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Abstract: Forestry industries in Chile are facing an important challenge—diversifying their
products using green technologies. In this study, the potential use of Ionic Liquids (ILs) to
dissolve and hydrolyze eucalyptus wood (mix of Eucalyptus nitens and Eucalyptus globulus) kraft
pulp was studied. The Bleached Hardwood Kraft Pulp (BHKP) from a Chilean pulp mill
was used together with five different ILs: 1-butyl-3-methylimidazolium chloride [bmim][Cl],
1-butyl-3-methylimidazolium acetate [bmim][Ac], 1-butyl-3-methylimidazolium hydrogen sulfate
[bmim][HSO4], 1-ethyl-3-methylimidazolium chloride [emim][Cl], 1-ethyl-3-methylimidazolium
acetate [emim][Ac]. Experimentally, one vacuum reactor was designed to study the
dissolution/hydrolysis process for each ILs; particularly, the cellulose dissolution process using
[bmim][Cl] was studied proposing one molecular dynamic model. Experimental characterization
using Atomic Force Microscopy, conductometric titration, among other techniques suggest that all
ILs are capable of cellulose dissolution at different levels; in some cases, the dissolution evolved
to partial hydrolysis appearing cellulose nanocrystals (CNC) in the form of spherical aggregates
with a diameter of 40–120 nm. Molecular dynamics simulations showed that the [bmim][Cl] anions
tend to interact actively with cellulose sites and water molecules in the dissolution process. The
results showed the potential of some ILs to dissolve/hydrolyze the cellulose from Chilean Eucalyptus,
maintaining reactive forms.

Keywords: cellulose dissolution; ionic liquid; nanocellulose; green technology

1. Introduction

The Chilean forestry industries face challenges and opportunities mainly due to the growth of
competitive global industries producing a wide variety of high-value products based on forest and pulp
recycled materials [1,2]. In this scenario, the Chilean forestry companies are shifting their traditional
pulp mills to more diverse processes to produce higher-value products from lignocellulose raw or
recycled materials, ensuring that their productivity and competitiveness is at the level of the world
market [1,3].

Polymers 2019, 11, 673; doi:10.3390/polym11040673 www.mdpi.com/journal/polymers

http://www.mdpi.com/journal/polymers
http://www.mdpi.com
https://orcid.org/0000-0002-3468-1137
https://orcid.org/0000-0002-3291-0944
https://orcid.org/0000-0003-0674-3967
https://orcid.org/0000-0003-4036-4020
http://www.mdpi.com/2073-4360/11/4/673?type=check_update&version=1
http://dx.doi.org/10.3390/polym11040673
http://www.mdpi.com/journal/polymers


Polymers 2019, 11, 673 2 of 16

Cellulose is the most abundant organic polymer in nature; besides being renewable, this material
has shown various attractive properties, such as biocompatibility, biodegradability, mechanical and
thermochemical stability [4,5]. The cellulose is mainly obtained from wood in fiber form (mixed
with hemicellulose and lignin) as is one of the main constituents of the primary plant cell wall [6].
This fiber is intended primarily for the paper industry, fiber processing textiles, plastics, cosmetics,
and pharmaceuticals, among others [5–7]. Particular attention is currently focused on clean cellulose
and wood fiber synthesis because these are considered a virtually inexhaustible source of bioproducts
and biofuels [5]. Cellulose is a linear polysaccharide consisting of chains of glucose monomers linked
through covalent β-(1->4) bonds. These polymer chains are linked together by intermolecular and
intramolecular hydrogen bonds, thereby hindering the cellulose separation process [6].

Aqueous and traditional organic solvents such as sulphuric acid (H2SO4), N-Methylmorpholine
N-Oxide (NMMO), and alkali/additive solvent systems such as sodium or lithium hydroxides between
specific concentrations range with the addition of urea or thiourea [8–10], have been used in the cellulose
and pulp industries, with issues such as high cost, challenging recovery, low selectivity, low solvation,
high energy consumption related (pressure, temperature and time), generation of toxic and poisonous
agents; the last factor being an important issue from the point of view of sustainability [5,6].

Currently, some ionic liquids (ILs) are used as green solvents to dissolve and derivatize
cellulose [11,12]. ILs have shown to be tunable reagents to partially or entirely remove environmental
impacts [13–15]. Cellulose can be dissolved in ILs directly without previous treatment and might be
regenerated into various forms such as fibers, films, beads or other types, by the addition of water
or others non-solvents [11]. Many ILs have proven to dissolve cellulose successfully; among these,
IL 1-butyl-3-methylimidazolium chloride ([bmim][Cl]) is one of the most widely used [16]. Some ILs
have shown a considerable degree of toxicity; hydrophobic and long side chain substituted ILs can
destroy the cell membrane and act as neurotoxins [17]. Therefore, the presence of any residual IL
should be avoided in the final products. However, initial toxicity results suggest that there are no
major toxicity issues related to the typical ILs used for cellulose dissolution [18–20]. ILs are currently
used in cellulose products’ technologies, paying attention to ILs recovery/recyclability, which in some
cases might be performed by distillation [21–23]. On the other hand, previous works have reported
CNC synthesis by ILs. Abushammala et al. [24] reported the synthesis of CNC with an aspect ratio
of 65 using [emim][Ac]; Iskak et al. [25] reported nanocrystals of 9 nm size using [bmim][Cl], and
Man et al. [26] reported CNC using [bmim][HSO4] under FESEM examination with lengths of 50–300
nm and diameters around 14–22 nm.

In this work, experiments were conducted to dissolve and hydrolyze Chilean Eucalyptus wood
(Bleached Hardwood Kraft Pulp (BHKP)) in ILs. Scanning Electron Microscopy (SEM), Atomic Force
Microscopy (AFM), zeta potential (Φz) and charge (ζ) measurements were used to characterize the
morphology and stability of such fibers.

On the other hand, to improve the cost-effectiveness ratio in the ILs + cellulose processes, it is
necessary to get a deeper phenomenological understanding of the physical systems involved. In this
respect, recent studies have used Molecular Dynamics (MD) to elucidate the specific interactions
mechanism responsible for the cellulose dissolution [27–29]. These studies indicated that cellulose
has a high tendency to establish hydrogen bonds with ILs’ anions, therefore significantly disrupting
the intrachain and interchain cellulose hydrogen bonds. Although these researches have been able to
adequately describe the molecular systems and their specific interactions through All Atoms (AA) and
United Atoms (UA) force fields, it is necessary to implement a Coarse-Grained (CG) force field for
these complex systems due to its sluggish dynamics behavior. The CG force field will allow larger scale
(size and time) simulation systems with a minor computational cost and a reasonable loss of specific
system details [30–32]. In this work, a CG-MD model has been proposed to perform simulations
of bulk properties for the mixture of cellulose + H2O + IL(1-butyl-3-methylimidazolium chloride).
This MD model, together with the dissolution/hydrolysis process (unoptimized), serves as the starting
point to explore the IL potential to dissolve/hydrolyze Chilean Eucalyptus cellulose pulp, and at the
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same time establish the scientific base to comprehend the elemental forces involved in the IL cellulose
dissolution process.

2. Materials and Methods

2.1. Materials

The Eucalyptus Bleached Hardwood Kraft Pulp (BHKP) provided by one Chilean Kraft Pulp Mill
was used in all the experiments. The chemical composition of the BHKP is listed in Table 1.

Table 1. Chemical composition of Bleached Hardwood Kraft Pulp.

Component (%) Value

Glucan 79.3 ± 0.8
Xylan 14.7 ± 0.6

Total Lignin 0.1 ± 0.1
Ash 0.2 ± 0.1

Chemical reagents: dimethyl sulfoxide or DMSO (CAS No.67-68-5, purity ≥ 99.7),
1-butyl-3-methylimidazolium chloride or [bmim][Cl] (CAS No.79917-90-1, purity > 98%),
1-butyl-3-methylimidazolium acetate or [bmim][Ac] (CAS No.284049-75-8, purity > 95%),
1-butyl-3-methylimidazolium hydrogen sulfate or [bmim][HSO4] (CAS No. 262297-13-2, purity
> 95%), 1-Ethyl-3-methylimidazolium chloride or [emim][Cl] (CAS No.65039-09-0, purity = 98%)
and 1-Ethyl-3-methylimidazolium acetate or [emim][Ac] (CAS No. 143314-17-4, purity = 97%) were
purchased from Sigma-Aldrich and stored in inert atmosphere until its use. The ILs’ water content
before drying was measured for all ILs by Karl Fischer titration, as in our previous work [33]. The water
content of all ILs previous drying was less than 2800 ppm or 0.28% w/w. Therefore, a vacuum drying
step was added in order to ensure a water content lower than this percentage. Despite this, it was
challenging to precisely measure the water content of the IL in the pulp dissolving process due to
environment condensed water and that within the pulp.

2.2. Experimental and Molecular Methods

2.2.1. Dissolution and Hydrolysis

BHKP samples were treated with ILs: [bmim][Cl], [bmim][Ac], [bmim][HSO4], [emim][Cl],
[emim][Ac] according to the treatment methodology presented in Figure 1.
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The dissolution/hydrolysis process consists of three main steps: dissolution, washing, and analysis.
In the first step, a 20 g mixture was prepared containing 5% w/w BHKP and 95% w/w of IL. ILs and
pulp samples were previously vacuum dried overnight (60 ◦C, 18 h, 0.5 bar) before mixing. However,
the ILs used are highly hygroscopic, and during the dissolution process some condensed water is
likely to be present. This water content and remaining acid content from the ILs synthesis can promote
hydrolysis reactions [34,35]. The IL and pulp were mixed under vigorous agitation (700 rpm), followed
by a 2 h dissolution/hydrolysis process at 0.5 bar vacuum pressure. The thermal treatments were
carried out in a self-made glass vacuum reactor designed for this purpose (see Figure 2).
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Figure 2. Vacuum glass reactor made for inert atmosphere dissolution and hydrolysis of BHKP using
ILs: (a) Schematic representation of the main components; (b) Photograph of the laboratory reactor.

Dissolution/hydrolysis processes were carried out in the reactor at 0.5 bar of vacuum pressure
(100 ◦C, 2 h, 700 rpm) using magnetic stirrer equipment with a hot plate. After the heating step,
the physical process was stopped by the addition of cold deionized water (10 mL, Milli-Q® water),
promoting the pulp coagulation and solubilization of hydrolyzed fractions.

The washing step started with centrifugation (see Figure 1) (Centrifuge Model GL21M, Changsha
Yingtai Instruments Co., Changsha, China), which was carried out five times at 12000 rpm, 30 min,
collecting the supernatant for ILs recovery by rotary evaporation process (rotary evaporator Hei-VAP,
Schwabach, Germany); the precipitate fraction containing the treated pulp was isolated (Sample 1 in
Figure 1).

2.2.2. Molecular Simulation of [bmim][Cl] + Cellulose + Water

MD simulations were applied to model the behavior of systems composed of cellulose, [bmim][Cl]
and water. Molecular dynamics consists of solving Newton’s classical equations of motions for a
system composed of atoms (or sites). Solving such equations demands an explicit form for the potential
energy U(rij) for intramolecular and intermolecular interactions contributions. In the present work,
the Mie Potential (equation 1) was used to compute the attractive-repulsive interactions, where εij

represents the depth of the potential well and roij the distance to the minimum potential.
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Parameters nij, mij, are the corresponding attractive and repulsive exponents, respectively. In this
work, nij and mij, are fixed at 6 and 9, respectively. The parameter roij is the intermolecular distance
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corresponding to the minimum interaction energy between two sites and its relation to the collision
diameter σij is given by:

r0ij = σij ·

( nij

mij

)( 1
nij−mij

)

(2)

In general, for a complete molecular description, every single atom is supposed to be modeled
under force field parameters shown in Equations (1) and (2). Nevertheless, it is possible to cluster
several atoms in one single site, thus reducing the computational cost with a reasonable loss of
molecular detail [36]. This method called Coarse-Grained modeling [36–38] was adopted to model IL
[bmim][Cl] and cellulose, as detailed in Figure 3.
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representation; (b) cellobiose representation.

For IL [bmim][Cl], the five-site CG model was used and optimized based on previous works [39,40];
see Figure 3a. For cellulose, a CG force field consisting of six sites for each cellobiose unit was used; see
Figure 3b. Each unit has twenty one Lennard-Jones pair contributions, seven bonding, four bending,
and eight dihedrals contributions respectively, according to Bu et al. model [41]. As is shown in
Figure 3a, four sites form the IL’s cation, and the chloride ion is modeled with only one additional
site (see Table 2). The SPC/E traditional model with fixed angles and bonds was used for water [42].
The molecular simulation water content was selected as the maximum water content, where typically
these ILs are still able to dissolve cellulose [43–45]. Therefore, the molecular simulation conditions were
not chosen to mimic the experimental dissolution conditions but to study the dissolution phenomena
in extreme water content conditions.

Table 2. Ionic Liquid [bmim][Cl] Mie potential parameters.

Site ε0 (kcal/mol) N m ro (Å)

I1 – I1 0.375 9 6 4.693
I2 – I2 0.345 9 6 4.693
I3 – I3 0.199 9 6 4.120

CT – CT 0.469 9 6 5.249
CI – CI 0.148 12 6 4.232

Table 2 provides the van der Waals type interaction parameters. On the other hand, electrostatic
contribution was given by Coulomb’s potential [46]. The large range electrostatic interaction
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contribution is calculated by the Ewald sum method with a convergence parameter of 0.18520 Å and
kmax1 = 8, kmax2 = 8, kmax3 = 16 maximum values for the reciprocal lattice. NPT and NVT ensembles
were implemented using the Nosé-Hover thermobarostat (f1 = 0.50 ps, f2 = 3.0 ps) and the Nosé-Hover
thermostat (f = 0.5 ps), respectively. The simulations started with a lattice configuration at 100 K; then,
they were quenched to the simulation temperature. DLPOLY© software [47] was used to perform all
the simulations. Finally, the Lorentz-Berthelot classical mixing rules for cross-vdW interactions and
0.004 ps time step were used in all cases [46].

NPT simulations were carried out to predict the liquid density of pure [bmim][Cl] over the
temperature range 298.15 K < T < 363.15 K. For these simulations, a Nosé-Hoover thermo-barostat was
used with 0.50 ps and 3.0 ps constants, together with a cutoff radius of 15 Å [39]. The initial configuration
consists of 256 molecules (1280 sites) in a lattice configuration. This lattice was equilibrated at the
initial temperature of 100 K during 800 ps. At the end of this stage, the simulation started at the desired
temperature. Density was calculated from average volume after the equilibrium state was observed;
this was observed after 40 ns for all temperatures. The error in the density calculation was derived
from the standard deviation of the volumes.

2.3. Instrumental Methods

2.3.1. Scanning Electron Microscopy (SEM)

Sample 1 (see Figure 1) composed of solid hydrolyzed and regenerated cellulose was first seen
under a light microscope (Leica, DM4B, Wetzlar, Germany) capturing images of cellulose samples at
35X. Additionally, Scanning Electron Microscopy (SEM) was used to obtain images of sample 1 at
1500X (SEM, JEOL JSM6610LV, JEOL Ltd., Tokyo, Japan).

SEM samples were prepared following four steps: (1) samples are diluted 1:10 with milli-Q®

water and sonicated (Elmasonic E-60H, ELMA, Singen, Germany) for 30 min. (2) Three drops of the
sample are deposited on an aluminum stub previously covered with carbon tape. (3) Stubs with
the drops are dried for 30 min in a vacuum oven (Medcenter Einrichtunger GmbH) at 35 ◦C and 0.5
bar vacuum pressure. Step (3) is repeated five times in order to obtain five drops in the same place.
(4) Samples are sputtered with 100 angstroms layer of gold (DENTON VACUUM Sputter). Lastly,
images from SEM are taken using an SEI detector (Secondary Electron Image) with 5kV voltage.

After the SEM analysis, the remaining precipitate was separated in two fractions (microfibers
and nanofibers) by sonication (5 min, 30% amplitude), using a digital sonifier (Branson 450, Digital
Sonifier, Danbury, Connecticut, USA). The sonication process was followed by vacuum filtration (filter
paper Whatman, Grade 1). The sonication-filtration processes were repeated three times until a clear
suspension was obtained.

The final washing step considers centrifugation (see Figure 1) at 12000 rpm and 10 min, after
which a supernatant sample was obtained (sample 2.), which is supposed to be composed mainly of
nanocellulose. This sample was analyzed by AFM, zeta potential, and charge measurements.

2.3.2. Atomic Force Microscopy (AFM)

The surface morphology of Sample 2 was examined by an AFM, Nanosurf model NaioAFM.
The equipment was operated in tapping mode using PPP-FMAuD Gold Coated and a Force Modulation
AFM Probes (Nanosensors) at a resonance frequency of about 75 kHz with a spring constant of 2.8 N/m.
The particle sizes of the CNC samples were measured from the images using image analysis software
(Image J, Fiji distribution, open-source) [48].

2.3.3. Zeta Potential and Charge

Zeta potential (Φz) was measured in samples with solid concentration of 0.05% w/w (pH = 6.0,
25 ◦C) using a Zeta potential equipment (Malvern Panalytical, Zetasizer Nano S, Worcestershire, UK),
and charge (ζ) measurements were carried out by conductometric titration.
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Carboxyl content of the cellulosic samples was analyzed by conductometric titration according
to the standard SCAN-CM 65:02 [49]. The titration was executed using an automatic titration device
(Methrom 751 GPD Titrino and Tiamo 1.2.1 software, Metrohm AG., Herisau, Switzerland). The data
of the titration was processed with OriginPro 2018b software (OriginLab Corporation, Northampton,
MA, USA). A blank sample (water) was used to exclude systematic error within the analysis.

3. Results and Discussion

3.1. Dissolution Process

3.1.1. Experimental Results

The synthesized pulp after thermal treatment with ILs was collected and analyzed. These samples
are called Sample 1 (according to Figure 1) and are supposed to be composed mainly of hydrolyzed
pulp and regenerated pulp. The samples for all ILs are shown in Figure 4.
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Figure 4. Cellulose pulp treated with ILs: (a) treated with [bmim][Cl] before washing; (b) pulp
treated with [bmim][HSO4] before washing; (c) pulp samples treated with the corresponding ILs after
centrifugation and IL removal.

Figure 4 presents the appearances of dissolved pulp samples using ILs, before and after washing.
In particular, Figure 4a,b show pulp samples dissolved with [bmim][Cl] and [bmim][HSO4] before
washing. Figure 4a shows that the pulp treated with IL [bmim][Cl] forms a very stable viscous and
transparent hydrogel. This behavior has been widely explored and attributed to the dependency of
cellulose molar mass on the viscosity of the resulting mixtures with [bmim][Cl] [50], and the effect has
been taken into account for the cellulose-ILs ion gel and hydrogel membranes synthesis [51–53]. We
will discuss further that this behavior is not only due to the nature of cellulosic fibers, but also to the
primary molecular interactions of the IL with water molecules that might be present in the mixture.

On the other hand, from Figure 4b, it is observed that thermal treatment with [bmim][HSO4]
produces a solution with a darker color, thus indicating possible hydrolysis/degradation reactions
taking place [54–56]. Even more, from Figure 4c it is possible to notice that after washing the resulting
pulp samples show different colors and textures; for instance, with the ILs [bmim][Ac], [bmim][HSO4],
and [emim][Cl], a darker pulp was regenerated in contrast to a whiter pulp regenerated in the case of
[bmim][Cl] and [emim][Ac] ILs.

The change in color of these pulps can be attributed to several phenomena: first, the ILs in the
presence of some residual ions from the synthesis or condensed gas or water vapor might result in color
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changes [57–59]; additionally the possible partial hydrolysis of cellulose fibers into sugars can results
in different molecular species as a result of the subsequent breakdown of sugars by oxidative reactions
that give the characteristic brown color [60,61]. To confirm whether or not the fibers were degraded or
hydrolyzed as a first step, optical and SEM images were taken from these samples (corresponding to
Sample 1 shown in Figure 1). These images are presented in Figure 5.Polymers 2019, 11, x FOR PEER REVIEW 8 of 16 
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squares) for pulp samples treated with the corresponding IL: (a) [bmim][Ac]; (b) [bmim][Cl]; (c)
[bmim][HSO4]; (d) [emim][Ac]; (e) [emim][Cl].

The samples presented in Figure 5 exhibit visual differences in texture and color in microscope
images (Figure 5 blue squares). The differences were confirmed later with SEM images at 1500×
(see Figure 5a–e). In the first place, we notice a complete plasticized cellulose after treatment with
the ILs derived from acetate anion (see Figure 5a,d)—[bmim][Ac] and [emim][Ac] correspondingly.
The plasticized structures were similar to a smooth gel, whiter in the case of [bmim][Ac] in contrast to
a less white structure in the case of [emim][Ac], attributed to the presence of residual IL rather than the
presence of hydrolyzed fractions.

On the other hand, for IL [bmim][Cl], the regenerated pulp had a similar appearance than hard
rubber, evidently due to a strong interaction between the water, cellulose and [bmim][Cl], forming
a very stable gel where it was not possible to confirm the presence of fibers by SEM. Finally, for ILs
[bmim][HSO4] and [emim][Cl], darker pulp samples were regenerated indicating hydrolysis. The SEM
images reveal a refined pulp fiber for [emim][Cl] (see Figure 5e), but in the case of [bmim][HSO4],
this refined pulp was accompanied for almost integral cellulose fibers (see Figure 5c).

Previous works have shown that the disruption of hydrogen bonds inside cellulose is a critical
factor in the dissolution process. The structural features of cellulose hydroxyl groups facilitate active
intermolecular hydrogen bonding [62]. ILs containing chloride [Cl] and acetate [OAc] anions have
been more widely used for cellulose dissolution [63]. ILs with chloride anion solubilize cellulose
through the establishment of hydrogen bonds; meanwhile, for ILs containing acetate, the bonding is
accompanied by the simultaneous conjugation of cellulosic reducing ends [22,45,62–64]; this explains
why these ILs are better for the dissolution of cellulose compared to [bmim][HSO4].
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3.1.2. Molecular Dynamics Results

NPT simulations were carried out to predict the liquid density of pure [bmim][Cl] over the
temperature range 298.15 K < T < 363.15 K. Simulations were conducted for 80 ns for each desired
temperature. Figure S1 (see supporting information) presents the typical evolution of the simulation
box total volume (black line) and total energy (blue line), as observed during the simulations. As shown
in Figure S1, the system reaches a state of equilibrium in its total energy—about 10 ns of simulation with
the total volume being equilibrated after 50 ns. Therefore, we can assume that the reported simulation
time of 160 ns reproduces equilibrium density for the IL. Density was calculated (see Table 3) from
the average volume after reaching a state of equilibrium. The simulations were performed at specific
temperature and water concentration conditions in order to understand the fundamental interactions
of ILs + cellulose + water (that might be present by condensation). Additionally IL densities were
calculated considering the literature experimental available data [65], with the intention to confirm the
potential of the coarse-grained force field to predict macroscopic properties.

Table 3. Atmospheric liquid densities [bmim][Cl] g.cm−3.

Temperature 1 MD(g.cm−3) 2 EXP(g.cm-3) 3 MABD

298.15 1.169 1.082 7.49
323.15 1.157 1.067 7.77
348.15 1.138 1.053 7.47
363.15 1.130 1.045 7.51

1.Molecular dynamic simulations results; 2.Experimental values reported [65]; 3.MABD: Mean absolute
percentage deviation.

Density calculated by MD overpredicts the experimental data available [65] with an average
percentage deviation of 7.5%.

The initial cellulose fiber configuration formed by 36 linear chains, formed in turn by 10 cellobiose
units each, was run for one nanosecond relaxation time. The simulation started from Iα cellulose
polymorph; after the relaxation time, the IL and water molecules were added. Figure 6 shows that the
cellulose fibers are at the center of the simulation box (green) solvated with 2826 molecules of IL (red) +

3809 molecules of water (blue), giving a mixture with 10% w/w water and 18% w/w cellulose in IL.
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From Figure 6, it is possible to perceive that water and IL molecules compete with each other to
interact with the cellulose molecules surrounding the cellulose fibers. This interaction can be seen by
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the radial distribution functions between the different molecular sites of cellulose, water, and IL sites
(Figure 7).Polymers 2019, 11, x FOR PEER REVIEW 10 of 16 
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The radial distribution functions g(r) reveal a strong correlation between IL anion and cellulose
sites (Figure 7a) as well as between water species and cellulose (Figure 7b,c). This radial distribution
shows a competence between IL anion and water species to establish Van der Waals type interactions
with cellulose fibers; particularly strong correlations between the IL anion site with the cellubiose
sites C16 and C26 were found. These strong correlations can be explained considering that such sites
contain both carbon number six (carbon belonging to the alquil chain united to glucopyranose ring in
the cellulose structure), and this carbon, in particular, posseses the most reactive hydroxyl group [66].
In contrast, sites C11 and C24 presented a lower correlation; this could be explained taking into account
that both sites include less reactive hydroxyl groups. The other groups with no hydroxyl groups
exhibited almost negligible correlation, therefore confirming once more that the critical interaction
in the dissolution process is the hydrogen bond type interaction. These results correlate with the
experiments, whereafter the addition of water to cellulose + [bmim][Cl] mixtures produced stable
hydrogels. However, previous studies report that ILs tolerate water content around 7% [43,44] and
theoretically [45] up to 20% w/w without losing the ability to dissolve cellulose.

3.2. Hydrolysis Process

As discussed previously, the appearance of a refined and dark regenerated cellulose suggests the
production of hydrolyzed fractions. Previous examination of samples by AFM confirm the presence of
hydrolyzed fractions in samples treated with ILs [bmim][HSO4] and [emim][Cl]. These results are in
agreement with previously reported findings [24–26,29,67,68]. Samples containing hydrolyzed fractions
were analyzed after a second washing procedure, as indicated in Figure 1 (Sample 2). The stability of
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the washed samples was checked by Φz and ζ measurements. For instance, Figure 8 shows a typical
potentiometric titration for [bmim][HSO4] treated pulp sample.
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Figure 8. Conductometric titration for cellulose treated pulp with [bmim][HSO4]: (a) conductivity
data; (b) identification of three phases for titration.

In Figure 8, the conductivity data for the titration of a 0.5% w/w pulp sample treated with
IL [bmim][HSO4] is presented. Figure 8a presents the raw data and Figure 8b presents the three
phases in the titration process. Phase 1 (linear portion in the left of Figure 8b) represents the phase
where the conductivity of the solution decreases when the strong acidic groups are neutralized with
NaOH. Phase 2 is equivalent to the neutralization of carboxylic groups, where conductivity reaches
a steady state characterized by the decrease of the slope in the conductivity versus time. In Phase
3, the accumulation of base leads to an increase in conductivity, causing once more a drastic change
in conductivity slope. The charge is reported as the total acidic group content per dry weight pulp,
calculated from the volume of sodium hydroxide solution consumed at the 2nd intersection point [69].
The final charge value was obtained by subtracting this value from the charge obtained in a milliQ®

water blank sample. The same procedure was followed for all samples, and the results are summarised
in Table 4, together with cellulose nanocrystal (CNC) size. CNC yields are not reported, since it was
not possible to completely remove secondary products and unreacted cellulose from the mixture.

Table 4. CNC obtained from ILs treatment.

IL sample D(nm) Φz (mV) ζ(µmolCOOH/gpulp)

[bmim][HSO4] 123 (48) −24 (2.5) 0.085 (0.02)
[emim][Cl] 77 (25) −12 (6) 0 (0)

In Table 4, D corresponds to the average particle size measured from the AFM images; Φz is
the zeta potential for samples with 0.05% w/w solid content at pH= 6.0 and 25 ◦C, and ζ is the
particle charge measured by the SCAN-CM 65:02 conductometric titration method. The values in
parentheses correspond to the respective standard deviations. The CNC found in samples treated
with IL [bmim][HSO4] and [emim][Cl] were substantially different in charge, as shown in Table 4.
The CNC synthesized with IL [bmim][HSO4] has a higher charge and higher values for z potential;
thus, its tendency to agglomerate and precipitate is lower than in the case of particles obtained from
[emim][Cl] treatment. This phenomenon can be seen in Figure 9a,b, where AFM images are presented
for the resulting treatments.
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Despite their charge and potential, the nanoparticles obtained with IL [emim][Cl] were spherical
in shape and about 40% smaller than the corresponding nanoparticles synthesized with [bmim][HSO4].
Yun tan et al. [54] reported very similar CNC particles with a rod-like shape, diameter of about
15–20 nm, and length of 75–80 nm at 90 ◦C treatment with [bmim][HSO4]. On the other hand,
Abushammala et al. [24] reported smaller CNC nanoparticles using IL [emim][Ac] with width ranging
from 2 nm to 5 nm and length ranging from 75 nm to 125 nm; in our study, these CNCs were not found
for this particular IL.

From Figure 9, we can confirm that the electrical environment of the CNC particles synthesized
has a direct influence on morphology, which means that the unstable CNC suspensions cause more
agglomeration, making the visualization of individual nanocrystals challenging.

Depending on the type of anion and cation of the IL, they possess a higher capacity to dissolve and
hydrolyze cellulose fibers. For instance, those that possess anions with a high capacity to accept [H+] in
their valence bands, in addition to a non-hydrophobic cation or containing long-chain alkyl substituents,
possess higher capacity for the dissolution of cellulose [26,70]. In this context, IL [emim][Cl] might
be better for dissolution. However, in the hydrolysis process, the chloride anion causes instability to
crystals; thus, proper separation of crystals become challenging, requiring more energy compared
to the case of [bmim][HSO4]. This behavior is analogous to CNC production from the traditional
homologous inorganic acids, sulfuric acid [71] and hydrochloric acid [72]. In the particular case of
hydrochloric acid, the nanocrystals synthesized possess zero charge and have a high tendency to
agglomerate. Therefore, CNC synthesis involving the chloride anion is still challenging from this point
of view.

4. Conclusions

The ILs studied here were able to dissolve the Chilean Eucalyptus cellulose pulp. In the particular
case of ILs [bmim][HSO4] and [emim][Cl], CNC crystals were found in the regenerated pulp. Although
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the nanocrystals were not isolated mainly due to their strong tendency to aggregate, it was possible to
describe from the experimental and molecular point of view the processes of dissolution, hydrolysis,
and agglomeration of cellulose nanoparticles. It is important to point out that the CNC presence only
confirms that the hydrolysis reactions were taking place during the dissolution process. This fact
can be attributed to condensed water and possible acid impurities resulting from the ILs synthesis;
however, specialized analytical techniques such as HPLC are required in future works, to elucidate the
possible molecular species and reaction paths from the hydrolysis or degradation of cellulose.

According to MD results, the main conclusion of this work is that the mesoscopic dynamical
behavior of mixtures composed by [bmim][Cl] + cellulose + water can be correctly modeled using the
proposed CG model. The force field implemented can predict the atmospheric density of [bmim][Cl]
and reproduce the dissolution process of cellulose in IL + water(10% w/w), showing the high correlation
between anion cellulose and water cellulose, mainly due to interactions between hydrogen bonds
that finally correlate to the experimental hydrogel formation. Although previous results suggest
that better force field parameterization is needed to capture accurate and detailed thermodynamics
properties such as surface tensions and diffusion coefficients, this model is an essential first step
to understand the IL + cellulose molecular interactions and can help in the construction of other
models that use different ILs. This work contributes to understanding the potential of ILs to produce
regenerated or hydrolyzed cellulose-derived products. Ultimately, this work offers hints to Chilean
forestry industries about the new opportunities to innovate and produce cellulose-based products
with minor environmental impact.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/11/4/673/s1,
Figure S1: Total energy (U) (blue line) and total volume (V) (black line) as a function of time (t) in NPT simulation
at 298.15 K.
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