

proximal (+/- 10,000bp from transcript start/end), or intergenic.  

 

2.3 Nanopore DNA-Seq 

The TE-Seq pipeline allows optional non-reference TE insertion calling if provided with 

Nanopore DNA-Seq reads. Nanopore basecalling is performed with the Oxford Nanopore 

Dorado program, and reads are aligned to a reference genome using Minimap2 (Li, 2018). Long-

read sequencing and alignment quality metrics are compiled using PycoQC (Leger and Leonardi, 

2019) and Samtools stats (Danecek et al., 2021). Aligned DNA reads are then fed to the TLDR 

program (Ewing et al., 2020), which calls non-reference insertions by examining clusters of 

clipped-reads whose clipped regions align to a TE consensus sequence. We then filter these 

insertions to retain only those high-confidence calls which have passed all TLDR filters, and 

further require that: i) the median MapQ score of supporting reads be 60, ii) the insert has a 

target-site duplication (TSD) which is a hallmark of retrotransposition, and iii) the insert be 

supported by at least 10 reads of which 3 must fully span the insert. We then append the insert’s 

consensus sequence (and 30bp of reference flanking region up and downstream of the insert) to 
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the provided reference genome where it becomes a standalone, mappable contig. RepeatMasker 

then annotates these appended contigs for repetitive element content, and these non-reference 

insertion annotations are merged with the reference TE RepeatMasker set for further processing 

as described in the previous section. If provided with a species-specific database of TE 

polymorphisms, TLDR annotates whether insertions are ‘known’ or ‘novel’. TLDR provides 

such databases for human and mouse (see (Ewing et al., 2020), Table S4 for more information on 

the 17 datasets comprising this database). Additionally, we optionally call SNPs using the 

PEPPER pipeline (Shafin et al., 2021), and incorporate high-quality SNP calls into the reference 

genome allowing for more accurate mapping of reads overlapping these polymorphisms. 

If Nanopore DNA-sequences are not available, the problem of non-reference TEs can 

nevertheless be attenuated by using the most up-to-date reference genomes, such as telomere-to-

telomere assemblies (Nurk et al., 2022) which provide a more complete map of TE insertions, 

especially in hard to assemble regions such as centromeres. 

 

2. 4 RNA-Seq analysis 

Sequencing reads are trimmed using fastp (Chen et al., 2018) and aligned to the (custom) 

reference genome reference with STAR (Dobin et al., 2013), allowing for up to 100 multiple 

mapping locations per read. This allowance for multimappers aids in accurately assigning TE-

aligned reads to the correct TE locus. Gene counts are produced using featureCounts (Liao et al., 

2014) and the user-provided RefSeq transcript annotation (in the present case, the October 2023 

revision, GCF_009914755.1). Repetitive element count estimates are produced with the 

Telescope tool (Bendall et al., 2019) and the custom RepeatMasker derived annotation resulting 

from the AREF module. This tool allows for multi-mapping reads overlapping RTEs to be 
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assigned to the best supported locus via an iterative expectation maximization (EM) algorithm 

(see Telescope methods). We obtain two sets of TE counts: one conservative estimate of locus 

expression which allows only for uniquely-mapped reads to contribute to total counts, and one 

more relaxed (and potentially accurate, as claimed in (Bendall et al., 2019)) set of counts which 

incorporates multi-mapping reads. This inclusion of multi-mapping reads is particularly 

important for young TE elements, which are highly similar in sequence and contain long 

stretches of non-uniquely mappable sequences. While overall a less biased strategy than only 

considering uniquely mapping reads (Bendall et al., 2019), EM re-assignment of multi-mapping 

reads is imperfect, and element-level read estimates should be interpreted as best guesses when 

they are comprised of a substantial fraction of multi-mapping reads. 

Count normalization for genes and repetitive elements is performed using DESeq2’s 

‘median of ratios’ method (Love et al., 2014). Size factors are estimated by setting the 

‘controlGenes’ parameter of the ‘estimateSizeFactors’ factors to include only RefSeq genes. This 

is done so as to prevent the very large number of lowly-expressed repetitive elements in a 

RepeatMasker-derived annotation from adversely biasing median-based count normalization. 

Differential expression is then assessed using DESeq2’s negative binomial linear modeling. 

Batch effect correction is implemented by introducing a batch variable in the sample 

specification file. If sequencing data contain batch effects, one must be mindful that batch effect 

correction is an imperfect procedure which can in itself introduce a bias (Leek et al., 2010; 

Nygaard et al., 2016). This problem is particularly acute when biological conditions of interest 

are imbalanced with respect to batch. The TE-Seq pipeline accounts for batch effects in two 

places: the first is in DESeq2's linear model, and the second is during the production of batch-

corrected count tables using limma (Ritchie et al., 2015). DESeq2's linear modeling will better 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.11.617912doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.11.617912
http://creativecommons.org/licenses/by-nc/4.0/


 

 

12 

handle the batch effect, and its p-value estimates (for individual genes and repetitive elements) 

will be more reliable than any statistics produced downstream of limma ‘batch-corrected’ counts 

(comparisons between repetitive element family total counts). Therefore, in the context of an 

unbalanced dataset, TE family comparisons based on adjusted counts need to be interpreted with 

care, and in the light of non-batch adjusted results. For a more thorough discussion of the issue, 

readers may consider Nygaard et al. (2016). 

Normalized counts and differential expression results are next analyzed with a set of R 

scripts. Example products of this analysis are shown in the results section. Analyses at both the 

individual gene/TE level, as well as at the gene set/TE family level are performed. TE groupings 

are assessed for enrichment using both gene set enrichment analysis (GSEA) and pooled-count 

strategies. GSEA can detect small, concerted changes in expression across a family of related 

TEs. Normalized TE count pooling at the family or functional level (and subsequent assessment 

for differential expression by means of a t-test) allows for a TE family to be counted as 

significantly overexpressed if only a small number of its members are dramatically 

overexpressed. 

Correlations in expression between adjacent gene-TE pairs are established to shed light 

on potential bidirectional gene-regulatory influences. Read-mapping to select TE families is also 

examined by means of composite bigwig tracks, which show read density across a consensus 

element’s length, revealing potential biases in alignment to particular TE sequence 

regions/features. 

Finally, the pipeline produces an html report consolidating the most insightful 

visualizations. Plots are stored as PDFs such that they can be resized and modified as needed in 

vector graphics software such as Adobe Illustrator. 
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3 Results 

In order to catalogue all non-reference RTE insertions in LF1 human primary lung fibroblast 

cells (Brown et al., 1997), we performed Nanopore DNA sequencing. Sequencing coverage and 

N50 values were high (>60X, >24 kb). We called non-reference insertions using TLDR, and 

retained only those insertions passing both TLDR and our in-house quality filters (2.3 above). 

We observed 226 Alu insertions, 117 L1 insertions, and 24 SVA insertions (Fig. 2A). While some 

L1 insertions were truncated, we found 65 full-length L1HS insertions, of which 46 were intact 

with conserved ORFs. Most insertions were intergenic or intronic (Fig. 2B). A smaller fraction 

were either adjacent to coding or non-coding genes, or found within an exon or a non-coding 

transcript . Compared to reference L1HS elements, non-reference L1HS elements were much 

more likely to be intact, and non-reference elements made up 30% (46/151) of all intact L1HS 

elements (Fig 2C). When non-reference intact L1HS consensus sequences were phylogenetically 

compared to reference intact L1HS elements, non-reference insertions were dispersed throughout 

the phylogeny, but with an increased prevalence among the younger elements (Fig. 2D). 

Assuming that the most phylogenetically proximal reference element is the likeliest non-

reference progenitor, a small number of reference intact L1HS elements were predicted to 

account for the majority of non-reference insertions (Fig. 2E). Under this assumption, the L1HS 

element (17_q24.2_2) produced eight novel insertions, indicating it may be a particularly active 

element in the germline. We also generated a pie chart showing the genome fraction occupied by 

repetitive elements in this genome (Fig. 2F). 

Starting with the near-complete T2T-HS1 human reference genome (Nurk et al., 2022), 

we then created a custom LF1 genome which incorporates quality-filtered TE insertions, 
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rendering them alignable and hence open to scrutiny by RNA-Seq analysis. Enhanced TE 

annotations were then created to facilitate the thorough investigation of these elements. We 

applied our pipeline to RNA-Seq data from our laboratory on LF1 cells spanning three biological 

conditions. LF1 cells were passaged to replicative senescence, and were harvested 4 and 16 

weeks later, yielding early senescence (ESEN) and late senescence (LSEN) conditions. Early 

passage proliferating LF1 cells (PRO) were used as a control. Poly-A selected, stranded, 150bp 

paired-end libraries were sequenced in quadruplicate. 

Principal component analysis revealed samples mostly clustered by biological condition 

(Fig. 3A), excepting one ESEN sample, which clustered closer to LSEN samples. Senescence 

status neatly divided the first principal component, which accounts for 72.63% of total variation. 

We observed 7341/6245 up/down-regulated genes in ESEN and 7274/6117 up/down-regulated 

genes in LSEN (Fig. 3B). While most differentially expressed genes were shared between both 

senescent conditions, roughly 40% of DEGs were unique to one condition, suggesting biological 

differences between early and late senescence. Hallmark gene set enrichments by GSEA (Fig. 

3C) were consistent with previous reports demonstrating heightened inflammatory signatures and 

P53 pathway activity, as well as diminished activity of pathways associated with proliferation, 

including E2F targets, and G2M checkpoint (Hernandez-Segura et al., 2018). Canonical 

transcriptional markers of senescence were significantly elevated in ESEN and LSEN, including 

CCL2, CDKN1A (P21), CDKN2A (P16), and IL6 (Fig. 3D). The SenMayo gene set was 

enriched in both ESEN and LSEN (Fig. 3E). Interestingly, hierarchical clustering of SenMayo 

gene expression showed that this signature was dynamic in senescence, with some SenMayo 

genes being differentially expressed between ESEN and LSEN (Fig. 3F). The direction of most 

changes observed in ESEN were preserved in LSEN, but their magnitude was modulated in 
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LSEN. One large block of genes (top of panel) was highly upregulated in ESEN and comparably 

modestly upregulated in LSEN. While STRING analysis did not detect functional enrichments in 

this block compared to the broader SenMayo set, many of these genes were cytokines (IL1A, 

IL1B, and IL6) and chemokines (CCL2, CXCL8, CXCL10). Another large block (middle of 

panel) was upregulated modestly in ESEN and much more strongly in LSEN. 

The majority of differentially expressed repetitive elements were upregulated: 10204 

were upregulated in ESEN and 7418 were upregulated in LSEN, while 4766 were downregulated 

in ESEN and 6206 were downregulated in LSEN. Nearly half of the up- and downregulated TEs 

were shared between senescent conditions (Fig. 4A). At the superfamily level, RTEs (LINEs, 

SINEs, LTRs) and DNA transposons were upregulated, while retroposons and satellites were 

downregulated (Fig. 4B). An examination at the RTE family level found that L1 elements were 

particularly highly expressed during early and late senescence (Fig. 4C). This observation was 

further borne out upon examining expression at the RTE subfamily level, where evolutionarily 

recent L1 subfamilies saw the largest expression fold changes in early and late senescence (Fig. 

4D). Gene set enrichment analysis of these RTE subfamilies (Fig 4F), in which subfamilies were 

treated as gene sets, was concordant with the log2 fold change aggregated count analysis (Fig. 

4D). Both showed that evolutionarily recent L1 and HERV-int subfamilies were enriched in 

ESEN and LSEN, while SVA sets were depleted (Fig. 4D, F). 

Focusing on L1, we observed that many loci spanning all L1 clades were differentially 

expressed, with the majority being upregulated (Fig. 4E). Most counts were derived from 

ancient, truncated elements, particularly in the L1M group. This is in keeping with the fact that 

the majority of L1 elements belong to this group, and reflects the overall loss of heterochromatin 

in senescence. Of particular interest, however, are the full-length and intact L1HS elements, 
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which retain biological activities, including cDNA generation and retrotransposition (Fig. 4G). 

These elements had significantly elevated transcript counts in both ESEN and LSEN (Fig. 4G). 

Changes in full-length L1HS element expression were not correlated with expression changes in 

adjacent cellular genes (Fig. 4J), suggesting that they are transcribed from their own promoters. 

Analysis of full-length L1HS elements at the locus level revealed two significantly upregulated 

elements, both of which were intergenic, and one of which (14q23.2_3) was intact (Fig. 4I). 

Read alignments to full-length L1HS elements spanned the entire element and did not 

exhibit a 3’ bias, which would indicate the misattribution of truncated element reads to full-

length elements (Fig. 4H4H). Seeing as many TEs reside in introns, differences in intronic read 

fraction, be this due to differences in intron retention or sequencing library preparation, could 

lead to spurious conclusions about TE regulation (Faulkner, 2023). We did not observe 

significant changes in the amount of intronic signal between conditions (Fig. 4K), in fact, 

intronic signal was decreased in senescent cells. There was, however, a small and significant 

increase in intergenic signal in both senescent conditions (Fig. 4K). Finally, ESEN showed a 

small increase in the overall share of the transcriptome derived from repetitive elements (Fig 

4L). Taken together, these data document an upregulation of TEs, including young, potentially 

active RTEs, in ESEN and LSEN conditions. 

 

4. Discussion 

Here we present a pipeline for the analysis of TE RNA-Seq data. Our aim was to render 

an investigation into these elements more tractable to the non-expert. We address known pitfalls 

in the transcriptomic analysis of these elements by generating an enhanced set of TE annotations, 

employing up-to-date TE-minded computational methods, and discriminating between signals 
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which originate from autonomous transcripts versus elements transcribed from neighboring 

genes. To this end, our pipeline makes the following distinctions between elements: genic versus 

non-genic, evolutionarily young versus old, truncated versus full-length, and intact versus open 

reading frame (ORF) disrupted. The pipeline can be employed with uniquely mapping reads 

only, or it can utilize expectation maximization assignments, and given sufficient coverage 

individual TE loci can be queried for expression. Furthermore, if provided with Nanopore DNA 

sequences, we provide the option to build a custom reference genome which includes all 

polymorphic, evolutionarily young elements not included in reference genomes. Taken together, 

these measures can provide a more accurate assessment of TE expression than is currently 

possible with standard tools, and should improve our ability to assess whether TEs are 

contributing meaningfully to a biological problem of interest. As a demonstration, we applied 

this pipeline to a new dataset from primary human fibroblasts and showed that full-length and 

intact young L1 elements were significantly upregulated in replicative senescence. This is 

consistent with previous data from our and other groups. Of particular interest was the finding 

that numerous non-reference L1 elements, which were previously not visible to us, contribute to 

this upregulation.  

 

4.1 Experimental considerations 

Several experimental considerations can help to produce a high quality input dataset for this 

pipeline. 1) Sequencing read mappability is a function of read-length: a 50bp single-end library 

will have a much greater number of multi-mapping reads as compared to a 150bp paired-end 

library (Teissandier et al., 2019). Insofar as TE expression analysis is an important goal, we 

recommend opting for the longest reads possible. 2) Young L1 subfamilies contain a G-rich 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 15, 2024. ; https://doi.org/10.1101/2024.10.11.617912doi: bioRxiv preprint 

https://doi.org/10.1101/2024.10.11.617912
http://creativecommons.org/licenses/by-nc/4.0/


18 

stretch of nucleotides in their 3' UTR which is thought to form a G-quadruplex secondary 

structure (Sahakyan et al., 2017). Polymerases used during sequencing library preparation can 

struggle with this leading to artificially depressed counts. Utilizing reverse transcriptase enzymes 

with high-processivity tolerant of RNA secondary structures, such as those encoded by group II 

introns, is therefore preferable. Alternatively, PCR-free approaches such as long-read Nanopore 

direct RNA sequencing may provide a more accurate assessment of young L1 transcript 

abundance. 

4.2 Software requirements 

This pipeline uses the Snakemake (Mölder et al., 2021) workflow manager, and consists of 

several parts. A main snakefile orchestrates the workflow logic and deploys module level 

snakefiles which in turn contain the rules that specify each step of the analysis. Conda must be 

available so as to create a Snakemake containing environment. All software dependencies 

besides Snakemake and Docker/Singularity are packaged into a container which is automatically 

built and deployed by the pipeline at runtime. Users can alternatively choose to manually build 

the several conda environments required by the pipeline using the provided yaml environment 

specifications (this will however be slower and less reproducible). This pipeline was developed 

on a compute cluster running a RedHat Linux OS and which uses the SLURM workload 

manager. Nevertheless the use of Docker containers should enable users on other operating 

systems to run the pipeline without issue. 

4.3 Hardware requirements 
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This pipeline allows for parallel execution of jobs which can occur simultaneously. 

Consequently, it is highly recommended to execute this pipeline on a compute cluster to take 

advantage of the parallelization offered by Snakemake. Snakemake is designed to work with 

many commonly-used cluster workload managers such as SLURM. We provide a default 

Snakemake profile which is compatible with SLURM, and can be straightforwardly modified for 

use with other workload managers. Many steps require a substantial amount of RAM (>20 GB) 

to be available on the system. The Docker container is built to work with both X86 and ARM 

based CPU architectures. 
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Fig. 1. TE-Seq pipeline overview. 
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Fig. 2. | Nanopore DNA-Seq characterization of non-reference RTE insertions in a human 

genome. TE insertions in LF1 cells were called relative to the T2T-HS1 human reference genome 

using TLDR. (A) Insertion counts for Alu, L1 and SVA subfamilies (no NonRef ERVs were 

found). FL, full length; Intact, intact ORFs (for L1 only); Trnc, truncated. Insertions denoted as 

‘known’ have been previously identified in human populations. (B) Positional relationships to 

cellular genes (for all NonRef RTEs in panel (A). 5’ and 3’ UTRs are included in the exonic 

category. Tx, transcript. (C) Reference versus non-reference full length L1HS and L1PA2 

elements. (D) Phylogeny of intact L1HS elements. Tips are colored according to reference status. 

(E) Source elements were inferred for all non-reference L1HS insertions on the basis of

phylogenetic relationships, and the number of offspring were tabulated for each source element. 

(F) Genomic occupancy for major clades of repetitive sequences. DNA, DNA transposons; SAT,

satellite sequences. 
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Figure 3 | RNA-Seq analysis of cellular genes. Human LF1 cells were passaged until 

replicative senescence and harvested 4 (ESEN) or 16 (LSEN) weeks later. Early passage 

proliferating (PRO) LF1 cells were used as the control. (A) PCA bi-plot of cellular genes. (B) 

Upset plot of differentially expressed genes. (C) Gene set enrichment analysis (GSEA) of 

MsigDb Hallmark gene set collection for ESEN vs PRO and LSEN vs PRO. (D) Bar plots 

showing differentially expressed markers of senescence. (E) GSEA plots of the SenMayo gene 

set for ESEN vs PRO and LSEN vs PRO. (F) Heatmap showing expression Z-scores for all 

SenMayo gene set members. Genes referred to in the main text are bolded in red. Unless 

otherwise stated, statistical significance was assessed by means of a two-sided t-test, with panel-

level FDR corrected p-values >= 0.05 *, >=0.01 **, and >=0.001 ***. 
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Figure 4 | RNA-Seq analysis of TEs. (A) Upset plot of differentially expressed repetitive 

elements, colored by evolutionary age, element length, and element intactness. (B,C) Log2 fold 

changes in DESeq2 normalized expression for repetitive element clades: (B) barplot of repeat 

superfamilies (C) heatmap of retrotransposable element families. (D) Heatmap of log2 fold 

changes in DESeq2 normalized expression for selected RTE subfamilies. (E) Heatmap of 

DESeq2 normalized expression of differentially expressed (padj <= 0.05) L1 elements. Elements 

are grouped by clade and hierarchically clustered by expression. Clade labels are followed by a 

fraction denoting the number of differentially expressed elements over the total number in the 

clade. (F) Gene set enrichment analysis of selected RTE subfamilies for both the ESEN vs PRO 

and LSEN vs PRO comparisons. Each RTE subfamily is  treated as a gene set. (G) Bar plots of 

total DESeq2 normalized read counts derived from various categories of L1HS elements. (H) 

Composite expression profile of all full-length L1HS elements. (I) Scatter plot showing log2 

DESeq2 normalized counts of every full length L1HS element, colored by genomic context. 

Significantly differentially expressed elements are represented by solid circles. CodingTxAdj, 

coding transcript adjacent (<5 kb); Non-codingTx, embedded in a non-coding transcript; Non-

codingTxAdj, non-coding transcript adjacent (<5 kb). (J) Heatmap of Spearman correlation 

coefficients (Rho) for the log2 fold change in expression of RTEs and neighboring genes. The 

log2 fold change for each RTE was matched to that of the nearest gene. RTEs are grouped as full 

length or truncated, and then by their genomic context relative to the nearest cellular gene. 

Significant (p>=0.05) associations are denoted by a *. (K) Bar plot of total DESeq2 normalized 

read counts derived from exonic, intronic, and intergenic compartments, scaled by the total 

number of counts in each sample. (L) Bar plot showing the distribution of transcripts per million 

(TPM) per sample by genomic element class. LowComp, low complexity repeat; SimpleRep, 
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simple repeat; SAT, satellite sequence; DNA, DNA transposon. Unless otherwise stated, 

statistical significance was assessed by means of a t-test, with panel-level FDR corrected p-

values >= 0.05 *, >=0.01 **, and >=0.001 ***. 
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