
Redox Biology 5 (2015) 33–42
Contents lists available at ScienceDirect
Redox Biology
http://d
2213-23

n Corr
E-m
journal homepage: www.elsevier.com/locate/redox
Research Paper
Expression of xCT and activity of system xc� are regulated by NRF2 in
human breast cancer cells in response to oxidative stress

Eric Habib, Katja Linher-Melville, Han-Xin Lin, Gurmit Singh n

Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada L8S 4L8
a r t i c l e i n f o

Article history:
Received 2 March 2015
Received in revised form
13 March 2015
Accepted 16 March 2015
Available online 18 March 2015

Keywords:
System xc�

xCT
NRF2
KEAP1
Oxidative stress
Hydrogen peroxide
x.doi.org/10.1016/j.redox.2015.03.003
17/& 2015 The Authors. Published by Elsevier

esponding author.
ail address: singhg@mcmaster.ca (G. Singh).
a b s t r a c t

Cancer cells adapt to high levels of oxidative stress in order to survive and proliferate by activating key
transcription factors. One such master regulator, the redox sensitive transcription factor NF E2 Related
Factor 2 (NRF2), controls the expression of cellular defense genes including those encoding intracellular
redox-balancing proteins involved in glutathione (GSH) synthesis. Under basal conditions, Kelch-like
ECH-associated protein 1 (KEAP1) targets NRF2 for ubiquitination. In response to oxidative stress, NRF2
dissociates from KEAP1, entering the nucleus and binding to the antioxidant response element (ARE) in
the promoter of its target genes. Elevated reactive oxygen species (ROS) production may deplete GSH
levels within cancer cells. System xc� , an antiporter that exports glutamate while importing cystine to be
converted into cysteine for GSH synthesis, is upregulated in cancer cells in response to oxidative stress.
Here, we provided evidence that the expression of xCT, the light chain subunit of system xc

� , is regulated
by NRF2 in representative human breast cancer cells. Hydrogen peroxide (H2O2) treatment increased
nuclear translocation of NRF2, also increasing levels of xCT mRNA and protein and extracellular gluta-
mate release. Overexpression of NRF2 up-regulated the activity of the xCT promoter, which contains a
proximal ARE. In contrast, overexpression of KEAP1 repressed promoter activity and decreased xCT
protein levels, while siRNA knockdown of KEAP1 up-regulated xCT protein levels and transporter activity.
These results demonstrate the importance of the KEAP1/NRF2 pathway in balancing oxidative stress in
breast cancer cells through system xc

� . We have previously shown that xCT is upregulated in various
cancer cell lines under oxidative stress. In the current investigation, we focused on MCF-7 cells as a
model for mechanistic studies.
& 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Oxidative stress contributes to intracellular signaling and pat-
terns of aberrant gene expression in numerous cancers [1].
Importantly, by affecting cellular redox balance, reactive oxygen
species (ROS) may trigger the synthesis of one of the major anti-
oxidant molecules, glutathione (GSH). This process requires ade-
quate maintenance of intracellular cysteine levels. It has been
shown that a variety of cell types including cells of the central
nervous and immune systems, as well as fibroblasts and breast
cancer cells [2–7], maintain intracellular cysteine levels by
importing cystine in exchange for glutamate. The equimolar
transport of these 2 amino acids is mediated by the cell surface
antiporter, system xc� [8,9]. Neurons selected for resistance to
oxidative stress express higher levels of the light chain component
of system xc� , xCT [10], which is encoded by the SLC7A11 gene and
B.V. This is an open access article u
confers transporter activity [11,12]. Elevated xCT expression and
glutamate release are commonly observed in cancer cells [7,11].
Transcripts of xCT are highly expressed in glioma cells [13], and the
expression of xCT is negatively correlated with survival in invasive
breast cancers [5] and esophageal squamous cell carcinomas [14].
Inhibiting xCT may sensitize estrogen receptor-positive (ERþ)
breast cancers to anti-insulin-like growth factor 1 receptor (anti-
IGF1R) therapy, and it is thought that xCT is upregulated to protect
breast cancer cells from ROS damage [5]. We have shown that in
ovarian cancer cells under oxidative stress, xCT expression and the
function of system xc� increase to maintain levels of GSH [15]. In
addition, we determined that various cancer cell lines, including
human and mouse breast cancer and mouse melanoma cells,
express high levels of xCT and release glutamate into the culture
medium [11].

There is preexisting evidence that xCT expression is controlled
by the redox sensitive transcription factor, NF E2 Related Factor 2
(NRF2). A correlation between NRF2 and xCT has been established
in response to oxidative stress in a mouse model [16], and
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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electrophiles and other NRF2 activators have been correlated with
increases in xCT in glioma stem cells [17], retinal epithelial cells
[18], RGC-5 cells [19], rat primary astrocytes [20], mouse microglial
cells [18], and human bronchial epithelial cells [21]. More directly,
NRF2 has been shown to upregulate xCT protein levels in astro-
cytes and HEK293 cells [22]. In rat glial cells, overexpression of
Nrf2 confers neuroprotection by up-regulating xCT expression
[23], and in rat cardiomyocytes, NRF2-mediated induction of xCT
protects against reperfusion injury [24]. Diethyl Maleate (DEM), an
inducer of ROS, increases glutamate transport and cystine uptake
in human fibroblasts, and this transport requires xCT mRNA and
protein synthesis [2]. DEM also increases xCT mRNA levels [8].
Another study found that DEM increases murine xCT mRNA levels
in an Nrf2-dependent manner, requiring its binding to an anti-
oxidant response element (ARE), also known as an electrophile
response element (EpRE), in the proximal promoter region of the
xCT gene [4]. Tert-butyl hydroquinone, an NRF2 inducer, increases
cystine uptake by 2-fold in mouse embryonic fibroblasts (MEFs)
[25], and system xc� activity is lost in Nrf2 �/� MEFs [4]. In
macrophages [26], endothelial cells infected with Kaposi's Sar-
coma-Associated Herpesvirus [27], and rat microglial cells [28],
xCT upregulation is dependent on NRF2. However, in SH-SY5Y
cells, NRF2 does not directly mediate the upregulation of xCT [29].
In MCF10A normal breast epithelial cells, herbal compounds
induce nuclear translocation of NRF2 and increase xCT mRNA
levels, also inducing ARE reporter activity in MCF-7 breast cancer
cells [30]. NRF2 binds to the mouse xCT promoter in MEFs [31],
and in mouse brain, GSH depletion increases NRF2 accumulation
and xCT mRNA levels, but the same effects were not observed in
the liver or kidneys [32].

NRF2 has been referred to as the master regulator of anti-
oxidant defenses [33]. It is part of the “cap ‘n’ collar” subgroup of
basic region leucine zipper transcription factors, a family of six
transcription factors that includes NF-E2, NRF1, NRF2, NRF3, Bach
1, and Bach 2 [34]. Knockdown of NRF2 has been shown to be
compensated by overexpression of NF-E2, suggesting that this
protein family may share binding sequences [37]. NRF2 tran-
scriptionally regulates the expression of groups of cellular defense
genes encoding intracellular redox-balancing proteins such as
glutamate cysteine ligase (GCL), glutathione peroxidase (GPX),
thioredoxin (TRX), and heme oxygenase 1 (HMOX1), as well as
phase I and II detoxifying proteins including glutathione S-trans-
ferase (GST), multi-drug resistance protein (MRP), NAD(P)H qui-
none oxidoreductase (NQO1), and UDP-glucoronosyltransferase
(UGT) [35]. NRF2 has been shown to reprogram metabolic sig-
naling in cancer cells, including through the pentose phosphate
pathway, NADPH production, glutamine metabolism, and glyco-
lysis [36]. Binding sites for NRF2 overlap with those utilized by
other transcription factors. For example, the NRF2 binding
sequence in the NQO1 promoter also contains two AP1 sites [38],
and the NRF2 and AP1 binding sites in the HMOX1 promoter share
significant homology [39]. The subunits of AP1, c-JUN and c-FOS,
have both been demonstrated to enhance NRF2 binding [40]. Of
relevance, a recent study has shown that the human xCT promoter
contains a proximal ARE/AP1 site that is bound by NRF2 in T24
bladder carcinoma cells [41].

NRF2 is regulated through several mechanisms including its
phosphorylation at multiple sites [42,43] in response to intracel-
lular signaling through the MAPK [42] and PI3K-AKT pathways
[44], although its predominant regulator is Kelch-like ECH-asso-
ciated protein 1 (KEAP1). KEAP1 senses cellular ROS and directly
inhibits NRF2 in the cytoplasm [34]. By acting as a substrate
adaptor, it binds NRF2 with the cullin 3 (CUL3)-ringbox protein 1
(RBX1) E3 ligase, resulting in NRF2 ubiquitination and subsequent
proteasomal degradation [45]. Under basal conditions, the KEAP1/
NRF2 complex is either targeted for ubiquitination or is shuttled
back and forth between the cytoplasm and nucleus. In the nucleus,
the DNA binding activity of NRF2 is repressed by KEAP1 [34].
Under conditions of oxidative stress or chemical induction of
NRF2, KEAP1 undergoes a post-translation modification in its lin-
ker region that conformationally alters KEAP1/CUL3/RBX1, result-
ing in NRF2 stabilization and target gene transactivation [45,46].

Altered NRF2 expression and function have been reported in
tissue derived from tumors [47,48] and multiple cancer cell lines
[49,50], and NRF2 is highly expressed in MCF-7 breast cancer cells
[50]. Its knockdown by siRNA decreased tumor growth mediated
by the pentose phosphate pathway [36]. High NRF2 activity also
led to increased resistance of breast cancer cells to doxorubicin
and paclitaxel [48]. In addition, somatic mutations in KEAP1 are
present in breast, colorectal, gastric, hepatocellular, lung, and
prostate carcinomas [51]. In breast and lung cancer cells, KEAP1
mutations impaired NRF2 repression [52,53]. A recent meta-ana-
lysis found that 213 somatic mutations in KEAP1 were present in
17 different cancer types, including breast, colorectal, gastric,
kidney, liver, lung, and squamous cell carcinomas, and ovarian and
breast cancers, several of which were associated with abolishing
the suppression of NRF2 or enhancing its DNA binding activity
[54].

While the role of NRF2 and its association with KEAP1 have
been examined in diverse cell types, to our knowledge, the current
investigation is the first to mechanistically link the regulation of
xCT and the KEAP1/NRF2 pathway in human breast cancer cells.
Our findings provide insights into gaining a better understanding
of the mechanisms that underlie redox balance in human breast
cancer cells. Here, we show that intracellular oxidative stress,
represented by acute hydrogen peroxide (H2O2) treatment, upre-
gulates system xc� through NRF2 in MCF-7 cells. We report that
treating MCF-7 cells with H2O2 leads to nuclear translocation of
NRF2, elevated xCT expression, and increased transporter activity.
Overexpression of NRF2 upregulates human xCT promoter activity
and protein expression, while overexpressing KEAP1 down-
regulates promoter and transporter activity, with knockdown of
KEAP1 producing the inverse effect. It will be of therapeutic
interest to examine the effect of small molecule inhibitors tar-
geting the KEAP1/NRF2 pathway, especially given that system xc�

plays a role in drug- and radiation-resistant cancers.
Materials and methods

Cell culture

MCF-7 human breast cancer cells were cultured according to
ATCC guidelines in a humidified incubator at 37 °C with 5% CO2.
Complete culture media was comprised of Dulbecco's Modified
Eagle Medium (DMEM) supplemented with 10% Fetal Bovine
Serum (FBS) and 1% antibiotic (penicillin, streptomycin)/anti-
mycotic (amphotericin B) (Life Technologies).

H2O2 treatment

MCF-7 cells were plated at either a density of 2�105 cells per
well in 6-well plates or 2.2�106 cells in a 10-cm dish and incu-
bated overnight to attain optimal attachment. Media was then
aspirated and cells were washed with PBS. Cells were then treated
with complete DMEM supplemented with various concentrations,
ranging from 50 to 200 mM, of stabilized H2O2 (Sigma) for 1 h.
Media with H2O2 was then replaced with complete media for 1 h
for recovery prior to collecting the cells or media for additional
analyses.
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Real time RT-PCR

Total RNA was isolated by the Trizol method following the
manufacturer's protocol (Life Technologies). cDNAwas synthesized
using Superscript III (Life Technologies) and oligo(dt) primer. Pri-
mers for xCT were 5′-CCTCTATTCGGACCCATTTAGT-3′(forward)
and 5′-CTGGGTTTCTTGTCCCATATAA-3′(reverse), and primers for
β-Actin, used as a housekeeper, were 5′-GATGGGCGGCGGAAAA-
TAG-3′(forward) and 5′-GCGTGGATTCTGCATAATGGT-3′(reverse).
Real time RT-PCR reactions were carried out in a Biorad Plex PCR
machine in a final volume of 12.5 mL consisting of 1 mL of cDNA,
6.25 mL SYBR Green premix (Takara), 3.25 mL RNAse-free water, and
1 mL each of 10 pmol/mL forward and reverse primers. PCR ampli-
fication was initiated for 1 min at 95 °C followed by 40 cycles of
denaturation at 95 °C for 10 s, annealing at 60 °C for 25 s, and
elongation at 72 °C, with subsequent photodetection and quanti-
fication of relative mRNA levels according to the 2�[Δ] [Δ]Ct

method.

Whole cell lysates

Cells were washed with PBS and lysed directly in wells using
500 mL of RIPA buffer supplemented with protease inhibitors
(Roche) by scraping. Lysates were incubated on ice for 30 min,
transferred to 1.5 mL Eppendorf tubes, and sonicated at an
amplitude of 40 for 15 pulses. Following centrifugation at 15,000g
for 15 min at 4 °C, supernatants containing the cytoplasmic pro-
tein sample were transferred to new tubes and stored at 70 °C
prior to use.

Nuclear lysates

Cells were seeded at 106 cells per 10-cm dish. At the time of
harvest, cells were washed with PBS and treated with 0.25% EDTA/
Trypsin to promote detachment. Following a brief centrifugation,
cell pellets were resuspended in a small volume of PBS and
transferred into 1.5 mL Eppendorf tubes, which were then cen-
trifuged for 5 min at 500g. The supernatant was discarded, and
each pellet was processed using the NE-PER Nuclear and Cyto-
plasmic Extraction Kit (Thermo Scientific) to collect both the
cytoplasmic and nuclear fractions. Protein samples were stored
at �70 °C prior to use.

Western blotting

Protein content in lysates was measured using the Bradford
assay. Cell lysates were boiled with loading buffer containing β-
Mercaptoethanol at 95 °C for 5–10 min. Approximately 50 mg of
protein were loaded onto 10% SDS-polyacrylamide gels and
transferred onto PVDF membranes for Western blotting. Mem-
branes were blocked in 5% non-fat dry milk in TRIS–buffered saline
containing 0.1% Tween (TBST) for at least 1 h at room temperature,
then incubated at 4 °C overnight in primary antibody: NRF2 (Santa
Cruz sc-722, 1:1000), KEAP1 (Cell Signaling 546C, 1:1000), ETS-1
(Abcam ab26096, 1:1000), or xCT (Abcam ab37185, 1:1000).
Membranes were washed 3�10 min with TBST and incubated
with horseradish peroxidase (HRP)-conjugated secondary anti-
body targeted to rabbit (Cell Signaling 7074S, 1:5000) for 1 h at
room temperature. Following washes with TBST, blots were
developed using an enhanced chemiluminescence kit (ECL plus,
Amersham Biosciences). Either staining with amido black (Sigma)
or reprobing stripped blots with calnexin (Santa Cruz H-70,
1:1000) or actin (Cell Signaling 13E5, 1:1000) were used as loading
controls. Western Blots were densitometrically quantified using
ImageJ software (NIH). Normalized protein levels were then
compared by fold change.
Amplex red assay

Media was collected from untreated and treated cells after 48 h
and transferred into 1.5 mL Eppendorf tubes. The media was then
immediately analyzed or stored at �20 °C. Extracellular glutamate
levels were measured using the Amplex Red Glutamic Acid/Glu-
tamate Oxidase Assay Kit (Life Technologies). A standard curve was
prepared using serial dilutions of glutamate stock solution with
final concentrations ranging between 0 and 25 mM. Media samples
were diluted 1:5 in 1� Reaction Buffer (0.1 M TRIS pH 7.5). 25 mL
of diluted sample was added in triplicate to a 96-well plate. An
assay mix was prepared consisting of 2429 mL of 1� Reaction
Buffer, 6.25 mL of HRP (100 U/mL), 40 mL of L-Glutamate Oxidase (5
U/mL) and 25 mL of Amplex Red dissolved in DMSO (2.6 mg/mL).
25 mL of assay mixture was added to each well containing diluted
media samples, and the plate was incubated at 37 °C for 30 min in
the absence of CO2. Fluorescence was measured using a Cytofluor
luminometer with an excitation wavelength of 530 nm and
emission wavelength of 590 nm, and values for mM of glutamate
minus media only (background) were calculated based on the
standard curve. These values were subsequently normalized to
total cell number determined by the crystal violet assay.

Crystal violet assay

After media was collected for the glutamate assay, cells were
washed with PBS and fixed for 20 min with either 200 mL or 2 mL
of formalin for wells in either a 96-well or 6-well plate, respec-
tively. After complete removal of formalin, plates with the
attached cells were stained with Crystal Violet (0.25% in methanol)
for 10 min, washed with cold water, and allowed to air-dry. Solu-
bilizer (0.5 M NaH2PO4 in 50% ethanol) was added to the stained
cells (100 mL or 1 mL for wells in either a 96-well or 6-well plate).
Optical absorbance was read on a Biotek PowerWave plate reader
at 570 nm following 1 s of agitation. Values were measured against
standard curves created by fixing known cell concentrations 6 h
after seeding.

Transient transfections

MCF-7 cells were plated into 6-well plates at a density of
2.5�105 cells/well and allowed to attach overnight. The following
day, 6 mL of Lipofectamine 2000 (Life Technologies) was added to
250 mL of DMEM for 5 min. This mixture was then added to 4 mg of
plasmid DNA in 250 mL of DMEM, pipetted up and down several
times, and allowed to incubate at room temperature for 20 min.
The resulting 500 mL was added drop-wise to 1.5 mL of fresh
complete media on the plated cells, which were then cultured for a
further 48 h.
Human xCT promoter construct and dual luciferase assays

PCR amplification of the human xCT promoter region spanning
�2329/þ278 was carried out with Platinum Pfx DNA polymerase
and 2X PCRx Enhancer Solution (Invitrogen), genomic DNA iso-
lated from human breast cancer cells, and the following primers
that introduced a KpnI or XhoI site, respectively: 5′-TTATGG-
TACCGAGGAAGCTAGGACTATTTCT-3′ (forward) and 5′-ATAACTC-
GAGAGTAGGGACACACGGGGGA-3′ (reverse). The resulting product
was bi-directionally sequenced and cloned into the pGL3-Basic
firefly luciferase reporter construct (Promega). Dual luciferase
assays (Promega) were performed according to a protocol descri-
bed previously [55].

http://www.ncbi.nlm.nih.gov/nuccore/ab26096
http://www.ncbi.nlm.nih.gov/nuccore/ab37185
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Overexpression vectors

pcDNA3.1-NRF2, the vector used to overexpress NRF2, has been
described previously [56], as well as the vector used to over-
express ETS1, pcDNA3.1-ETS1 [57]. The KEAP1 overexpression
vector was generated by subcloning the human gene from a
commercially available cDNA clone (MGC clone MHS6278-
202757046, GE Dharmacon) into a modified pcDNA3.1 vector with
a C9 tag using BamHI and XbaI sites. The primers for subclon-
ing KEAP1 were 5′-AAAAACGGATCCatgcagccagatcccaggccT-3′
NRF-2
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SI04288844), along with a non-specific (NS) control siRNA (Ctrl
Control 1, SI03650325). MCF-7 cells plated at 1.25 � 105 cells/well
of 6-well plates were transiently transfected for 72 hours with
each siRNA using Hiperfect reagent (Qiagen) following a protocol
described previously [55], and cells and media were collected for
further analyses.
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Results

H2O2 treatment increased NRF2 nuclear translocation, xCT expression,
and glutamate release

To investigate the link between oxidative stress and the KEAP1/
NRF2 pathway, MCF-7 cells were treated with 100 mM H2O2.
Analysis of cytosolic and nuclear fractions by Western blotting
with specific NRF2 and KEAP1 antibodies revealed that levels of
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glutamate released by MCF-7 cells was also measured. As depicted
in Fig. 1E, HO treatment significantly increased the level of extra-
cellular glutamate (po0.05).

Overexpressing NRF2 up-regulated xCT expression and transporter
activity

To confirm that NRF2 regulated xCT expression, MCF-7 cells
were transiently transfected with an NRF2 overexpression vector.
Using a human xCT promoter construct with a sequence that has
already been shown to contain a functional ARE to which NRF2
binds in human bladder carcinoma cells [41], NRF2 overexpression
was shown to significantly up-regulate xCT promoter activity in
MCF-7 cells (Fig. 2A, p¼0.0075). In addition, NRF2 overexpression,
which was confirmed at the protein level with an increase in the
band migrating at approximately 98 kDa, but not overexpression
of ETS1, which was used as a negative control, increased xCT
protein levels by approximately 3.75-fold (Fig. 2B). Overexpressing
NRF2 also increased extracellular levels of glutamate released by
MCF-7 cells by approximately 2-fold compared to the empty
pcDNA3.1 vector (Fig. 2C, po0.05).

Altering KEAP1 expression in MCF-7 cells influenced the expression of
xCT and transporter activity

To further characterize the regulation of xCT expression by the
KEAP1/NRF2 pathway, MCF-7 cells were transiently transfected
with a KEAP1 overexpression vector. In direct opposition to the
effects obtained by overexpressing NRF2, KEAP1 overexpression
led to a significant down-regulation of xCT promoter activity when
MCF-7 cells were co-transfected with an xCT promoter-luciferase
construct (Fig. 3A, po0.05). KEAP1 overexpression, which was
confirmed at the protein level, also resulted in reduced xCT protein
levels relative to empty vector (Fig. 3B). Upon knockdown of
KEAP1 using four different siRNAs designed to specifically target
human KEAP1, levels of xCT protein decreased relative to a non-
specific siRNA (Fig. 3C). Knocking down KEAP1 also resulted in
significant increases in the levels of extracellular glutamate
(Fig. 3D, po0.05).
Discussion

Oxidative stress has been implicated in tumor promotion,
progression, and treatment resistance through a number of dif-
ferent signaling pathways. One of the key pathways contributing
to carcinogenesis and drug resistance is the activation of NRF2 by
oxidative stress [48]. The KEAP1/NRF2 pathway is one of the major
regulators of protective cellular responses that are initiated in
response to oxidative and electrophilic stress, which may underlie
inflammation and the development of diverse malignancies such
as cancer, cardiovascular and neurodegenerative diseases, and
diabetes, among many others. System xc� activity has also been
shown to protect a number of different cell types from oxidative
stress [58,59]. NRF2 regulates various antioxidant response genes
that are elevated in cancers including breast [60], colon [61],
leukemia [62], and squamous cell lung carcinoma [63]. Chemore-
sistant cancers present high levels of GSH [64], and depleting
intracellular GSH sensitizes resistant tumors to cisplatin [65]. High
NRF2 activity has been shown to increase the resistance of breast
cancer cells to doxorubicin and paclitaxel [48], and lung cancer cell
lines with increased NRF2 activity and corresponding up-regula-
tion of target gene expression demonstrated resistance to che-
motherapy [49]. Interestingly, inhibiting system xc� may sensitize
ERþ breast cancer cells to anti-IGF1R therapy [5]. Therefore,
investigating the potential link between NRF2 and system xc� , and
whether this pathway plays a role in the oxidative stress response
in human breast cancer cells, has the potential to provide insights
into the development of drug targets to be used in combination
therapies.

The aim of the current investigation was to examine whether
modulating the KEAP1/NRF2 pathway alters system xc� activity by
affecting the expression of xCT in response to increased oxidative
stress. MCF-7 human breast cancer cells were selected to investi-
gate the contribution of NRF2 and to measure its influence on
system xc� , given that this particular cell line has been experi-
mentally verified to require antiporter function as a means to
mediate protection from ROS [5]. NRF2 expression has been
reported to be upregulated in a number of different breast cancer
cell lines, including MCF-7 cells [50]. Two approaches were
therefore employed to assess whether NRF2 contributes to the
regulation of system xc� in MCF-7 cells. The first approach focused
on chemically increasing the activity of NRF2, and the second
utilized the transient overexpression of this transcription factor.
H2O2 was selected as a direct inducer of ROS and oxidative stress,
given that it plays physiologically relevant roles and is endogen-
ously produced by cells through superoxide dismutase (SOD) from
reactive molecules in mitochondrial and NOX systems [66].
Indeed, significant levels of H2O2 are produced by breast, colon,
melanoma, pancreatic, and ovarian cell lines [67].

H2O2 treatment increased NRF2 nuclear translocation without
significantly affecting KEAP1 expression. It has been reported that
KEAP1 is functional in MCF-7 cells, although no differences were
found in KEAP1 expression in tumor tissues compared to sur-
rounding normal tissues [48]. KEAP1 has been shown to shuttle
between the cytoplasm and nucleus, and is able to repress NRF2 in
the nucleus [34]. Electrophilic agents such as H2O2 modify
important cysteine residues in the linker region of KEAP1, thereby
inhibiting the binding of KEAP1 to NRF2, blocking NRF2 degrada-
tion by ubiquitination [68]. Given that nuclear KEAP1 levels did
not significantly decrease following H2O2 treatment in MCF-7 cells,
this latter function is likely to correspond to the underlying
mechanism driving upregulation of xCT expression that follows
NRF2 nuclear localization in response to H2O2. In the current
investigation, treatment with H2O2 significantly increased xCT
mRNA levels. In other studies, electrophilic agents have been
shown to increase system xc� activity [2], and DEM increases xCT
mRNA in an NRF2 dependent manner [4], which are consistent
with the findings reported here. Use of an overexpression vector
encoding NRF2 in transiently transfected MCF-7 cells significantly
increased xCT promoter activity, consistent with binding of NRF2
to and transactivation of the xCT promoter in human bladder
carcinoma cells [41]. Overexpression of NRF2 increased xCT pro-
tein levels and glutamate release, which is indicative of functional
upregulation of system xc� . KEAP1 knockdown increased xCT
protein levels and system xc� function, and further investigations
aimed at simultaneously knocking down NRF2 will reveal whether
the increase in xCT is reversible and therefore NRF2-dependent.
The proposed mechanism underlying KEAP1/NRF2-mediated
activation of human xCT in MCF-7 human breast cancer cells is
diagrammatically summarized in Fig. 4.

This study has several limitations. As system xc� is induced to
protect cells in culture [59], it is possible that culture conditions
may present a confounding factor. Another important in vitro
condition that may have an effect on glutamate release is cell
density, given that cystine import has been shown to increase at
lower densities [69]. Furthermore, we only examined one breast
cancer cell line, and it will be important to extend our findings in
MCF-7 cells to other human and murine lines. To our knowledge,
this is the first study to link system xc� and KEAP1/NRF2 in human
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breast cancer cells, expanding upon the current understanding of
how cancer cells may protect themselves from oxidative stress.
System xc� is emerging as a potential therapeutic target in drug-
and radiation-resistant cancers. It will be of interest to evaluate
the effect of small molecule inhibitors that target the KEAP1/NRF2
protein–protein interaction (reviewed in 70) with respect to sys-
tem xc� in breast cancer cells in future studies.
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