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ABSTRACT
Diabetes mellitus is a type of metabolic disorder whereby patients are unable to regulate
glycemia. It is currently a worldwide public health issue, and is a burden to society
because of its disabling and common complications. Diabetes is multifactorial, and also
induces the onset of other diseases. In the present report, we review the labyrinth encom-
passing the gut microbiota and gut microbiota-derived metabolites in type 1 diabetes
and type 2 diabetes pathogenesis. There have been exceptional improvements in deoxyri-
bonucleic acid sequencing and mass spectrometry technologies throughout these past
years, and these have allowed the comprehensive collection of information on our unique
gut ecosystem. We would like to advocate incorporating metagenome and metabolome
information for a comprehensive perspective of the complex interrelationships between
the gut environment, host metabolism and diabetes pathogenesis. We hope that with this
improved understanding we would be able to provide exciting novel therapeutic
approaches to engineer an ideal gut ecosystem for optimal health.

DIABETES
Diabetes mellitus, also generally referred to as diabetes, is a type
of metabolic disorder whereby patients are unable to regulate
glucose metabolism. Type 1 and type 2 diabetes are the most
common, representing approximately 10% and 90% of cases,
respectively1. The pathogenesis of type 1 diabetes, which is
commonly prevalent in children and adolescents, is due to the
inability of the endocrine system to produce insulin because of
the immune-mediated destruction of b-islet cells2. Therefore,
management of type 1 diabetes always involves the external
administration of insulin. Although the causative mechanisms
of type 1 diabetes are currently unknown, its probable causes
are currently attributed to: genetic predisposition (with more
than 40 genetic loci known to affect susceptibility), and several
environmental factors including stress and viruses3. In contrast,
the more common form of diabetes, type 2 diabetes, most often
presents in adults. It usually presents as a combination of insu-
lin resistance and insulin deficiency4, as compared with an
absolute deficiency of insulin in type 1 diabetes. Although the
exact causes of type 2 diabetes have yet to be completely eluci-
dated, various previous reports have associated type 2 diabetes
with excessive visceral obesity5, inactive lifestyle, lack of exercise
and poor dietary habits6, along with genetic factors. As

compared with type 1 diabetes, type 2 diabetes has a larger
selection of treatment options including peritoneal insulin
administrations and non-insulin pharmaceuticals, as well as
conscious modifications to lifestyle and dietary habits1.
Diabetes is becoming a worldwide public health issue, pre-

vailing at approximately 10% globally among adults7. It has
been predicted by the International Diabetes Federation that by
2035, there will be 592 million cases with an additional
175 million undiagnosed diabetes cases8. A great deal of the
strain from having diabetes stems from the complications that
are commonly presented together with the disease that result in
discomfort, and in serious cases, disability9. For example, young
adults with type 1 diabetes are 10-fold more prone to the onset
of cardiovascular diseases as compared with their healthy coun-
terparts10, and the most prevalent cause of fatality among
type 2 diabetes patients is cardiovascular-related11.
In the present review, we describe the relationships between

the gut microbial environment in type 1 diabetes and type 2
diabetes patients, and hope that with increased understanding
of these relationships, novel therapeutic interventions can be
developed.

Gut Microbiota
The resident microorganisms in the gastrointestinal tract are
collectively referred to as the gut microbiota. In mammalians,Received 16 October 2016; revised 23 February 2017; accepted 5 April 2017
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the gut microbiota mainly comprises of four main phyla: Acti-
nobacteria, Bacteroidetes, Firmicutes and Proteobacteria. These
phyla are vital in the host metabolism and physiology regula-
tion12. The number of both prokaryotic cells and host eukary-
otic cells in the gut totals to approximately 100 trillion, which
is threefold that of the total number of human body cells13. As
such, we often consider our unique gut environment as a func-
tional and measurable organ14. The composition of gut micro-
bial communities vary along the gastrointestinal tract, and
remodels within and between individuals as the dietary lifestyle
and nutritional status of the individual varies15. It is only in
these recent years that technological advances have allowed us
to further comprehensively understand the holistic impact of
the gut microbiota on the whole host metabolic system.

WHAT IS METABOLOMICS?
Technological breakthroughs, such as genomics, transcrip-
tomics, proteomics, metabolomics and metagenomics, have
allowed scientists to extensively evaluate the genome, transcrip-
tome, proteome, metabolome and gut microbiome, respectively,
with high-throughput techniques and analytical tools16 concur-
rently. In recent years, we have been able to collect vast
amounts of data pertaining to the gut microbiome and its
metabolome to comprehensively assess the extent of the influ-
ence of the gut microbiota on human health, which can be
attributed to the dramatic improvements in deoxyribonucleic
acid sequencing and mass spectrometry technologies17. Nuclear
magnetic resonance and mass spectrometry are commonly used
to profile the feces, blood and urine metabolites produced by
microbiota and host cells, thereby determining disease biomark-
ers in the process in wide-range metabolomic analytical meth-
ods18. The information gathered from the comprehensive
assessment of the organ and systemic metabolism is important
in maintaining the health and nutritional status of the host19.
By evaluating the concentrations and presence of metabolites
comprehensively, clinicians are able to better understand how
clinical regimes impact the host metabolic profile19.

METABOLOMICS PROFILING AND THE GUT
MICROBIOTA
Nowadays, one of the common techniques undertaken to ana-
lyze the metabolome profile is to directly compare it with gut
microbiota metabolism and to correlate these changes to the
final metabolic outcomes in the host. As we have reported pre-
viously, the synergistic activities of the gut microbiome and the
host is a reflection of overall human metabolism at the systemic
level20,21. To state a few examples, in a study investigating the
effects of probiotics or prebiotics, or their combination in gno-
tobiotic mice colonized with human infant microbes22, the gut
microbiota community was significantly altered by probiotic/
prebiotic intervention, and this thereby induced various sys-
temic changes in the metabolic profiles of different tissues. It
was observed that there were elevated concentrations of Bifi-
dobacterium breve, Bifidobacterium longum and Bacteroides

distasonis; and a decline in ratios of Escherichia coli and
Clostridium perfringens. Fat metabolism was also improved as
concentrations of glucose and hepatic triglycerides in the
plasma in groups that were administered prebiotics were also
lowered22. Wikoff et al.23 assessed the effects of gut microbiota
on the host between germ-free and conventionally raised mice.
There were many plasma metabolites that were detected only
in conventionally raised mice, and not in germ-free mice. In
addition, in the case of commonly observed metabolites
between the mice raised under conventional or germ-free envi-
ronments, one-tenth of them differed by more than 50%23.

GUT ECOSYSTEM AND DIABETES
Apart from digestion, the gut microbiota is important in up-
keeping the optimal state of host health, but it is also impli-
cated in the pathogenesis of numerous metabolic diseases, such
as obesity24–26, diabetes26–29, chronic kidney disease30,31 and
atherosclerosis32–34; and intestinal diseases21, such as inflamma-
tory bowel diseases35 and colorectal cancer36–38.
For the past 50 years, the increased use of vaccinations and

antibiotics, such as penicillin, and increasingly improved hygiene
standards have significantly lowered the prevalence of several
infectious diseases. There are some strains of bacteria that are
resistant to antibiotics and therefore, antibiotics consumption will
skew gut microbiota composition39. The lack of diversity in the
gut microbiome is implicated in an underdeveloped immune sys-
tem, resulting in the host being susceptible to a range of dis-
eases40. During this period, there were also drastic changes to the
human diet, with an increased intake of carbohydrates and fats
as a result of the common consumption of highly processed
foods. Dietary fiber intake was also significantly lowered41. This
is an example of a typical “Western diet,” where individuals con-
sume approximately only half of the recommended intake of
30 g of fiber daily42. As fibers cannot be digested by the human
digestive fluid, they are fermented by the gut microbiota, thereby
generating short-chain fatty acids (SCFAs) as metabolites43.
SCFAs exert systemic anti-inflammatory effects by producing
immunoglobulin A and immunosuppressive cytokines43. Loss of
early-life exposure due to the increased use of antibiotics and a
decrease in fiber intake results in dysbiosis44,45, which is impli-
cated in the increased incidences observed in inflammatory dis-
eases, including diabetes46. SCFAs play vital roles in type 2
diabetes. There have been several studies reporting that the num-
ber bacteria involved in SCFA production were significantly
lower in people with type 2 diabetes. SCFAs cohere to G-protein
coupled receptors, resulting in the following biological effects.
SCFAs promote secretion of glucagon-like peptide-1, an impor-
tant incretin hormone, which is made by enteroendocrine L cells.
Glucagon-like peptide-1 impedes secretion of glucagon, hampers
gluconeogenesis in the liver, improves insulin sensitivity and aug-
ments central satiety, thereafter resulting in bodyweight loss47.
Furthermore, SCFAs can directly hinder the low-grade inflam-
matory response caused by bacteria migration from the intestines
into the mesenteric adipose tissue and the blood (Fig. 1)48.
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Just as the gastrointestinal tract supplies nutrients to cells
and tissues, the metabolites originating from the gut microbiota
provide this supply through the circulatory system. These
numerous interactions amongst gut microbiota-derived metabo-
lites, the gut microbiota and the host immune system is
communicated through various signalling pathways. The host–
microbe metabolic axes refers to the direct chemical communi-
cations between gut microbes, the host and immune pathways.
These biological signals impact us system-wide, and directly
influence organs. Within these axes, metabolic reactions are
controlled by gut microbes producing choline, phenols, bile
acids, and SCFAs by both the gut microbiome and host gen-
ome, which are vital to health20. These intricate interactions
between the gut microbiome and its host play a hugely impor-
tant role in maintaining good health, and might implicate the
onset of diseases, such as diabetes. We will review these rela-
tionships in detail.

GUT MICROBIOTA AND TYPE 2 DIABETES
Obesity has been attributed to increasing the risk of multifacto-
rial diseases, such as type 2 diabetes. Recently, it was reported
that type 2 diabetes in humans was co-related to a lowered
abundance of butyrate-producing microbes and an increased
abundance of Lactobacillus sp28,29,49. Larsen et al.49 noted that
in human male type 2 diabetes patients, as compared with

non-diabetic healthy subjects, there were significantly fewer Fir-
micutes, including Clostridia. There were positive correlations
between plasma glucose levels and the ratios of Bacteroidetes to
Firmicutes, and of the Bacteroides–Prevotella group to the
Clostridium coccoides–Eubacterium rectale group. Furthermore,
Betaproteobacteria was more abundant in type 2 diabetes
patients than the controls. These observations hint that the
Gram-negative Bacteroidetes and Proteobacteria might induce
the pathogenesis of type 2 diabetes through an endotoxin-
induced inflammatory response as the endotoxin, lipopolysac-
charide, exists in high concentrations as a main outer cell
membrane component49. Additionally, the gut microbiome
might be a new biomarker for type 2 diabetes prediction, as
gut metagenome-based computational models could predict the
type 2 diabetes-associated phenotype in glucose-intolerant
patients29. Vancomycin treatment in patients with metabolic
syndrome reduced the abundance of Gram-positive bacteria
that produce butyrate, and this was correlated with impaired
insulin sensitivity. These results imply that lowered levels of
butyrate-producing gut microbes in type 2 diabetes patients
might lead to disease pathogenesis50. In another report, Vrieze
et al.51 transplanted fecal microbes from lean donors to insulin-
resistant patients with metabolic syndrome. The results of that
study showed that feces from lean subjects, improved insulin
sensitivity and the abundances of butyrate-producing bacteria

Western 
diet

Antibiotics

Microbial 
exposure

Dysbiosis:

Short-chain fatty acid production

GLP-1 secretion

Low-grade inflammation

Diabetes mellitus pathogenesis

Figure 1 | Factors contributing to the pathogenesis of diabetes mellitus. Western diets, antibiotic consumption and microbial exposure have been
reported to play a role in gut dysbiosis. This leads to a decrease in short-chain fatty acid production, lowered secretion of glucagon-like peptide 1
(GLP-1) and increased low-grade inflammation.
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were also increased51. Metagenome-wide-association-study eval-
uation of the gut microbial metagenome data of 345 type 2
diabetes patients and non-type 2 diabetes Chinese individuals
by Qin et al.28 showed that genes enriched in the type 2 dia-
betes group mainly comprised of opportunistic pathogens, such
as Bacteroides caccae, Clostridium hathewayi, Clostridium ramo-
sum, Clostridium symbiosum, Eggerthella lenta and E. coli,
which have been documented to result in human infections. In
contrast, almost all of the genes enriched in the non-diabetes
control group were from various butyrate-producing bacteria,
including Clostridiales sp. SS3/4, E. rectale, Faecalibacterium
prausnitzii, Roseburia intestinalis and Roseburia inulinivorans.
Mucin-degrading microbial species, A. muciniphila, and sulfate-
reducing species, Desulfovibrio sp., were also enriched in the
type 2 diabetes group. Taking these results into account, type 2
diabetes patients only presented with elevation in abundances
of several opportunistic pathogens and a reduction in numbers
of beneficial butyrate-producing bacteria28. However, contrast-
ing findings were reported in a European cohort29. In the Euro-
pean study, obese individuals with less severe metabolic
syndrome had upregulated abundances of A. muciniphila, and
this was associated with increased microbial diversity as com-
pared with individuals who were metabolically compromised.
These results show that associations between A. muciniphila
and type 2 diabetes might be population-specific29. Forslund
et al.52 carried out a clinical study using 784 available human
gut metagenomes to evaluate the effects of a popular antidia-
betic drug, metformin. It was reported that the ameliorative
effects of the drug could be attributed to the production of
SCFAs, and the drug also induced microbiome shifts, as a rela-
tive increase in abundance of Escherichia species and depletion
of butyrate-producing taxa were observed52. Diet-induced obese
mice supplemented with A. muciniphila also presented with
improved glycemic statuses (higher glucose tolerance and
reduced inflammation)53, and this change was due to lowered
circulating lipopolysaccharide levels and intensified lipid oxida-
tion54.

RELATIONSHIPS BETWEEN BILE ACID METABOLISM,
THE GUT MICROBIOTA AND TYPE 2 DIABETES
In the human liver, cholic acid and chenodeoxycholic acid are
primary bile acids created from cholesterol. Gut microbiota
transforms primary bile acids into secondary bile acids55.
Deoxycholic acid, the most common and abundant secondary
bile acid in humans, is converted from cholic acid by some spe-
cies of Clostridium in the large intestine56. Bile acids are
involved in glucose metabolism as signaling molecules and cel-
lular receptor ligands. They activate both nuclear farnesoid X
receptor (FXR) and the membrane-bound, G-protein-coupled
receptor 157. Through FXR, bile acids can suppress the in vitro
expression of fructose-1, 6-biphosphatase-1, gluconeogenic
phosphoenolpyruvate carboxykinase and glucose-6-phospha-
tase58. When the FXR gene was knocked down in ob/ob mice,
diet-induced weight gain, hyperglycemia and glucose tolerance

were observed. There was also higher glucose clearance and
improved insulin sensitivity in adipose tissues59. FXR also plays
a role in weight loss maintenance and improvement in glucose
tolerance after vertical sleeve gastrectomy by increasing the sys-
temic concentrations of bile acids and shifts in gut microbiota
composition60. Activation of G-protein-coupled receptor 1 in
enteroendocrine L cells induces the release of glucagon-like
peptide-1, which is correlated to improvements in hepatic and
pancreatic function. In addition, increased glucose tolerance in
obese mice was also observed47. Bile acid sequestrants have
been utilized to throw the enterohepatic circulation of bile acids
into disarray by binding with bile constituents, thereby prevent-
ing gut reabsorption. This results in the reduction of low-den-
sity lipoprotein cholesterol. In type 2 diabetes patients, these
molecules have also been shown to improve glycemic condi-
tions through modulation of the gut microbiota and bile acid
pool composition. These resulted in improvements in hepatic
glucose metabolism and increased secretion of incretin hor-
mones56,61.

TYPE 1 DIABETES IN HUMANS
At present, little is known about the relationships between
type 1 diabetes and the gut microbiota. A Diabetes Prediction
and Prevention study reported that children with type 1 dia-
betes in Finland have lower relative abundances of Firmicutes
and increased Bacteroidetes. In healthy individuals, within the
Bacteroidetes phyla, the Bacteroides ovatus species represented
>20% of the total increase as compared with the type 1 dia-
betes patients. Though that study was small, the findings
reported the first-line evidence of specific changes in the gut
bacteria in humans with type 1 diabetes62. In a clinical study
carried out by Bosi et al.63, where intestinal abnormalities were
observed in 81 type 1 diabetes patients and 40 healthy subjects,
it was shown that intestinal permeability was significantly
increased in the type 1 diabetes patients as compared with
healthy individuals, indicating that poor intestinal barrier func-
tion could contribute to type 1 diabetes pathogenesis. There are
also larger cohort studies, such as The Environmental Determi-
nants of Diabetes in the Young, which are currently in progress
that further define alterations in the human gut microbiota
composition, and the underlying mechanisms that lead to
autoimmunity and onset of type 1 diabetes64.

GUT MICROBIOTA-MEDIATED INTESTINAL
PERMEABILITY
It has also been proposed that increased gut permeability might
result in pancreatic b-cell damage due to the increased absorp-
tion of exogenous antigens65. Gut microbes are also reported to
affect gut permeability, and thereby are important in type 1
diabetes pathogenesis3. Some microbial toxins have been
reported to directly impair pancreatic b-cell function66. For
example, the injection of Streptomyces toxin and
bafilomycin A1 resulted in smaller sized islets and lowered pan-
creatic b-cell mass, and at the same time, impaired glucose
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tolerance66. There are several other microbial toxins, such as
streptozotocin, that have been used in diabetes induction in
mice67. Additionally, it was reported that wild-type non-obese
diabetic (NOD) mice presented with type 1 diabetes, whereas
NOD mice lacking MyD88 did not; yet germ-free MyD88-
negative NOD mice developed type 1 diabetes, and this was
attenuated when the mice were colonized with normal gut
microbes27.

TYPE 1 DIABETES IN ANIMAL MODELS
Diabetes-prone biobreeding rat
The role of gut microbiota in mechanisms of type 1 diabetes
autoimmunity have been reported in studies involving animal
models. Current data show that fluctuations in gut bacteria can
be discerned before type 1 diabetes onset in both the diabetes-
prone biobreeding (BBDP) and LEW1.WR1 rat. Brugman
et al.68 provided the first evidence showing the role of gut
microbes in type 1 diabetes pathogenesis in the rat. It was
observed that BBDP rats that progressed to type 1 diabetes had
lower abundances of Bacteroides as compared with healthy rats.
Antibiotic administration in combination with hydrolyzed
casein dietary intervention attenuated type 1 diabetes through
mechanisms correlated with gut microbiota modulation68. In
addition, BBDP rats had lowered abundances of Lactobacillus
and Bifidobacterium as compared with healthy diabetes-resistant
biobreeding rats, implying that the gut microbial composition
of the BBDP rat might be predisposed to type 1 diabetes69. The

reasons behind the alterations in the gut microbiome of BBDP
rats are currently unclear. However, as this murine model pre-
sents with severe lymphopenia, and as the immune system can
significantly shape the gut microbial environment68, the abnor-
mal immune system present in this model could most probably
be a result of the changes in the microbiome. However, the
correlation between the altered intestinal microbiome and dis-
ease occurrence in the BBDP model is currently unknown19.
The transfer of intestinal Lactobacillus johnsonii N6.2 from dia-
betes-resistant biobreeding rats to BBDP rats corresponded with
a bacteria-specific delay in disease pathogenesis44 through a
mechanism that might involve upregulation of T helper 17
cells70. These findings are similar to the study where disease
prevention and the upregulation of intestinal T helper 17 cells
were observed after segmented filamentous bacteria were natu-
rally transmitted to the NOD mouse71. These data propose that
bacteria ameliorated disease states in both the aforementioned
BBDP and the NOD murine models.

LEW1.WR1 rat
There have been experiments addressing the possibility that
parvovirus Kilham rat virus infection results in alterations in
the gut microbiota community as increases in the abundance of
the Actinobacteria phylum and the Bifidobacterium genus were
observed72. A temporal increase in the abundance of Clostrid-
ium, and fluctuations in bacterial community ratios shortly
after infection suggests that gut microbiota might be involved

Metagenome

ProteomeMetabolome

Engineer ideal gut ecosystem 
for optimal host health

Gut microbial metabolites

Gut microbes

Transcriptome

Figure 2 | The fusion of the information derived from microbiome, transcriptome, proteome and metabolome platforms. This information will
allow us to understand the intricate interplay between gut microbiota and the host metabolism to suggest appropriate lifestyle and nutritional
interventions by engineering an optimal gut environment towards the prevention and maintenance remission of diabetes.

ª 2017 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd J Diabetes Investig Vol. 9 No. 1 January 2018 9

R E V I EW A R T I C L E

http://onlinelibrary.wiley.com/journal/jdi Gut ecosystem in diabetes mellitus



in destruction of islets in LEW1.WR1 rats72. These changes in
gut microbiota composition after infection are most probably a
result of the pro-inflammatory state activated by Kilham rat
virus in Peyer’s patches and other lymphoid organs73. It was
also reported that treatment with the broad-spectrum antibiotic,
Sulfatrim, downregulates Kilham rat virus-induced innate and
adaptive immune responses, thereby preventing insulitis and
islet destruction72. After infection, Sulfatrim treatment also low-
ered expression levels of interferon regulatory factor 7, C-X-C
motif chemokine 10, interleukin-17A, and interleukin-6 in pan-
creatic lymph nodes and Peyer’s patches72. These observations
show that gut microbiota can shape innate and adaptive immu-
nity beyond the gut. The data obtained from these murine
models are consistent with earlier data derived from other dis-
eases, and as such are clinically important as they they that gut
microbiome engineering could potentially be used to intervene
in disease onset.

Therapeutic Interventions in Diabetes using Prebiotic or
Probiotic Dietary Supplementation
Amar et al.48 proved that Bifidobacterium animalis subsp. lactis
420 could revert a low-grade inflammatory response48. In a
randomized, placebo-controlled and parallel designed study by
Asemi et al.74, a multiprobiotic oral supplement was provided
to test participants for 8 weeks. Multiprobiotics intake signifi-
cantly reduced fasting plasma glucose, and improved oxidative
status in type 2 diabetes patients as compared with the placebo
group74. Concentrations of erythrocyte superoxide dismutase,
glutathione peroxidase and total anti-oxidants were higher in
the probiotic yoghurt group as compared with controls74, pro-
viding evidence that probiotics exert anti-oxidative effects in
type 2 diabetes patients. Lactobacillus acidophilus and Lacto-
bacillus casei dietary intervention significantly attenuated strep-
tozotocin-induced oxidative pancreatic damage by suppressing
lipid peroxidation and formation of nitric oxide. Ejtahed et al.75

also showed that probiotic dahi dietary intervention in the diets
of a high-fructose-induced diabetic rat model, the onset of glu-
cose intolerance, hyperglycemia, hyperinsulinemia, dyslipidemia
and oxidative stress were significantly improved75. Nerstedt
et al.76 also documented that the administration of L. aci-
dophilus NCFB1748 and Lactobacillus paracasei F19 to germ-
free mice enriched the colonization of the probiotic strains in
the ileum as compared with the colon, and upregulated secre-
tion of insulin-sensitizing hormones: adipsin and adiponectin
were also observed76.

CONCLUSIONS
The studies included in the present review emphasize that dia-
betes pathogenesis could be a result of specific pathogens, but
metabolites produced by gut microbiota, such as bile acids,
also play an important part. However so, the exact impact of
gut microbes and their metabolites on the incidence and
pathogenesis of diabetes have yet to be clearly elucidated. Tak-
ing these into consideration, we strongly stand by the

methodology of integrating metagenomic and metabolomic
information, as it is an important tool that aids further under-
standing of the gut microbiota–host metabolic flux ecosystem.
As diabetes is multifactorial and can progress to other related
metabolic diseases, such as cardiovascular problems, it is of
utmost importance that the delicate interrelationships between
gut microbiota and host metabolism are well understood in
order to suggest appropriate lifestyle and nutritional interven-
tions by engineering an optimal gut environment towards the
prevention and maintenance remission of diabetes (Fig. 2).
The fusion of the information derived from these omics plat-
forms will allow us to understand the complex mammalian
superorganism to a deeper extent. These measures would also
contribute greatly towards promoting the optimal host health
of society as a whole, and ensuring a higher quality of life for
everyone.
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