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Gaining insights into human viral diseases through mathematics
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Abstract. Mathematical models have been recognized
as powerful tools for providing new insights into the
understanding of viral dynamics of human diseases at
both the population and cellular levels. This article
briefly reviews the role of mathematical models
and their historical precedents for creating new

knowledge of the mechanisms of disease pathogene-
sis, transmission, and control of some human viral
infections. Future research in the modelling of
infectious diseases will need to rely upon incorpora-
tion of the fundamental principles that govern viral
dynamics in vivo as well as in the population.
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Introduction

Mathematical models of human diseases have a long
history, dating back over two centuries to a justifi-
cation for inoculation against smallpox by Daniel
Bernoulli in 1760 [1]. Although his work predated by
a century the identification of the agent responsible
for the transmission of smallpox, he formulated and
solved a differential equation describing the dynamics
of the infection. The development of epidemiological
models was stalled by a lack of understanding of the
mechanism of infectious spread until the beginning of
the last century [2]. Public health physicians including
Sir Ross [3], Hamer [4], McKendrick and Kermack
[5–7] laid the foundations of modern mathematical
modelling of epidemiology between 1900 and 1935.
McKendrick developed the first stochastic theory in
1926 [5], and in the 1930s Kermack and McKendrick
[6, 7] established an extremely important principle,
stating that the level of susceptibility must exceed a
certain threshold in order for an epidemic to occur in
a population. This principle was deduced from a
simple model describing the dynamical behaviour of
susceptible (S), infected (I), and recovered (R) indi-
viduals in a homogeneously mixed population, the
so-called classical SIR epidemic model.

Over time, these models have been recognized as
essential tools for addressing major public health
concerns about the transmission and control of human
diseases. Complexity has gradually been added to the
newer generation of epidemic models by incorporating
essential biological factors, including modes of trans-
mission, age and social behaviour, incubation period,
duration of infectiousness, socioeconomic demo-
graphics, and treatment and preventive strategies
[8–12]. With advances in mathematical methods,

particularly applied dynamical systems, the last two
decades have also witnessed the emergence of new
models that lead to a rich variety of dynamics, often
not biologically justified or consistent with the char-
acteristics of a real epidemic [13, 14]. This may be due
to the lack of connection between the mechanisms of
pathogenesis (at the individual level) and transmission
(at the population level), which is central to the
development of effective control strategies [15–17]. The
bridging of these two different scales of disease
pathogenesis and epidemiology is essential to the
construction of a general framework that could eluci-
date fundamental principles for disease control, and
will allow for the creation of new perspectives in
immunoepidemiology [16].

The current spectacular interest in mathematical
modelling of pathogenesis has gradually built up over
the last twenty years, beginningwith the advent ofHIV
in the 1980s [18]. The real explosion of interest in viral
dynamics was triggered by the pioneering models of
Perelson, Nowak,McLean, Kirschner, andWodarz in
the 1990s and later, which have proven to be powerful
tools for understanding the biological processes cen-
tral toHIV infection [18–29]. Thesemodels, in general,
need a more comprehensive incorporation of immu-
nological details of the interaction between viral
pathogens and the immune system, which are still
being analyzed model by model. Despite the rapid
evolution of such models, the field of theoretical
immunology lacks a unified framework [30].

Models of epidemics and control strategies

One of the major contributions of mathematical
models of infectious diseases has been the evaluation

European Journal of Epidemiology (2006) 21:337–342 � Springer 2006
DOI 10.1007/s10654-006-9007-z



of public health measures to control the spread of
human diseases [31]. In general, there are two classes
of disease control methods. The first class includes
traditional methods, such as reducing the number of
contacts, therapeutic treatments (drugs), and quar-
antine/isolation; the second consists of modern
methods including prevention, immunization (vacci-
nation), and ecological interventions which have been
the subject of much research in recent years [32]. In
modern times, immunization has had perhaps the
largest impact in reducing both the mortality and the
morbidity of many infectious diseases, such as influ-
enza and childhood infections [33–41].

Although mathematical models may not provide
detailed descriptions of how to control diseases, they
are elegant tools for assessing the potential impact of
different strategies offered in public health intervention
programs. The most important parameter in these
models is a critical threshold, the basic reproductive
number R0 [8], defined as the number of new infections
generated by a single infected individual introduced
into a wholly susceptible population during the course
of infection. Models provide a systematic way of
formulatingR0 and characterizing important factors in
disease transmission and control by examining their
effect on R0 [42]. The simplest epidemiological model
[8] yields the expression R0=bS0/a, where b is the
transmission rate of infection in an entirely susceptible
population of size S0, and a is the recovery rate of
infected individuals. Naturally, the principal aim of
public health measures would be to reduce R0 below
unity in order to make disease control feasible. This
provides the criterion for improving control strategies,
such as immunization that reduces S0 (susceptibility of
the population), or quarantine/isolation that lowers b
(the incidence of infection).

The failure to achieve eradication of many infec-
tions, despite systematic intervention programs,
remains a major public health concern. For example,
measles is a serious disease of childhood and still
contributes to over amillion deaths annually,mostly in
developing countries [38, 43]. This is notwithstanding
immunization strategies, which have demonstrated
substantial historical success in dramatically decreas-
ing the number of new infections associated with the
disease [43]. Measles is probably the most studied
disease of childhood from the modelling dynamics
standpoint. This is in part due to the high quality of
available data, particularly from Great Britain.
Grenfell and colleagues [33, 44–50] have conducted
major studies on the transmission dynamics of child-
hood infections, with particular emphasis on measles
and whooping cough, by developing simple models
that could explain the complex dynamical transitions
occurring during epidemics.One of themost important
implications of theirwork is the possibility of designing
vaccination programs that induce greater spatial syn-
chrony, which would increase the probability of global
eradication [33].

A simple, but profound, question is how mathe-
matical models might help us understand the under-
lying principles of immunization, and develop effective
vaccination strategies. Depending on the type of dis-
ease, these models include the necessary variables and
parameters to describe the movement between differ-
ent classes of individuals (variables) during disease
progression and its control. Theyoften take the formof
difference or differential equations whose analysis
leads to the determination of short- and long-term
disease dynamics, whenever a vaccination program is
put in place. The integration of important biological
parameters that appear in the expression of the basic
reproductive number (R0) can substantially influence
the outcome of the model analysis. A particular
example is the recent modelling study of measles vac-
cination that questions the effectiveness of booster
programs for controlling the disease [51]. Considering
major parameters associated with a booster vaccina-
tion policy (such as primary vaccine coverage; vaccine
efficacy; waning rate; and the rate of booster admin-
istration), an important epidemiological consequence
is inferred that a booster programmay fail if it ismostly
targeted to primary vaccinated individuals, or if it
functions, in effect, as a primary vaccine. The model
predicts that the coverage of primary vaccine and the
optimal timing of booster doses crucially impact the
outcome of booster campaigns, and in fact impose
stringent requirements for any practical public health
policy.

Not only strategizing vaccination programs, but
also recognizing the low efficacy of vaccines at the
individual level and in the population as a whole has
provided great opportunities for modelers to explore
the causes of epidemic outbreaks of several infectious
diseases [40, 52]. Influenza is a well-known candidate
for such outbreaks, for which seasonal immunization
has been a key strategy to reduce the risk of infection
and prevent large epidemics with excessive mortality
[53]. Annual influenza vaccination is needed due to
continual mutations in the viral genome, in particu-
lar, the hemagglutinin (HA) and neuraminidase (NA)
genes [54]. Vaccine-induced protection is, however,
dependent on the immune status of the individual,
ranging from 70–90% among immunocompetent to
only 30–50% in elderly and immunocompromised
subjects [54–56].

There has recently been a surge of interest in
modelling of influenza infection with the aim of pro-
viding insights into the epidemiological aspects of the
disease [57–62]. A recent study on transmissibility of
influenza estimates that R0 for the 1918 influenza
pandemic was less than four [61]. The results of this
study, based on fitting an SEIR (susceptible–exposed–
infectious–recovered) model to pneumonia and
influenza death epidemic curves from 45 cities in the
United States, suggest that a similar novel influenza
subtype could be controlled. Since influenza can be
transmitted before symptoms appear, strategies for
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transmission reduction (including vaccination) would
need to be implemented more rapidly than other
measures such as isolation. This may also support the
idea that a pandemic influenza with a viral strain that
has been circulating during the preceding few decades
seems unlikely to occur due to some degree of pro-
tection of the population provided by annual vacci-
nations or previous exposure to the infection.

The possibility of preventing pandemic influenza
raises the question of whether a strategic use of avail-
able vaccines could ever stop annual epidemicswithin a
certain population. Despite annual vaccination
policies, influenza still inflicts substantial morbidity,
mortality and socio-economic costs, which call for re-
vised vaccination programs [37, 53]. An effective vac-
cination strategy should consider the effect of vaccine
failure among the geriatric and immunocompromised
subpopulations [63]. Therefore, the development of
mathematical models that allow for the interactions
between different subpopulations, such as immuno-
competent and those who remain susceptible despite
vaccination, is highly desirable.

In the absence of proven vaccines, the emergence of
novel infectious diseases is a great scourge to human
populations. This becomes even more critical with
destitution of preexisting immunity, or a lack of re-
quired technology and knowledge of a diagnostic test
or therapy. Such a critical situation was recognized in
2003 with the appearance of the global epidemic of
severe acute respiratory syndrome (SARS) as the first
major infectious disease threat of the 21st century [64].
Soon after the SARS outbreaks, different groups of
researchers were assembled to investigate the most
beneficial strategies for controlling such a highly
contagious disease [65–68]. One of the most significant
studies concerning modelling strategies for controlling
SARS outbreaks showed that a timely implementa-
tion of an optimal isolation program under stringent
hygienic precautions is critically important to halt
SARS epidemics with or without quarantine [68].
However, the model’s ability to predict disease control
depends greatly on the assumptions made in the
modelling process, as well as the transmissibility and
incubation period of the disease. The possibility of
recurrence of SARS with a more infectious virus
warrants further study on feasible control strategies,
perhaps through a modelling approach that integrates
more elaborate mechanisms of disease pathogenesis
and epidemiology.

With daily growth in epidemics of some infectious
diseases, the role of mathematical models in creating
new knowledge for controlling them appears ever
more crucial. Whether such diseases can be controlled
by means of available public health tools remains a
fundamental question, especially in the context of
HIV infection. Since its discovery in 1983, HIV has
been responsible for over 20 million deaths, and its
epidemic is spreading at approximately 6000 new
infections daily [69]. The true mechanism by which

HIV defeats the immune system is still unknown, and
this is perhaps a reason for many fruitless research
efforts in vaccine development or treatment. HIV,
although not old, is the first disease for which
mathematical models of both pathogenesis and epi-
demiology were developed at an early stage of its
discovery [18]. The success of these models in
exploring the dynamical course of HIV infection
in vivo has been proven by many studies, most
notably those of Perelson and Ho, Nowak, McLean,
Kirschner, and Wodarz [18–29]. On the other hand,
models of HIV epidemiology [70, 71] have had rela-
tively less impact in advancing the knowledge of HIV
infection and its control.

Ambitious efforts have been made with the hope
that HIV could one day be completely eradicated. The
evolution of antiretroviral therapy has been promising
in retarding the progression of HIV and extending the
length, though not the quality, of life [70–73]. This,
however, has somewhat diverted attention away from
preventive measures in industrialized countries, which
has led to the further spread of infection [72, 73]. With
no cure in sight, and the failure of conventional vac-
cines, prevention remains the most effective strategy
against HIV/AIDS epidemics. This conclusion was
evinced by a modelling study on condom use in HIV
prevention [74], based on the critical evaluation of
clinical investigations in a recent NIH report [75],
which relies upon the meta-analysis of Davis and
Weller [76]. The results suggest that the HIV/AIDS
epidemic could be stopped if the preventability, the
product of condom efficacy and condom compliance,
exceeds a certain threshold. This will require the
development and application of techniques that are
effective in setting and monitoring quantitative mea-
sures for compliance and efficacy.

With such strong evidence appearing in the litera-
ture, the role of mathematical models for gaining new
insights into human diseases cannot be denied.
Whether the maximum potential for their contribu-
tion has been reached is a well-posed question that
future models will allow us to address.

Future models of viral diseases

Integration of epidemic models with further immu-
nological details of infectious mechanisms may be a
key approach for future research in modelling of hu-
man viral diseases. In order to design effective control
strategies, the micro-dynamics of viral pathogens in
vivo must be linked to the macro-dynamics of disease
spread in the population. This may increase the
complexity of the models, and preclude a detailed
mathematical analysis using standard techniques.
Computational aspects of these models will therefore
play a major role in understanding their dynamics and
creating new knowledge.
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To rationalize the criteria for effective control of
viral diseases, it is important to engage the underlying
mechanisms of pathogenesis, in addition to the epide-
miological components, in developing mathematical
models. These could then be integrated with aspects of
the evolutionary biology of viral pathogens, which is
essential for linking the interactions of within-host
dynamics with population-level phenomena, such as
diseases transmission and control [77–79]. Empirical
data are then indispensable to quantitatively draw out
the interplay between pathogen dynamics and genetic
diversity at both individual and population levels [15].

There is a greater need than ever for uniting the wide
range of expertise in mathematics, computer science,
statistics, virology, immunology, epidemiology and
evolutionary biology. This is extremely important for
modelling studies whose aim is to approach global
strategies for defense against infectious diseases, par-
ticularly concerning an imminent influenza pandemic
or the emergence of new viral infections. These strat-
egies may not be effective or even feasible, given the
available resources of public health, unless they are
founded upon basic principles that govern viral
dynamics in vivo as well as in the population. Many of
these principles are within our grasp, but are not yet
exploited in existing models, and must guide future
research in the modelling of infectious diseases.
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