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Abstract: Mitochondrial responses under drought within Brassica genus are poorly understood.
The main goal of this study was to investigate mitochondrial biogenesis of three cauliflower
(Brassica oleracea var. botrytis) cultivars with varying drought tolerance. Diverse quantitative changes
(decreases in abundance mostly) in the mitochondrial proteome were assessed by two-dimensional
gel electrophoresis (2D PAGE) coupled with liquid chromatography-tandem mass spectrometry
(LC-MS/MS). Respiratory (e.g., complex II, IV (CII, CIV) and ATP synthase subunits), transporter
(including diverse porin isoforms) and matrix multifunctional proteins (e.g., components of
RNA editing machinery) were diversely affected in their abundance under two drought levels.
Western immunoassays showed additional cultivar-specific responses of selected mitochondrial
proteins. Dehydrin-related tryptic peptides (found in several 2D spots) immunopositive with
dehydrin-specific antisera highlighted the relevance of mitochondrial dehydrin-like proteins for
the drought response. The abundance of selected mRNAs participating in drought response was
also determined. We conclude that mitochondrial biogenesis was strongly, but diversely affected in
various cauliflower cultivars, and associated with drought tolerance at the proteomic and functional
levels. However, discussed alternative oxidase (AOX) regulation at the RNA and protein level were
largely uncoordinated due to the altered availability of transcripts for translation, mRNA/ribosome
interactions, and/or miRNA impact on transcript abundance and translation.
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1. Introduction

Under drought, plants respond through numerous physiological and molecular mechanisms [1].
Each plant species possesses a unique drought resistance response, which is accompanied by the
diverse sensitivity of selected growth and metabolic processes to progressing stress conditions [2].
The balance between water uptake and transpiration is controlled by water potential. The leaf surface
controls CO2 assimilation as well as photosynthetic and respiration rates. Excessive transpiration may
decrease the water potential in plants, resulting in growth cessation [3]. Initially, drought results in
stomatal closure and declined transpiration to prevent further water losses among drought-sensitive
species, in osmolyte synthesis, and consequently, leaf cell growth inhibition. Drought regulates
leaf respiration in various directions, nevertheless, those alterations may enable prompt stress
recovery [4–8].

The mitochondrial proteome is a highly dynamic entity containing at least 1500 diverse proteins
(1060 of which have been identified in potato (Solanum tuberosum) mitochondria by Salvato et al. [9])
actively responding to environmental conditions. Over the past 15 years, significant progress has been
made on the elucidation of key steps of mitochondrial biogenesis, which implies finely coordinated
expression of mitochondrial and nuclear genes that can be disrupted under stress action [10–13].
Taylor et al. [14] estimated 22% of the stress-responsive organellar proteins in Arabidopsis to be
targeted to mitochondria, but the number of mitochondrial proteins involved in diverse stress
response still remains underestimated. More complex studies integrating various approaches for
better understanding of drought responses are required.

Drought also results in dynamic alterations within the cellular transcriptome and proteome [7,15–17],
including the mitochondrial proteome [18,19]. Drought response is often connected with the increase or
induction of diverse protective proteins, such as dehydrins [20]. Mitochondrial proteins (including key
enzymes) may be directly involved in developing of drought tolerance as well; under drought, some
novel protein isoforms may be also induced, although the proteolysis of some mitochondrial proteins
was also reported [19,21–27]. Variations in the abundance of numerous mitochondrial proteins, however,
may not clearly correspond with the drought intensity.

Brassica genus contains important plant species for worldwide agriculture. Total cellular proteomic and
transcriptomic responses of Brassica species in drought have already been investigated, although without
deepened attention towards elucidation of the particular aspects of mitochondrial biogenesis [28–32].
Interestingly, drought response of close Brassica relatives, including Thellungiella, are distinct from that
observed for Arabidopsis [33]. However, reports comparing responses of Brassica cultivars with contrasting
drought tolerance are still limited [34–38], contrary to other species data [6,39–48]. Search for protein
markers in order to develop drought-tolerant plant accessions belongs to the current goals of proteomic
analyses [7].

Owing to recent research trends, this work was undertaken to gain a comprehensive view of
the influence of middle and severe water deficiency conditions on the mitochondrial biogenesis
of three cauliflower (Brassica oleracea var. botrytis) cultivars displaying diverse drought tolerance.
Previously, we studied cauliflower mitochondrial biogenesis under temperature stress and subsequent
recovery [13]. Cauliflower belongs to vegetables with the major cultivation yield in Central Europe.
The early generative phase of curd ripening belongs to the key developmental stages with some
physiological demands. In addition, due to the size of its vegetative organs, it is sensitive to the low
water level in the soil. To determine mitochondrial responses in relation to plant respiration, we aimed
(1) to investigate the dynamic nature of the mitochondrial proteome; (2) to identify the most variable
proteins in cauliflower curd mitochondria; (3) to determine the abundance of selected mitochondrial
proteins, including dehydrin-like proteins previously investigated by us [49]; (4) to analyze relevant
proteomic and transcriptomic alterations; and (5) to link them with the physiological level (respiratory
and photorespiratory alterations) for the discussion of the general responses to mild and severe water
deficit. This is the first comprehensive study of the mitochondrial proteome of the Brassica genus
member which allowed characterization of a broadened set of drought-responsive mitochondrial
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proteins in the cultivar context. It highlights the participation not only of oxidative phosphorylation
(OXPHOS) proteins, but a number of multifunctional mitochondrial proteins (including RNA editing
factors and dehydrin-like proteins) in drought response.

2. Results

2.1. Respiration and Photorespiration Pattern in Cauliflower Leaves

In order to study mitochondrial response at physiological and molecular levels in “Adelanto”
(“A”) and “Casper” (“C”) drought-sensitive cultivars, as well as in the “Pionier” (“P”) drought-tolerant
cultivar, total light (RT), day (Rd), and night (Rn) respiration, as well as the photorespiration (PhR)
rates were determined.

Generally, RT slightly increased under mild drought, but markedly decreased in severe treatment
in “A” and especially in “C”. In “P”, RT rate only slightly decreased under severe drought (Figure S1).
Rd (the average from all illumination conditions), as well as Rn increased progressively in the
drought-sensitive cultivars under all investigated treatments. Rd rate was markedly decreased in “P”
in mild drought. The highest increase of Rn and Rd rates was noted under severe drought in “A” and
“P”; Figure S1). Interestingly, respiratory effects depended on the cultivar. In “P” Rd exceeded Rn,
both in control conditions of growth and under severe drought treatment, while in “A” cultivar the Rd
exceeded Rn rate only under the severe stress. In “C” Rd was always lower than Rn, regardless of the
drought level.

PhR rate progressively declined along the stress duration in “A” and “C”. In contrast, a slight
increase of PhR rate was observed after mild drought in “P” (Figure S1). In the course of the drought
progression, both in “A” and (to a lesser extent) in “C” cultivar, the rapid increase of the contribution
of Rd and the decrease of the contribution of PhR in the RT value was noticed. Under mild drought in
“P” leaves, Rd and PhR rates contributed in the other way to RT rate (Figure S1).

Next, we investigated the dynamic nature of the cauliflower mitochondrial proteome in three
cultivars under water deficit. We studied whether diverse pools of drought-responsive mitochondrial
proteins accompany the analyzed respiratory alterations in stress-sensitive and stress-tolerant cultivars.

2.2. Specificity of Mitochondrial Proteome Alterations under Drought in Diverse Cauliflower Cultivars

Mitochondrial proteins isolated from curds of cauliflower plants of three investigated cultivars
(Section 2.1) grown in control conditions (0) as well as in mild (1) and severe (2) water deficit were
resolved by two-dimensional gel electrophoresis (2D PAGE). Experimental variants were analyzed
in pairs as follows: “A1” vs. “A0”, “A2” vs. “A0”, “C1” vs. “C0”, “C2” vs. “C0”, “P1” vs. “P0”, “P2”
vs. “P0”. 2D gels for nine different variants, including control, were run in triplicate. The Coomassie
Brilliant Blue (CBB)-stained master gel (a fused image) was created based on pooled samples containing
equal amounts of mitochondrial proteins from all experimental variants, resulting in 370 different
spots. The number of spots on the particular 2D gel varied from 231 to 370 between all analyzed
variants (including controls) for each cultivar (Figure S2).

Thirty-two spots (8.65% of all spots from the master gel) from all cultivars significantly varied
in abundance and their positions (Figures 1 and S2) were assessed from three biological replicates.
Experimental as well as statistical data for responsive protein spots are shown in Tables S1 and S2 and
on Figure S3. Mitochondrial proteomes varied among all cultivars. Massively decreased in abundance
spots exceeded those ones which increased in abundance. Under mild drought, four (in “A”), six (in
“C”), and two spots (in “P”) were specifically decreased in abundance. In the same conditions, a specific
increase in abundance for five, three, and two spots in those cultivars, respectively, was noted. Under
severe drought, six, two, and no spots were specifically decreased in abundance, and only one, two,
and two spots were specifically increased in abundance in the mentioned cultivars, respectively
(Figures 2 and S3). Thus, increased abundance in spots specific to the given drought level dominated
over common spots for both treatments. The number of spots diversely affected in abundance between
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investigated drought-sensitive and drought-tolerant cultivars exceeded the number of such spots
within the drought-sensitive cultivars. Conversely, spots commonly affected in abundance increased in
number between the drought-sensitive cultivars (Figure 2). Drought responses for the drought-tolerant
cultivar (“P”) were particularly specific (alterations in abundance related with the distinct set of protein
spots when compared to the impact of mild stress).

In addition, most of protein spots displayed the relationship in abundance, evaluated by the
correlation analysis (Table S3). Negatively correlated pairs exceeded in number the positively correlated
ones in their abundance across all cultivars and treatments. All significant correlations are strong; the
correlation pattern exemplifies the diversity of spot abundance alterations in drought.

Figure 1. Position of 32 drought-responsive spots (black arrows) on Coomassie Brilliant Blue
(CBB)-stained two–dimensional (2D) master gel with separated cauliflower mitochondrial proteins
(proposed identities of all protein spots are shown in Table S1 and peptide data in Table S4). This map
also shows positions of additional protein spots (blue arrows) from two-dimensional (2D) gels containing
resolved mitochondrial proteins of “Adelanto” (A) and “Casper” (C), that were cut out and used for
the identification of tryptic peptides specific to dehydrin-like proteins (proposed identities for those
spots appear in Table S6). Identifiers for spots containing the mentioned peptides are marked in red
(remaining labels—in blue). For molecular mass calibration (kDa) of protein spots, PageRuler Prestained
Protein Ladder (Thermo Scientific, Gdańsk, Poland) and Low Molecular Weight (LMW)-SDS Marker
Kit (GE Healthcare Poland, Warsaw, Poland) are used. For calibration of spot isoelectric point (pI),
Broad pI Kit (GE Healthcare) is used. Further data found in the text.
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Figure 2. Venn diagrams showing distribution of increased and decreased in abundance specific/common
protein spots to mild and severe drought across investigated cultivars. Numbers refer to protein spot
identifiers. Increased (magenta and pink diagrams) and decreased (light and dark green diagrams) in
abundance spots between cultivars are marked below each diagram; commonly and diversely affected in
abundance spots are also listed. Further data in the text.

2.3. Functional Categorization of Drought-Responsive Proteins in Diverse Cultivars of Cauliflower

Proteins from spots collected from the master gel were identified by the tandem mass spectrometry
coupled with liquid chromatography (LC-MS/MS). Obtained data were used for searching Mascot
against the Viridiplantae section of the NCBInr database (version 20160525 containing 88005140 protein
sequences). In addition, Gelmap tool (Available online: https://gelmap.de/projects-arabidopsis/)
was applied to compare cauliflower and Arabidopsis proteomic maps, and to validate MS identifications.
Because mitochondrial proteome from the non-green apical part of cauliflower curds was investigated,
the use of a 2D PAGE reference map of Arabidopsis cell culture mitochondrial proteome was particularly

https://gelmap.de/projects-arabidopsis/
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advisable. In some cases, we also used the map representing Arabidopsis mitochondrial proteome of
green tissues [13].

Identities of protein spots are presented in Table S1; individual peptides for each protein spot
are also listed in Table S4. All spots represented 91 non-redundant proteins within records that fit
to the experimental data. Of this number, 69 non-redundant proteins with the highest probability of
identification were found (bolded records in Table S1). Proteins were identified based mostly on high
similarity to sequences of diverse cruciferous species. Various respiratory (e.g., ATP synthase, proteins
for respiratory complexes (CII and CIV) biogenesis, mostly decreased in abundance), transporter
(e.g., diverse voltage-dependent anion channel (VDAC) isoforms and dicarboxylate antiporters) and
matrix proteins (ex. heat shock-proteins (HSPs), DNA-binding proteins, RNA editing and translation
factors, mitochondrial thioredoxins, diverse multifunctional enzymes for amino acid, carbohydrate,
lipid, and nucleotide metabolism, and some novel proteins) responded to drought. For instance,
diversely affected in abundance spots between cauliflower cultivars (Section 2.2; Figure 2) included,
inter alia, VDAC isoform 2, α/β hydrolase domain-containing protein 11, RNA editing factor 6, copper
ion binding protein, mitochondrial elongation factor EF-Tu, single-stranded DNA-binding protein
WHY2 (mitochondrial isoform X1), NADH-cytochrome b5 reductase-like protein, mitoribosomal
protein L21, malonyl-CoA-acyl carrier protein, SWIB/MDM2 domain superfamily protein, HSPs
(e.g., HSP70-9) and a few uncharacterized proteins. Selected alterations in protein abundance are
further discussed in Section 3.2.

Based on Arabidopsis protein orthologs, next we used the functional classification by the
Munich Information Center for Protein Sequences (MIPS) at VirtualPlant 1.3 (Available online:
http://virtualplant.bio.nyu.edu; [50]) for the clustering of drought-responsive proteins resolved
on 2D gels into the functional categories (Table S5). The majority of proteins belonged to the class
participating in various metabolic routes (ca. 44%). Next classes were represented by C compounds and
carbohydrate metabolism (23.1%), amino acid metabolism (18.7%), cell rescue, defense and virulence
(16.5%), energy conversions (12,1%) as well as in N and S metabolism proteins (7.7%). Participation
of electron transport (7.7%), complex cofactor binding proteins (6.6%) and folding proteins (4.4%) in
drought response were also distinctive (Table S5).

In the case of drought-tolerant “P” cultivar, some differences in the abundance of functional
categories across proteins compared to the all-cultivar data were observed. C-compound and
carbohydrate metabolism and energy conversion proteins contributed to a lesser degree (18.6 and
9.3%, respectively), however, N- and S-metabolism proteins, folding and stress-responding proteins
contributed to a greater extent (9.3%, 7%, and 16.3%, respectively). Stress response proteins within
cell rescue, defense, and virulence category were significantly enriched in drought-tolerant cultivar
(16.3%) (Table S5).

Accordingly to the data in Tables S1 and S2, proteins within spots No. 23, 135, 164, 204, 331,
332, and 421 seem to be the best candidates for stress tolerance in cauliflower. These are mainly
VDAC isoforms, ATP synthase subunit β (ATP2), At1g18480-like protein, WHY2 factor (isoform
X1), OB-fold-like protein, and NADH-cytochrome b5 reductase-like protein, as well as HSP70-9
(which notably increased in abundance in “P”). Thus, they represent quite broad protein classes
(oxidative phosphorylation (OXPHOS) proteins, as well as proteins involved in metabolite exchange,
mitochondrial DNA-binding proteins, some enzymes and chaperones). Additional candidate proteins
for the drought tolerance, according to results of immunoassays (Sections 2.4 and 2.5) are listed in the
final Conclusions section.

2.4. Abundance of Key Matrix Proteins, cyt. c and Components of Dissipating Energy Systems is Diversely
Affected under Two Drought Levels across Cauliflower Cultivars

To assess the abundance of additional, drought-responsive mitochondrial proteins and to validate
abundance of selected proteins identified in 2D spots, we performed Western immunoassays (Figure 3),
using specific antisera dedicated against investigated proteins.

http://virtualplant.bio.nyu.edu
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Figure 3. Abundance of Mn-superoxide dismutase (@MnSOD), cytochrome c (@cyt. c), heat shock
protein 70 (@HSP70), serine hydroxymethyltransferase (@SHMT), glycine decarboxylase subunit
H (@GDC-H), isocitrate dehydrogenase (@IDH), aconitase (@ACO) and 40 and 30kDa isoforms of
uncoupling proteins (@PUMP) in mitochondria isolated from control grown “Adelanto”, “Casper”,
and “Pionier” plants (A0, C0, P0), plants grown in moderate (A1, C1, P1) and severe water deficiency
(A2, C2, P2, respectively). Results from representative SDS-polyacrylamide gel blots using listed
antibodies (@) are shown. For loading control, antibody against mitochondrial ATP synthase subunit
α (@ATP1) is used. For molecular mass calibration, PageRuler Prestained Protein Ladder (Thermo
Scientific, Gdańsk, Poland) is applied. Protein molecular mass is indicated in kDa. All results are
presented as mean values (±SE) from triplicate detection. Significant alterations are marked with
asterisks: ***, p < 0.001, **, p < 0.01, *, p < 0.05 versus control values for each cultivar. Further data in
the text.
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The accumulation profile of those proteins varied depending on cultivar and stress intensity.
Under mild drought, a significant decrease in glycine decarboxylase subunit H (GDC-H) abundance
was visible only in “A” and “C” mitochondria, however, in severe stress, such a decrease was detected
only in “C”; in other stress variants (especially in “P”) GDC-H abundance increased. Strikingly,
another important photorespiratory enzyme, serine hydroxymethyltransferase (SHMT), decreased
in abundance in “C” under mild drought only, and remained stable in other experimental variants.
Changes in GDC-H and SHMT abundance analyzed by immunoassays were not fully associated with
accumulation of spots No. 158, 228, 230 and 241 (Figure 3; Table S1).

The abundance of mitochondrial heat shock protein HSP70 decreased in “A” and “P” (particularly
in severe drought) and slightly increased in “C” under mild stress (Figure 3). Interestingly, changes
in HSP70 abundance roughly agreed with 2D PAGE data (spot No. 421; Table S1). Accumulation of
isocitrate dehydrogenase (IDH) increased only in severe drought in “A” (Figure 3); in contrast, spots
No. 223 and 241 containing this protein under mild drought were decreased in abundance in the
same cultivar (Table S1). Aconitase (ACO) abundance (the applied antibodies can cross-react with
both ACO2 and ACO3 isoforms) was relatively stable, and it was increased only in “P” under severe
treatment; ACO2 decrease in abundance in drought-sensitive cultivars was detected by 2D PAGE (spot
No. 109; Table S1). The abundance of Mn superoxide dismutase (Mn-SOD) increased in almost all
investigated stress conditions, except severe drought treatment in “A” (Figure 3). Accordingly, we
noticed variations in the abundance of spot No. 4 containing a mitochondrial-like glutaredoxin in
this cultivar (Table S1). The intramitochondrial pool of cytochrome c (cyt. c) was decreased in severe
drought in all investigated cauliflower cultivars, but in mild stress, among drought-sensitive ones (“A”
and “C”; Figure 3) only.

In addition, the abundance of selected components of energy dissipating systems was investigated.
Antisera against potato detected two isoforms of plant-uncoupling mitochondrial proteins (PUMPs) of
30 and 45 kDa in cauliflower mitochondria. The abundance of both polypeptides representing isoforms
of uncoupling proteins was decreased significantly in “C” and to a lesser extent in “P” under mild
drought. However, in severe drought, we noticed visible increase in abundance of PUMP 40 kDa in
“P” (Figure 3). We also characterized the alternative oxidase (AOX) abundance. Monoclonal antibodies
raised against the Sauromatum guttatum enzyme cross-reacted with three polypeptides of 29–36 kDa in
cauliflower mitochondria (Figure 4A). Polypeptides of 29 and 33 kDa were significantly decreased in
their abundance in all investigated cauliflower cultivars; in “P”, such a trend was less pronounced
than among drought-sensitive cultivars. In contrast, a massive accumulation of AOX 36 kDa protein
after severe drought treatment of “A” was noted. In general, variations in abundance of PUMP 40 kDa
and AOX 36 kDa isoforms differentiate drought-sensitive and tolerant cauliflower cultivars.

2.5. Pattern of Dehydrin-Like Proteins (Dlps) in Cauliflower Mitochondria is Affected in Abundance by
Drought

We also investigated the pattern of cauliflower mitochondrial dehydrin-like proteins (dlps) under
mild and severe drought (Figure 5). According with our previous data [49], three independent
dehydrin-specific antisera were used (Section 4.8).

Obtained results indicate the response in abundance of low-molecular weight dlps (18–80 kDa) in
“A” and “C”. Stressgen antibodies detected the most evident increase in abundance of 18 and 27 kDa
dlps (and to a lesser extent, in “A” for 37 kDa protein) under two drought levels in “A” (mild drought)
and “C” (severe treatment). Large-sized dlps (ca. 80 kDa) also markedly increased in abundance in
drought-sensitive cultivars, although the highest increase in abundance of those proteins was noted
under mild stress in “A” (Figure 5A,B).

Antisera against dehydrin SK3-motif recognized smaller alterations, but there was a significant
increase in abundance of ca. 30/35 kDa dlps under both drought conditions in “A” and under severe
drought in “C” (Figure 5C). Alterations in the abundance of middle and large-sized dlps were less
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pronounced; the accumulation of dlps of 55–65 kDa slightly decreased under severe drought in “A”.
Similar results were observed for 30 and 40 kDa dlps in “P”.

Overall, dlps in “P”, contrary to “A” and “C” were relatively stable in abundance under the
analyzed adverse conditions, and dlps of 18 and 27 kDa differentiate best the drought-sensitive from
the drought-tolerant cauliflower cultivars.

Relationships between abundance of immunodetected proteins (Sections 2.4 and 2.5) were
evaluated by correlation analysis (Table S3). We found strong positive correlation between IDH
and GDC-H abundance, as well as between components of energy-dissipating systems (AOX 29 and
33 kDa isoforms, and in addition, AOX 33 kDa and PUMP 40 kDa isoforms). Positive correlations
involved also dlps of various sizes, confirming their participation in drought response. On the
contrary, accumulation of relatively stable IDH negatively correlated with drought-affected HSP70.
Similarly, accumulation of PUMP 30 kDa isoform negatively correlated with and cyt. c, and dlp 18 kDa
accumulation with GDC-H and PUMP 40 kDa isoform abundance. Negative correlations involved
also AOX 33 kDa isoform (not induced by drought in our study) and dlp 80 kDa (Table S3).

Figure 4. AOX protein and mRNA abundance in mitochondria isolated from control grown “Adelanto”,
“Casper”, and “Pionier” plants (A0, C0, P0), plants grown in moderate (A1, C1, P1) and severe water
deficiency (A2, C2, P2, respectively). (A) Analysis of detected AOX polypeptides (29, 33, 36 kDa) on
representative SDS-polyacrylamide gel blots using respective antibodies (@AOX). For loading control,
antibody against mitochondrial ATP synthase subunit α (@ATP1) is used. Equal protein loading is also
shown by Coomassie Brilliant Blue (CBB) staining of Western blots. For molecular mass calibration,
PageRuler Prestained Protein Ladder (Thermo Scientific, Gdańsk, Poland) is applied. Protein molecular
mass is indicated in kDa. (B) Relative abundance of AOX1a by reverse transcription quantitative PCR
(RT-qPCR). Graph at the left, relative abundance normalized to average level (mean log expression = 1).
Graph at the right, differences in log2 scale between treated and control variants. For normalization,
actin1 (ACT1) is used. Results of analyses are presented as mean values (±SE) from triplicate detection.
Significant alterations in (A) and (B) are marked with asterisks: ***, p < 0.001, **, p < 0.01, *, p < 0.05
versus control values for each cultivar. Further data found in the text.
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Figure 5. (pp. 11 and 12) Dlps abundance in mitochondria from control grown “Adelanto”, “Casper”
and “Pionier” plants (A0, C0, P1), plants grown in moderate (A1, C1, P1) and severe water deficiency
(A2, C2, P2, respectively). Results of analysis of dlps of various size (in kDa) on representative
SDS-polyacrylamide gel blots with antibodies directed against (A) dehydrin K-segment from Close [51]
(@K-segment (Close)) or from (B) Stressgen (@K-segment (Stressgen)), or (C) antibodies recognizing
dehydrin SK3 motif (@SK3) are shown. For loading control, antibody against mitochondrial ATP
synthase subunit α (@ATP1) is used. For molecular mass calibration, PageRuler Prestained Protein
Ladder (Thermo Scientific, Gdańsk, Poland) is applied. The protein molecular mass is indicated in kDa.
Investigated dlps are marked by arrows on gel blots. Significant alterations from triplicate detection in
(A), (B) and (C) are marked with asterisks: ***, p < 0.001, **, p < 0.01, *, p < 0.05 versus control values for
each cultivar. Further data in the text.
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2.6. Identification of Drought-Responsive Spots Containing Putative Dehydrin-Like Proteins

The most notable changes in the accumulation of dlps were noticed in “A” and “C” cultivars
under all analyzed drought conditions (Section 2.5). To further characterize the drought-responsive
cauliflower dlps, we prepared 2D blots with separated whole mitochondrial proteins from “A” and
“C” cultivars submitted to mild and severe drought, and we used such blots to immunodetect dlps
(within the particular protein spots) by antisera against dehydrin K-segment (Section 4.8). Results of
the dlp immunodetection on 2D spots are shown in Figure 6.

Figure 6. Representative pattern of dlps of “Adelanto” and “Casper” plants grown in moderate (A1, C1)
and severe drought (A2, C2, respectively) immunodetected with antibodies directed against dehydrin
K-segment [52] on two dimensional (2D) blots. Spots referring to detected proteins that were cut
out from the respective 2D gels for protein identification by liquid chromatography-tandem mass
spectrometry (LC-MS/MS, blue arrows) also appear in Figure 1 (denoted in blue and red). Proposed
identities for those spots and all tryptic peptide data are indicated in Table S6. Identifiers of spots
containing tryptic peptides specific to dehydrins are marked in red (remaining labels are shown in blue).
For molecular mass calibration (kDa) of protein spots, PageRuler Prestained Protein Ladder (Thermo
Scientific, Gdańsk, Poland) and Low Molecular Weight (LMW)-SDS Marker Kit (GE Healthcare Poland,
Warsaw, Poland) are used. For calibration of spot isoelectric point (pI), Broad pI Kit (GE Healthcare) is
applied. Further data found in the text.
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Due to the assay sensitivity, we were able to detect several spots per investigated
cultivar/treatment within pI range of ca. 5–8 and molecular weight of 18–48 kDa (35–48 kDa mostly)
with varying abundance under the water deficit (Section 2.5). However, the only single spot was
immunodetected in “A” cultivar under mild drought. Certain spots (C1-7 and C1-8, C2-4 to C2-6)
migrated in more neutral pI values, whereas the others (C2-7 and C2-8) represented basic proteins.
Based on immunoassay results, we cut out all immunodetected protein spots from 2D gels, and proteins
were identified by LC-MS/MS. Position of all those spots from Western blots are superimposed on the
spot pattern within the master gel image (Figure 1), and protein identities within individual spots are
shown in Table S6.

Notably, only selected spots contained dehydrin-related tryptic peptides that showed high
similarity of their protein sequences to the selected Brassica dehydrins. These were: five spots
(A2-2 to A2-6) in “A” cultivar under severe drought, two spots (C1-1 and C1-3) in “C” under mild
stress, and the single spot (C2-1, all indicated in red on Figure 6) in the latter cultivar under severe
water deficit. Detected tryptic peptides were highly similar to early response dehydrins (ERD14 and
ERD14-like) from various Brassica species, particularly B. oleracea var. oleracea and B. rapa (GenBank
accession.version identifiers XP_013592580.1 and XP_009128158.1, respectively; Table S6). However,
analyzed protein spots also contained highly abundant mitochondrial proteins (listed in Table S6).
Finally, we focused on the comparison of selected proteomic and transcriptomic responses important
for cauliflower mitochondrial biogenesis in drought, including abundance profiling of mRNA coding
for the identified dehydrins.

2.7. mRNA Abundance and Coordination of Mitochondrial Biogenesis in Drought

We examined the abundance of selected nuclear transcripts coding the investigated
drought-responsive proteins. RT-qPCR assays were carried out with application of primers specific for
the dedicated cDNA fragments (Table S7). As an internal calibrator of gene expression, cauliflower
actin1 (ACT1) mRNA was applied (the partial sequence was previously cloned and deposited in
GenBank under accession.version KC631780.1; [13]). The cauliflower AOX1a partial sequence was
previously cloned and deposited in GenBank (accession.version KC631778.1; [13]). Accumulation of
AOX1a mRNAs was significantly increased under mild drought in “C”; on the contrary, they were
strongly decreased in abundance under mild and severe drought in “A” and severe drought in “C”
(Figure 4B).

We studied the abundance of PRODH and P5CDH transcripts coding for important Pro catabolism
enzymes (proline dehydrogenase and ∆-1-pyrroline-5-carboxylate dehydrogenase, respectively).
Generally, the abundance of PRODH mRNA decreased in “C” in both drought treatments; the most
severe impact was visible under mild drought. In “A” cultivar, a significant decrease of PRODH mRNA
abundance was noted only in mild stress. Contrasting with this, P5CDH transcript accumulation was
only markedly elevated in “C” under severe drought (Figure 7).

The abundance of mRNA coding for ERD14 and ERD14-like dehydrins (Section 2.6) was also
determined. The highest increase in both transcript abundance was noticed in “A” cultivar in mild
and severe drought, which is in line with the induction of ERD14 gene expression within the short
dehydration period, as well as with the presence of dehydrin-related tryptic peptides in analyzed
protein spots. Notably, ERD14 and ERD14-like transcripts were significantly decreased in abundance
in “C” under severe water deficit (Figure 7).

Finally, we investigated the accumulation of mRNAs coding for five selected transcription factors
(CBF1a, CBF1b, CBF2, CBF4) related to stress response. CBF1a and CBF2 transcripts were increased
in abundance in “A”, but they declined in “C” cultivar, as drought progressed. Strikingly, CBF1b
mRNA showed substantial increase in abundance only in “C” in mild and severe drought treatments.
Increase in abundance of CBF4 mRNAs was also very well noted under severe water deficiency in “C”
(Figure 7).
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Correlation analysis revealed no significant relationship between accumulation pattern of
investigated transcripts (Table S3).

Figure 7. Relative abundance of transcripts (by reverse transcription quantitative PCR (RT-qPCR)) for
cauliflower proline dehydrogenase (PRODH), ∆-1-pyrroline-5-carboxylate dehydrogenase (P5CDH),
ERD14 dehydrin (ERD14), ERD14-like dehydrin (ERD14-like), as well as transcripts for transcription
factors (CBF1a, CBF1b, CBF2, CBF4) in control grown “Adelanto”, “Casper”, and “Pionier” plants (A0, C0,
P0), plants grown in moderate (A1, C1, P1) and severe drought (A2, C2, P2, respectively). Differences
in log2 scale between treated and control variants are also shown. In all cases, for normalization, actin1
(ACT1) is used. Significant alterations are marked with asterisks: ***, p < 0.001, **, p < 0.01, *, p < 0.05
versus control values for each cultivar. Further data found in the text.

3. Discussion

3.1. Physiological Response of Cauliflower Cultivars under Mild and Severe Drought

We studied leaf respiratory responses within three distinct cauliflower cultivars with varying
drought tolerance. Previously, we showed that the respiratory rate exceeded the photosynthetic one
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in cauliflower leaves under severe (but not moderate) water deficiency [52]. This emphasizes the
importance of adequate respiratory adaptations in this species under the mentioned unfavorable
conditions. Respiration and photorespiration become a part of the complex network response under
water deficiency, and photorespiration participates in oxidative damage avoidance while optimizing
photosynthesis [53]. We noticed enhancement of respiration among drought-sensitive cultivars
(contrary to “P”) under mild drought; the respiration rate was often decreased in severe treatment.
Interestingly, respiratory decline in such conditions is a well-known phenomenon (also for Brassica
species) and Rn rate is affected much under fast drying [19,30,54]. Mitochondrial Rd can be also
inhibited by drought; it markedly increases in prolonged drought but declines under short water
deficit [55–57]. In our case, the effect depended on the cultivar. Generally, drought-sensitive crop
cultivars exhibit larger RT decreases, than sensitive ones; nevertheless, both effects could be reversed
under drought recovery [58].

The increase of photorespiratory to gross CO2 assimilation ratio under drought is often
required in order to protect the photosynthetic machinery against photoinhibition. In field-grown
Gossypium hirsutum, drought resulted in affected stomatal conductance and elevated respiratory
and PhR rates, while photosynthetic electron transport was not affected [40,55,59]. The progressive
alteration of PhR rate in “A” and “C” along the stress duration is in line with Liu et al. [60] data,
suggesting that the PhR in drought-sensitive cultivars cannot be a major energy dissipation strategy,
as was reported for some Asiatic and Mediterranean-originated plant species. In contrast to that,
the visible increase of PhR rate in the mild treatment in “P” is known among drought-tolerant
species [61]. Notably, the general trend in PhR response could be reversed at the early vegetative
stage in some species with varying drought tolerance [62]. In drought-tolerant and drought-sensitive
cultivars of Malus domestica, even moderate drought resulted in major PhR decline [63].

Overall, observed alterations in the respiratory parameters coincide with the level of drought
tolerance among investigated cauliflower cultivars and suggest distinct regulation of drought
physiological responses in “P”.

3.2. Mitochondrial Response to Drought Involves Diverse Multifunctional OXPHOS, Transporter and Matrix
Proteins in Various Cauliflower Cultivars

We also investigated drought-resulted alterations within the cauliflower mitochondrial proteome.
Since the experimental molecular mass of protein spots corresponded roughly to the theoretical one,
we are rather convinced that investigated stress conditions do not result in excessive proteolysis [19].
Proteins identified in some double spots (e.g., No. 228, 230) showed similar responses, which is
in favor of the correctness of their assignments (Table S1). We applied functional classification
for the clustering of drought-responsive proteins (Table S5). Some functional classes are often
underrepresented, highlighting the relevance of organelle-specific studies; on the other hand,
key stress-related enzymes (for carbohydrate and amino acid metabolism) are often overrepresented
in drought response [7,45,64,65], whereas proteins related to protein folding and degradation may
decline in abundance [30].

Energy and carbohydrate metabolism proteins play a significant role in drought response [44,45].
Malate dehydrogenase (MDH), succinyl-CoA ligase subunit β and ACO2 (spots No. 35, 59 and 109)
were decreased in abundance in drought-sensitive cauliflower cultivars (the present study), in roots
of drought-sensitive rapeseed (Brassica napus) cultivar [35], as well as in other reports elucidating the
impact of the extended water deficit on the plant proteome [46,48], but contrary to the Ndimba et al. [18]
study on the sorbitol-induced drought. Variations of MDH accumulation are linked to increased NADH
demands [38]. ACO2 isoform is predominantly localized in plant mitochondria, and ACO-containing
complexes were shown to be unstable in stress [13,66].

Decrease in abundance of subunits of cauliflower OXPHOS complexes (e.g., CI and CII) was
similar to some studies [19,67]. Massive decrease in accumulation of CII subunit 1 and 5 (SDH1
and SDH5; spots No. 4, 23, 204; Table S1) differed from barley (Hordeum vulgare) drought response
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pattern [47]; CII subunits were increased in abundance after drought recovery in Populus euphratica [2].
Contrary to other reports [31,44], CIV subunits were unaffected in our study. ATP synthase was one
of the expected complexes that appeared decreased in abundance in cauliflower mitochondria [13].
Its assembly may be affected as diverse cellular energy demands rise under stress [68–70]. According
to our data (spots No. 135, 166), a decrease in abundance of ATP synthase subunits under water deficit
was reported by a number of studies [16,35,39], contrary to other ones [43]. Notably, ATP synthase
subunit 24 kDa was increased in abundance in “C” cultivar under severe drought (spot No. 317;
Table S1).

Water deficit results in decrease in abundance of pyruvate dehydrogenase (PDH) subunits [19].
However, alterations in abundance of Hippophae rhamnoides PDH E1 subunit α in drought [65]
contrasts with our data (decreased in abundance spots No. 223, 241 for “A” and “C”; Table S1).
To enhance pyruvate import to mitochondria, NRGA1 coding for a mitochondrial pyruvate carrier is
often co-expressed with other carrier genes [71,72]. Genes for mitochondrial dicarboxylate transporters
may be induced in water deficit [67]. In our study, PDH decrease in abundance was not associated
with co-regulation of any of the specific substrate carriers among proteins affected in abundance under
drought. The accumulation of dicarboxylate/tricarboxylate mitochondrial transporters declined in
drought-sensitive cultivars instead (spots No. 202, 204; Table S1).

A decrease in abundance of mitochondrial processing peptidase subunit β (MPPβ; spot No. 166)
in “A” (mild stress) and “P” (all treatments) was noted, in addition to translocase of the inner
mitochondrial membrane subunit (TIM44-2-like; spot No. 230) in “A” (Table S1). Regulation of
genes coding for MPP subunits in stress has been already reported [14,18,40,46,67]. It is nonetheless
known that drought may alter protein import into plant mitochondria [73]. Results of our study
indicate some perturbations in the general import pathway.

Some spots (No. 23 (VDAC2-like and adenosine nucleotide translocator protein) and 31
(hydrolase domain-containing protein and carbonic anhydrase)) showed inconsistent alterations
among drought-sensitive cultivars [68]. Distinct VDAC isoforms which increased in abundance in
Brassica rapa under prolonged drought and in drought-tolerant wheat cultivars [32,41,48] contrasted
with the decreased accumulation of VDAC isoforms in drought-sensitive cauliflower cultivars (spots
No. 23, 202-204; Table S1).

In general, distinct alterations within the mitochondrial proteome are potentially associated with
drought tolerance (Section 2.3; [45]). Such alterations encompass mitochondrial DNA/RNA-binding
proteins, chaperonins, heat-shock proteins, as well as a number of enzymes for mitochondrial
metabolism. Interestingly, we did not notice any biases towards protein spots increased in abundance
in drought-tolerant cultivar, contrary to Mohammadi et al. [35], however, we observed some
differences in the distribution of functional categories across responsive proteins (Section 2.3;
Table S5). ssDNA-binding proteins, as well as proteins related to RNA metabolism and translation
(e.g., RNA editing factors 1 and 6, and mitochondrial EF-Tu), were diversely affected in abundance
between drought-sensitive and tolerant cauliflower cultivars (spots No. 59, 61, 218, 331, 332). Also,
the abundance of SWIB/MDM2 domain superfamily protein, calcineurin-like metallophosphoesterase
superfamily, sucrose/ferredoxin-like proteins, mitoribosomal protein L21, chaperonin and HSP70
isoforms differentiated cultivars with diverse drought tolerance (spots No. 153, 164, 349, 420, and 421).
A prevalent decrease in abundance after mild drought treatment and more specific alterations in
protein spot accumulation in severe conditions likely represent specific adaptations in the cauliflower
mitochondrial proteome to diverse drought conditions. However, functional implications of the
observed proteomic alterations require further exploration.

3.3. Diverse Variations in Abundance of Matrix Proteins, cyt. c, Components of Dissipating Energy Systems
and Dehydrin-Like Proteins Across Drought Treatments/Cultivars

In order to obtain a more complete view on the abundance of additional, drought-affected proteins
we extended results of 2D PAGE analysis by Western immunoassays.
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GDC and SHMT belong to important photorespiratory enzymes, often regulated in stress
conditions (including drought) [15,19,30,40,45,68]. Ford et al. [41] reported contrasting regulation of
GDC, as well as SHMT, which depended on drought tolerance. In our study, changes in GDC-H
abundance roughly corresponded to the decline in the photorespiration rate only in drought-sensitive
cultivars under both mild and severe drought (Section 2.1; Figure S1). SHMT abundance did not
correlate with GDC-H alterations (Figure 3) and remained relatively stable. In contrast, HSP70
abundance alterations were not associated with drought tolerance (Figure 3). In such conditions,
an evident HSP70 increase in abundance was noted in pea mitochondria [19]. The HSP70 and IDH
abundance pattern is in line with typical variations of those proteins in stress [7,18,41]. Diverse
variations in the abundance of ACO isoforms may be a part of the adaptive response of Krebs cycle,
due to the altered NADH and carbon skeleton demands in drought. In some cases, however, enzymes
of Krebs cycle are massively decreased in abundance in water deficiency [74].

Mn-SOD displays distinct expression pattern between cultivars with variable drought
sensitivity, often by the increase and decrease in abundance in drought and drought recovery,
respectively [14,30,32,41,44,75]. Cauliflower Mn-SOD increased in abundance in most of all investigated
treatments and cultivars; the maximal increase was observed among drought-sensitive cultivars
(Figure 3) and was accompanied by variations in abundance of spot No. 4 containing mitochondrial-like
glutaredoxin in “C” (Table S1), suggesting that redox regulation likely accompanies drought
response [2].

According to our results, cyt. c can be released from cauliflower mitochondria even under the
first level of water deficiency. Such phenomenon often accompanies programmed cell death (PCD),
which indeed was suggested by us in temperature stress response [13]. However, in some plant species
(e.g., in pea mitochondria), drought did not result in PCD appearance [19].

Plant mitochondrial energy dissipating systems including AOX, PUMPs, and membrane channels
functionally modulate drought response by influencing key signaling pathways [8]. We used antisera that
were able to immunodetect respective cauliflower PUMP isoforms. An observed decrease in abundance
prevailed the pattern, and only in severe drought was the increase in PUMP 40 kDa abundance in
“P” noted (Figure 3). Also, the abundance of selected PUMP isoforms in pea mitochondria was
increased in drought [19]. To extend our proteomic data on further components of energy dissipating
systems, we also investigated AOX protein accumulation. This enzyme controls respiration rate and
photosynthetic efficiency in drought, and often increases in abundance during severe water deficit
and re-watering [22,76,77]. Three polypeptides of 29–36 kDa in cauliflower mitochondria [13] likely
represent AOX isoforms resulting from the expression of AOX gene family and diverse posttranslational
modifications of this protein (Figure 4A). Our results contrast with the data of Taylor et al. [19],
who showed drought-affected induction of similarly sized 31 kDa pea isoform. However, abundance of
AOX polypeptides could be substantially increased among drought-sensitive cultivars.

Under progressing drought, abundance of late embryogenesis abundant (LEA) proteins
preserving the stability of membrane proteins and adjusting intracellular osmotic pressure often
increases [32,78]. Some LEA proteins, including dlps, were found to be mitochondrially-localized in
a number of crop species [79–82]. Our previous report showed that accumulation of mitochondrial dlps
was altered in abundance under temperature stress and after stress recovery [49]. We extended those
analyses to three cultivars of cauliflower and to mild and severe drought treatments (Figure 5) using
three independent antisera. Broadly-sized dlps responded in abundance as a part of mitochondrial
adaptations to water deficiency, because such a response was visible only in drought-sensitive cultivars.
The stable dlp accumulation in “P” mitochondria agrees with drought tolerance of this cultivar and
with the relatively lower increase in dehydrin mRNA abundance (e.g., DHN8) under progressed
drought among highly adapted plants [36]. Alterations in dlps abundance, as well as the induction
pattern of other dlps in drought (Figure 5), substantially extend the data on mitochondrial proteins
related to dehydrins in Brassicaceae.
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Owing to results on the massive increase of dlps abundance under investigated drought treatments
in stress-sensitive cultivars, we identified putative dlps involved in response to water deficit in those
cultivars by tandem MS. Protein spots immunopositive with dehydrin K-segment-specific antibodies
were selected, and several of them contained tryptic peptides with high sequence similarity to selected
Brassica dehydrins (Figure 6, Table S6). Due to the fact that highly abundant proteins in spots would
hamper identification of dlps, we did not employ protein microsequencing for identification of chosen
dlps, and subsequent amplification and cloning full-length cDNAs. We were unable to determine the
N-terminal sequence for the given dlps. Notably, depletion of any abundant proteins would enhance
the risk of sample cross-contamination.

3.4. Some Transcriptomic Responses and the Coordination of the Mitochondrial Biogenesis in Drought

We analyzed transcriptomic responses to drought connected with the profiling of the abundance
of some nuclear transcripts. Since observed proteomic alterations (particularly those connected with
dlps abundance) were especially distinctive among drought-sensitive cultivars, we focused on such
experimental variants only for this part of our study.

The choice of AOX1a mRNAs for our study can be justified by the fact that accumulation
of AOX1a transcripts is often affected by diverse stress stimuli [83]; other members of the AOX
family, (e.g., AOX1d), can be increased in abundance in drought, as well [31]. In our study, the most
severe drought, the most intense decrease of AOX1a accumulation in “A” was observed. A major
imbalance between protein and mRNA abundance in “C” and “A” cultivars was noticed. In “A”,
two immunoreactive AOX protein bands decreased in abundance under mild and severe stress (which
is in line with AOX1a transcript accumulation pattern in the same conditions), whereas the third band
(36 kDa) notably increased in abundance in the severe treatment (Section 2.4; Figure 4). In this cultivar,
under severe drought, the lowered amount of AOX1a mRNA contrasted with enhanced accumulation
of 36 kDa AOX isoform. In “C”, no significant increase in abundance of AOX protein was visible,
contrary to the notable increase in abundance of AOX1a transcripts under mild drought. Thus, AOX1a
mRNA compensatory increase in abundance was accompanied by the decrease in protein abundance
and vice versa. Alterations of AOX1a mRNAs to drought involved only selected cauliflower cultivars
and stress conditions (Figure 4B). Lack of coordination between AOX protein and mRNA may result
from synthesis of investigated immunoreactive polypeptides from transcripts coding distinct AOX
isoforms (especially 33 kDa protein). Regulation of AOX1a mature mRNA abundance may depend
on changes in selection of transcripts for translation, diverse mRNA/ribosome interactions and/or
affected protein synthesis [7]. The decreased pool of those transcripts in some investigated variants
suggests their efficient translation leading to protein excess and thus those mRNAs seems to be
fully translatable.

Participation of non-coding RNAs in the regulation of the abundance of investigated transcripts
or their translational efficiency should be also considered. Growing evidence supports the presence of
miRNAs (nuclear-encoded and processed before import to mitochondria) or components of miRNA
biogenesis machinery within mitochondria [84–87]. We focused on in silico miRNA candidates that
may putatively target B. oleracea AOX1a by psRNATarget (Available omline: http://plantgrn.noble.
org/psRNATarget/analysis?function=2; [88]) search (Table S8). Arabidopsis and Brassica miRNAs were
taken into account, because of the relative high similarity of AOX1a nucleotide sequence (GenBank
accession.version KC631778.1) between those genera. According to our data, most of the predicted
miRNAs resulted rather in messenger degradation, than in affected translation (Table S8). This does
not obviously exclude the possibility that multiple non-coding RNAs could influence AOX1a mRNA
and protein abundance.

Proline, the potent osmoprotectant, over-accumulates under drought and decreases under drought
recovery [7,29,30,89]. Its variations may not simply correspond to the level of drought adaptation [36].
Previously, we showed that cauliflower P5CDH protein increased in abundance both in heat and heat
recovery [13]. We postulate the reciprocal regulation of the abundance of ProDH as well as P5CDH
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transcripts under severe drought in “C”. Decrease in abundance of ProDH mRNA was not equal
between investigated cultivars, indicating diverse osmolyte accumulation in those cultivars [37].

The respective proteomic responses related with dlps profile were very evident for the
drought-sensitive cultivars (Section 2.5). Henceforth, we determined the abundance of transcripts
coding ERD14 and ERD14-like dehydrins, because tryptic peptides with high sequence similarity
to those proteins were found in protein spots on 2D blots that were immunoreactive with dehydrin
K-segment antisera (Section 2.6; Figure 6, Table S6). ERD transcripts (including ERD14) are known to
be highly abundant under ABA, salinity, cold, and drought [64,90,91]. In general, our results suggest
that positive transcriptomic response progressing with water deficit coincides with strong increase in
abundance of dlps in “A” (drought-sensitive) cultivar (Figure 5).

Finally, to obtain a more complex view on cauliflower drought responses, we examined the
abundance of transcripts coding for several nuclear transcription factors (TFs), which did not respond
in protein abundance in our study, belonging to C-repeat/dehydration-responsive element binding
(CBF/DREB) subfamily (from ETHYLENE RESPONSE FACTOR (ERF) family). These proteins
contain conserved DNA-binding domains, and are regulated by a number of stressors, including
cold and drought [92]. Notably, DREB subfamily contains at least 91 known members in B. oleracea;
the whole ERF family and DREB A-4 subgroup are particularly enriched comparing with Arabidopsis
data. B. oleracea CBF genes displayed various expression patterns. In our study, CBF1a expression
showed contrasting responses between two drought-sensitive cultivars; the most visible increase in
abundance was noted in severe drought for “A” (CBF1a) and “C” (CBF1b). Results obtained for CBF1b,
and particularly, for CBF4 transcripts, roughly agree with the late induction pattern in B. oleracea [93].
CBF4 and DREB1 regulons were suggested to participate in drought adaptation or enhance drought
tolerance, but participation of some other CBFs in this process is still controversial [94,95]. Therefore,
our results extend such findings by showing alterations in cauliflower CBF1a, CBF1b, and CBF2 mRNA
abundance under drought (the latter displayed similar expression profile to CBF1a). Rapid responses
of CBF1a, CBF2, and CBF4 genes to mild drought suggest that they may participate in positive drought
signaling in “A” and “C”, respectively.

4. Materials and Methods

4.1. Growth of Plant Material and Stress Application

Seeds of three analyzed cauliflower (Brassica oleracea var. botrytis subvar. cauliflora DC) cultivars
(“Adelanto”, “Casper” and “Pionier”) were obtained from Bejo Zaden (Warmenhuizen, The Netherlands).
Cauliflower seedlings were produced in 0.09 dm3 pots filled with peat substrate (Kronen-Clasmann,
Gryfice, Poland). Seedlings with 3–4 leaves were transferred to 5 dm3 containers. Plants were
grown for three months in cultivation chambers at a local breeding station (Poznan University of
Life Sciences, Poland) at 23/19 ◦C (day/night) and 70% relative humidity under photon flux density
200 µmol·m−2s−1 (16 h of light/8 h of dark). Stress conditions were applied to plants with developing
curds up to a curd diameter of 7–10 cm. The water capacity of the substrate was 40% (v/v) and under
drought stress, the water content decreased to 22% (v/v) (mild drought, the first level of drought) and
to 15% (v/v) (severe drought, the second level of drought). After the occurrence of the assumed level
of drought stress, plants were irrigated to 40% (v/v) and then drought treatment was applied again
and repeated for ca. 2–3 weeks. Curds were harvested immediately after stress treatment cessation.
Duration of the drought stress was estimated on the basis of relative water content (RWC) in the soil
and in plant leaves and curds. RWC in developed, mature cauliflower leaves in mild drought was
achieved at RWC of 94%, 92%, and 95% for “A”, “C”, and “P” cultivars, respectively. Under severe
drought, RWC values lasted 69%, 74%, and 73% for the mentioned three cultivars, respectively. RWC of
cauliflower leaves under severe drought referred to the third and fourth day of the drought treatment.
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4.2. Physiological Analyses

Physiological analyses were conducted on well-developed cauliflower leaves with an LCpro+
infrared gas analyzer (ADC BioScientific Ltd., Hoddesdon, UK). To obtain more reliable results, extra
experimental replicas (n = 8) were used. Rd rate was determined according to the Laisk [96] method.
CO2 assimilation rate representing RT rate was recorded during intercellular CO2 concentration (Ci)
decreased to 0 ppm at 22 ◦C and 50% relative humidity. For each value of photosynthetic photon flux
density (PPFD) at 200, 400, and 600 µmol·m−2s−1, the linear regression of CO2 assimilation (A) versus
Ci was calculated. The intersection of three regression lines was determined by minimizing the sum of
squares of errors between the measured values and calculated for each PPFD level, while minimizing
the standard deviation for the intersection. PhR rate was determined as the difference between RT

and Rd values at Ci 0 ppm (the latter one expressed as a given CO2 evolution rate at the crossing
point of all A/Ci curves). Rn rate was measured after 30 min of adaptation to the dark. The applied
drought treatments were necessary for visible alterations in respiratory and photorespiratory rates
(Figure S1). The given drought exposures (Section 3.1) were necessary to observe proteomic and
physiological alterations.

4.3. Isolation of Mitochondria, Purity Assays, and Protein Determination

Mitochondria from the topmost 5 mm-thick layer of cauliflower curds were extracted by
differential centrifugation and purified in Percoll gradients according to Pawlowski et al. [97]. During
isolation, the Complete Mini EDTA-free Protease Inhibitor Cocktail (Merck Poland, Warsaw, Poland)
was used. Purity assays of isolated mitochondria were conducted according to previous reports [49,97].
Protein content was determined using a Bio-Rad Protein Assay (Bio-Rad Poland, Warsaw, Poland),
with bovine serum albumin as a standard curve calibrator. The efficiency of organellar preparations
(proteins per 100 g of cauliflower curds) varied from 0.9–3.5 mg for “C” and “P” and 0.1–1.9 mg for
“A” cultivar.

4.4. Sample Preparation for the Two Dimensional Isoelectric Focusing/SDS Polyacrylamide Gel Electrophoresis
(2D IEF/SDS-PAGE)

Proteins were extracted and precipitated overnight at −20 ◦C in a 10% solution of trichloroacetic
acid in acetone containing 20 mM dithiothreitol (DTT) by the method of Staszak and Pawłowski [98].
After centrifugation (16,000× g for 5 min at 4 ◦C), resulting pellets were washed three times with
1 mL of acetone supplemented with 20 mM DTT. Samples were re-centrifuged after each washing,
and resulting pellets were vacuum dried and then resuspended in lysis buffer (7 M urea, 2 M thiourea,
2% CHAPS, 1.5% DTT, 0.5% IPG buffer pH 4–7), and supplemented with Protease Inhibitor Cocktail
(Roche, Basel, Switzerland) according to the manufacturer’s suggestions. Protein concentration in
processed samples was determined using the Bradford assay [99].

4.5. 2D IEF/SDS-PAGE

All analyses were conducted at 25 ◦C with at least three biological replicas. Proteins (500 µg
for CBB staining) were first separated according to their charge on rehydrated Immobiline DryStrip
Gels (24 cm in length, containing linear gradient of pH 3–10) with rehydration buffer (6 M urea, 2 M
thiourea, 2% CHAPS, 20 mM DTT, and 0.5% Pharmalyte, pH 4–7) on an Ettan IPGphor 3 IEF System
(GE Healthcare, Uppsala, Sweden). The program for isoelectric focusing was applied according to the
manufacturer’s suggestions. Strips were either stored at −80◦C or they were directly treated for 10 min
with equilibration solution I (6 M urea, 1.5 M Tris-HCl, pH 8.8, 30% glycerol, 2% SDS, and 1% DTT) and
for the same time with equilibration in solution II (solution I supplemented with 2.5% 2-iodoacetamide,
without DTT) and subjected to a second dimension run (SDS-PAGE).

For SDS-PAGE, Ettan DALT 12.5% Precast Polyacrylamide Gels and an Ettan DALTsix
Electrophoresis System (both from GE Healthcare) were used. Conditions for the run were as follows:
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1 h at 80 V and 5 h at 500 V. Broad pI Kit, pH 3–10 (GE Healthcare) for protein spot pI calibration
within 3.5–9.3, as well as PageRuler Prestained Protein Ladder (Thermo Scientific, Gdańsk, Poland)
and LMW-SDS Marker Kit (GE Healthcare) for protein spot MW calibration were used. Resolved
proteins were stained with colloidal CBB, which, in addition to visualization and quantification, also
allowed for downstream MS analysis [100].

4.6. Proteome Analysis

Gels were scanned and evaluated using ImageMaster 2D Platinum v7.0 software (GE Healthcare).
After spot detection, 2D gels (three gels from three independent biological samples) were aligned
and matched, and normalized spot volumes were determined quantitatively. For each matched spot,
the percent volume was calculated as the volume divided by the total volume of matched spots.
Spots with variations in abundance were subjected to ANOVA, Tukey–Kramer HSD tests and contrast
analysis (JMP software, SAS Institute, Cary, NC, USA) to assign spots that significantly varied (p < 0.05)
in abundance for two factors: drought and cultivar, and their interactions (Table S2). An unpaired
two-tailed Student’s t-test was used to assign significant variations in abundance (a given drought
treatment vs. control) within analyzed cultivars (Section 4.10; Table S1). Proteins were subsequently
identified by MS from spots that significantly varied in abundance.

4.7. Protein Identification by Mass Spectrometry (MS)

Gel spots were subjected to a standard “in-gel digestion” procedure in which proteins were
reduced with 10 mM DTT (for 30 min at 56 ◦C), alkylated with 55 mM 2-iodoacetamide (45 min in
the dark at room temperature) and digested overnight with trypsin (Promega, Madison, WI, USA) in
25 mM ammonium bicarbonate. The resulting peptides were eluted from the gel matrix with 0.1%
trifluoroacetic acid in 2% acetonitrile.

Peptide mixtures were analyzed by liquid chromatography coupled to a mass spectrometer in
the Laboratory of Mass Spectrometry (Institute of Biochemistry and Biophysics, Polish Academy
of Sciences, Warsaw, Poland). Samples were concentrated and desalted on a RP-C18 pre-column
(nanoACQUITY Symmetry® C18, Waters, Milford, MA, USA), and further peptide separation was
achieved on a nano-Ultra Performance Liquid Chromatography (UPLC) RP-C18 column (BEH130
C18 column, 75 µm id, 250 mm long; Waters, Milford, MA, USA) of a nanoACQUITY UPLC system,
using a linear 0–60% CAN gradient for 120 min in the presence of 0.05% formic acid with a flow rate of
150 nL min−1. The column outlet was directly coupled to the electrospray ionization (ESI) ion source
of an Orbitrap Velos type mass spectrometer (Thermo Electron Corp., San Jose, CA, USA), working
in the regime of data dependent MS to MS/MS switch. An electrospray voltage of 1.5 kV was used.
A blank run preventing cross-contamination from previous samples preceded each analysis.

Proteins were identified using the Mascot search algorithm (Available online: www.matrixscience.
com) against the NCBInr (Available online: www.ncbi.nig.gov) databases. Protein identification was
performed using the Mascot search probability-based molecular weight search (MOWSE) score. The ion
score was −10 × log(P), where P was the probability that the observed match was a random event.
To avoid possible misidentifications resulting from the implementation of large datasets, as pointed out
by Schmidt et al. [101], we were able to set the threshold of false positive rate. Peptides with a Mascot
score exceeding the threshold value, corresponding to a <5% false positive rate as calculated by the
Mascot procedure, were considered to be positively identified.

4.8. SDS-PAGE, Western Blotting, and Immunodetection of Proteins

Proteins resolved by one-dimensional SDS polyacrylamide gel electrophoresis (12%
SDS-PAGE; [49]) were electroblotted in semidry conditions onto Immobilon-P membranes (Merck,
Warsaw, Poland), using a TE77 PWR ECL Semi-Dry blotting apparatus (GE Healthcare Life Science
Poland, Warsaw, Poland) and standard transfer buffer (20% methanol, 48 mM Tris, 39 mM glycine,
0.0375% SDS). Proteins resolved on 2D gels were electroblotted in semidry conditions using the
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same apparatus and alternative transfer buffer (10% methanol, 10 mM CAPS pH 11.0). Protein
immunodetection was carried out with rabbit polyclonal antibodies directed against Mn-SOD (product.
No. AS09 524, 1:5000 dilution), cyt. c (product No. AS08 343A, 1:5000), mitochondrial HSP70
(product No. AS08 347, 1:4000), SHMT1 (product. No. AS05 075, 1:10,000), GDC-H (product
No. AS05 074, 1:4000), IDH (product No. AS06 203A, 1:4000), aconitase (product No. AS09
521, 1:5000; all antisera listed above from Agrisera, Vännäs, Sweden), PUMP (1:1000; [102,103]),
dehydrin K-segment (1:1000, a gift of T.J. Close, University of California at Riverside, USA; [51]),
dehydrin K-segment with N terminal cysteine on the synthetic peptide (product No. PLA-100, 1:1400;
Stressgen, Victoria, BC, Canada), SK3-motif of Solanum sogarandinum DHN24 dehydrin (1:500, a gift of
T. Rorat, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland; [104]) and mouse
monoclonal antibodies directed against AOX (1:1000; [105]), and ATP1 (1:200; [106]; both antisera
donated by T. Elthon, University of Lincoln, Lincoln, NE, USA). Immunoassay details were described
previously [13,49]. Enhanced chemiluminescence (ECL) signals were quantified with Multi Gauge
(v2.2, Fujifilm, Tokio, Japan).

4.9. RNA Isolation and RT-qPCR

Total RNA from cauliflower curds was extracted using an EZ-10 Spin Column Plant RNA
Mini-Preps Kit (BioBasic, Markham, ON, Canada) according to the manufacturer’s protocol. Genomic
DNA contaminants were removed by RQ1 DNase I free of RNase (Promega Poland, Warsaw, Poland).
cDNA was synthesized using 1 µg of RNA, 0.2 µg of random hexamers mixture from HexaLabel DNA
Labeling Kit (Thermo Scientific, Gdańsk, Poland) and 200 units of M-MLV reverse transcriptase
(Promega Poland, Warsaw, Poland) in a 20 µL total volume for 1 h at 37 ◦C. After first strand
synthesis, the reaction mixture was diluted with 10 mM Tris-HCl, pH 8.0 three or six times, and after
normalization, aliquots of 1–2 µL were subjected to RT-quantitative PCR (RT-qPCR) using a Thermo
Scientific Luminaris Color HiGreen High ROX qPCR Master Mix kit on an Applied Biosystems
StepOnePlus Real-Time PCR System. The following profile was used: 5 min at 95 ◦C followed by
40 cycles of 20 s at 95 ◦C, 1 min at 60 ◦C, and finally, a melting step. The quality of qRT-PCR assays
was verified by LinRegPCR (v. 2012.3, Heart Failure Research Center, Academic Medical Center,
Amsterdam, The Netherlands). Outliers were manually removed. Two biological and at least three
technical replicates were included.

Fragments of cauliflower cDNA for selected proteins were amplified using specific primers
(Table S7); a 239 bp fragment of cauliflower actin1 (ACT1) cDNA was used as an internal standard.
Amplicons were directly sequenced bi-directionally (Big Dye Terminator v. 3.1 Cycle Sequencing kit,
Applied Biosystems Poland, Warsaw, Poland) on an ABI Prism 31-30 XL system (Applied Biosystems
Poland, Warsaw, Poland) for sequence identity verification. In the case of AOX1a and ACT1, amplicons
were additionally cloned to a pGEM T-Easy vector with the pGEM T-Easy Ligation System II (Promega)
before sequencing.

4.10. Statistical Analysis

All experiments were conducted in triplicate, unless otherwise indicated. Results of densitometric
analyses (Sections 2.4, 2.5, and 2.7), and 2D PAGE spot pattern alterations based on the spot volume
(Sections 2.2 and 2.3) are presented as means ± SE. An unpaired two-tailed Student’s t-test was used to
identify significant differences; in particular, differences were considered to be statistically significant
if p < 0.05 (*), p < 0.01 (**), or p < 0.001 (***). Significant correlations (Table S3) among variables
were calculated using Spearman’s correlation coefficient (p < 0.05) with the help of STATISTICA 13.1
(StatSoft Poland, Kraków, Poland) software.

5. Conclusions

Results of our study that significantly broaden Brassica data suggest that plant mitochondria
(across distinct cultivars) are actively engaged in the response to water deficit. Variations within the
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mitochondrial proteome of investigated cauliflower cultivars encompass major decreases in abundance;
increased in abundance spots were specific to the intensity of the water deficit. Investigated proteomic
variations coincided roughly with drought tolerance. Mitochondrial porin isoforms, ATP synthase
subunit, DNA-binding proteins, heat shock proteins, components of energy-dissipating systems (AOX
isoform 36 kDa, PUMP isoform 40 kDa) as well as dehydrin-like proteins (18 and 27 kDa) investigated
in our study are among the best candidates for stress tolerance markers, highlighting diversity of
drought responses within cauliflower mitochondria. Identification of dehydrin-specific tryptic peptides
in several spots from 2D gels additionally indicates for the relevant participation of such proteins in
acclimation to water deficit.

The future study of the dynamic pattern of PTMs [30] among cauliflower drought-responsive
proteins will use spectral data obtained from MS/MS peptide sequencing. Owing to the relevance
of protein phosphorylation in the regulation of protein activity and stress-signaling pathways [107],
we will pay special attention to such protein modification.

Alterations of transcripts for the stress-affected AOX isoform were largely unassociated with
the proteomic ones, which is contrary to findings from our previous study on plant mitochondrial
biogenesis in temperature stress and thermal recovery [13]. We suggest that the enhanced availability
of AOX1a transcripts for translation may be an important regulatory point for the drought response of
cauliflower mitochondria. Such results could be at least partially explained by Nakaminami et al. [108]
findings on the imbalanced mRNA/protein pools and the altered pattern of translation initiation
through stress acclimation and de-acclimation. Profiling of TF expression highlights valuable variations
(additional to the ones at the protein level) in drought responses between stress-sensitive cultivars.

Additional studies are required (1) to elucidate the impact of drought on transcript binding to
ribosomes; (2) to investigate protein biosynthesis patterns [13] and mechanisms of increased selection
of mRNA for translation; (3) to analyze participation of non-coding RNAs in the mitochondrial
biogenesis (with emphasis on the cauliflower microtranscriptome targeting investigated mRNA);
and (4) to characterize cauliflower genes with expression pattern regulated by the investigated CBF
factors under drought.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/19/4/1130/s1.
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of the paper; Włodzimierz Krzesiński cultivated plant material, conducted all physiological assays, analyzed
their results and participated in paper writing; Tomasz Spiżewski assisted in cultivation and maintenance of
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Abbreviations

ACO aconitase
AOX alternative oxidase
ATP1, ATP2 mitochondrial ATP synthase subunit α or subunit β
CBB Coomassie Brilliant Blue
CBF/DREB C-repeat/dehydration-responsive element binding
CI, CII, CIV respiratory complexes I, II and IV
CAPS 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate
CHAPS 3-[(3-cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate
2D PAGE two-dimensional gel electrophoresis
DHN dehydrin
dlp dehydrin-like protein
DTT dithiothreitol
EDTA ethylenediaminetetraacetic acid
EF elongation factor
ERD early response to dehydration
ERF ETHYLENE RESPONSE FACTOR
FDH formate dehydrogenase
GDC glycine decarboxylase
HSP heat shock protein
IDH isocitrate dehydrogenase
IEF isoelectrofocusing
LC-MS/MS liquid chromatography-tandem mass spectrometry
LEA late embryogenesis abundant
MDH malate dehydrogenase
miRNA microRNA
MPP mitochondrial processing peptidase
OXPHOS oxidative phosphorylation
P5CDH ∆-1-pyrroline-5-carboxylate dehydrogenase
PDH pyruvate dehydrogenase
PhR photorespiration rate
PPFD photosynthetic photon flux density
ProDH proline dehydrogenase
PTMs posttranslational protein modifications
PUMP plant-uncoupling mitochondrial protein
Rd respiration in the light (day respiration) rate
Rn respiration in the dark (night respiration) rate
ROS reactive oxygen species
RT total respiration rate
RT-qPCR reverse transcription quantitative PCR
RWC relative water content
SDH succinate dehydrogenase (complex II)
SHMT serine hydroxymethyl aminotransferase
SOD superoxide dismutase
TF(s) transcription factor(s)
UPLC nano-ultra performance liquid chromatography
VDAC voltage-dependent anion channel
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52. Krzesiński, W.; Kałużewicz, A.; Frąszczak, B.; Zaworska, A.; Lisiecka, J. Cauliflower’s response to drought
stress. Nauka Przyroda Technol. 2016, 10. [CrossRef]

53. Voss, I.; Sunil, B.; Scheibe, R.; Raghavendra, A.S. Emerging concept for the role of photorespiration as an
important part of abiotic stress response. Plant Biol. (Stuttg.) 2013, 15, 713–722. [CrossRef] [PubMed]

54. Kim, J.; van Iersel, M.W. Slowly developing drought stress increases photosynthetic acclimation of
Catharanthus roseus. Physiol. Plant. 2011, 143, 166–177. [CrossRef] [PubMed]

55. Haupt-Herting, S.; Klug, K.; Fock, H.P. A New Approach to Measure Gross CO2 Fluxes in Leaves. Gross
CO2 Assimilation, Photorespiration, and Mitochondrial Respiration in the Light in Tomato under Drought
Stress. Plant Physiol. 2001, 126, 388–396. [CrossRef] [PubMed]

56. Campos, H.; Trejo, C.; Peña-Valdivia, C.B.; García-Nava, R.; Conde-Martínez, F.V.; Cruz-Ortega, M.R.
Stomatal and non-stomatal limitations of bell pepper (Capsicum annuum L.) plants under water stress and
re-watering: Delayed restoration of photosynthesis during recovery. Environ. Exp. Bot. 2014, 98, 56–64.
[CrossRef]

57. Sperlich, D.; Barbeta, A.; Ogaya, R.; Sabaté, S.; Peñuelas, J. Balance between carbon gain and loss under
long-term drought: impacts on foliar respiration and photosynthesis in Quercus ilex L. J. Exp. Bot. 2016, 67,
821–833. [CrossRef] [PubMed]

58. Vassileva, V.; Simova-Stoilova, L.; Demirevska, K.; Feller, U. Variety-specific response of wheat
(Triticum aestivum L.) leaf mitochondria to drought stress. J. Plant Res. 2009, 122, 445–454. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/pmic.200900047
http://www.ncbi.nlm.nih.gov/pubmed/19722189
http://dx.doi.org/10.3389/fpls.2011.00044
http://www.ncbi.nlm.nih.gov/pubmed/22639595
http://dx.doi.org/10.1007/s00216-011-5532-z
http://www.ncbi.nlm.nih.gov/pubmed/22080421
http://dx.doi.org/10.1007/s00425-012-1798-4
http://www.ncbi.nlm.nih.gov/pubmed/23129216
http://dx.doi.org/10.1007/s11103-013-0024-5
http://www.ncbi.nlm.nih.gov/pubmed/23443681
http://dx.doi.org/10.1007/s00726-012-1338-3
http://www.ncbi.nlm.nih.gov/pubmed/22707152
http://dx.doi.org/10.1186/s12870-015-0416-6
http://www.ncbi.nlm.nih.gov/pubmed/25849288
http://dx.doi.org/10.3389/fpls.2015.00479
http://www.ncbi.nlm.nih.gov/pubmed/26175745
http://dx.doi.org/10.1186/s12870-016-0871-8
http://www.ncbi.nlm.nih.gov/pubmed/27576435
http://dx.doi.org/10.1186/1471-2229-10-181
http://dx.doi.org/10.1104/pp.109.147025
http://www.ncbi.nlm.nih.gov/pubmed/20007449
http://dx.doi.org/10.1007/BF00029004
http://www.ncbi.nlm.nih.gov/pubmed/7693020
http://dx.doi.org/10.17306/J.NPT.2016.4.44
http://dx.doi.org/10.1111/j.1438-8677.2012.00710.x
http://www.ncbi.nlm.nih.gov/pubmed/23452019
http://dx.doi.org/10.1111/j.1399-3054.2011.01493.x
http://www.ncbi.nlm.nih.gov/pubmed/21645003
http://dx.doi.org/10.1104/pp.126.1.388
http://www.ncbi.nlm.nih.gov/pubmed/11351101
http://dx.doi.org/10.1016/j.envexpbot.2013.10.015
http://dx.doi.org/10.1093/jxb/erv492
http://www.ncbi.nlm.nih.gov/pubmed/26552882
http://dx.doi.org/10.1007/s10265-009-0225-9
http://www.ncbi.nlm.nih.gov/pubmed/19319627


Int. J. Mol. Sci. 2018, 19, 1130 27 of 29

59. Chastain, D.R.; Snider, J.L.; Collins, G.D.; Perry, C.D.; Whitaker, J.; Byrd, S.A. Water deficit in field-grown
Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing
photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. J. Plant Physiol. 2014,
171, 1576–1585. [CrossRef] [PubMed]

60. Liu, C.; Wang, Y.; Pan, K.; Wang, Q.; Liang, J.; Jin, Y.; Tariq, A. The Synergistic Responses of Different
Photoprotective Pathways in Dwarf Bamboo (Fargesia rufa) to Drought and Subsequent Rewatering.
Front. Plant Sci. 2017, 8, 489. [CrossRef] [PubMed]

61. Abogadallah, G.M. Differential regulation of photorespiratory gene expression by moderate and severe salt
and drought stress in relation to oxidative stress. Plant Sci. 2011, 180, 540–547. [CrossRef] [PubMed]

62. Lima Neto, M.C.; Cerqueira, J.V.A.; da Cunha, J.R.; Ribeiro, R.V.; Silveira, J.A.G. Cyclic electron flow, NPQ
and photorespiration are crucial for the establishment of young plants of Ricinus communis and Jatropha curcas
exposed to drought. Plant Biol. (Stuttg.) 2017, 19, 650–659. [CrossRef] [PubMed]

63. Zhou, S.; Li, M.; Guan, Q.; Liu, F.; Zhang, S.; Chen, W.; Yin, L.; Qin, Y.; Ma, F. Physiological and proteome
analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought
stress in Malus. Plant Sci. 2015, 236, 44–60. [CrossRef] [PubMed]

64. Chen, L.; Ren, F.; Zhong, H.; Feng, Y.; Jiang, W.; Li, X. Identification and expression analysis of genes in
response to high-salinity and drought stresses in Brassica napus. Acta Biochim. Biophys. Sin. (Shanghai) 2010,
42, 154–164. [CrossRef] [PubMed]

65. He, C.Y.; Zhang, G.Y.; Zhang, J.G.; Duan, A.G.; Luo, H.M. Physiological, biochemical, and proteome profiling
reveals key pathways underlying the drought stress responses of Hippophae rhamnoides. Proteomics 2016, 16,
2688–2697. [CrossRef] [PubMed]

66. Bernard, D.G.; Cheng, Y.; Zhao, Y.; Balk, J. An Allelic Mutant Series of ATM3 Reveals Its Key Role in the
Biogenesis of Cytosolic Iron-Sulfur Proteins in Arabidopsis. Plant Physiol. 2009, 151, 590–602. [CrossRef]
[PubMed]

67. Landi, S.; Hausman, J.-F.; Guerriero, G.; Esposito, S. Poaceae vs. Abiotic Stress: Focus on Drought and Salt
Stress, Recent Insights and Perspectives. Front. Plant Sci. 2017, 8, 1214. [CrossRef] [PubMed]

68. Caruso, G.; Cavaliere, C.; Foglia, P.; Gubbiotti, R.; Samperi, R.; Laganà, A. Analysis of drought responsive
proteins in wheat (Triticum durum) by 2D-PAGE and MALDI-TOF mass spectrometry. Plant Sci. 2009, 177,
570–576. [CrossRef]

69. Hamilton, C.A.; Good, A.G.; Taylor, G.J. Induction of Vacuolar ATPase and Mitochondrial ATP Synthase By
Aluminum in an Aluminum-Resistant Cultivar of Wheat. Plant Physiol. 2001, 125, 2068–2077. [CrossRef]
[PubMed]

70. Moghadam, A.A.; Taghavi, S.M.; Niazi, A.; Djavaheri, M.; Ebrahimie, E. Isolation and in silico functional
analysis of MtATP6, a 6-kDa subunit of mitochondrial F1F0-ATP synthase, in response to abiotic stress.
Genet. Mol. Res. 2012, 11, 3547–3567. [CrossRef] [PubMed]

71. Li, C.-L.; Wang, M.; Ma, X.-Y.; Zhang, W. NRGA1, a Putative Mitochondrial Pyruvate Carrier, Mediates ABA
Regulation of Guard Cell Ion Channels and Drought Stress Responses in Arabidopsis. Mol. Plant 2014, 7,
1508–1521. [CrossRef] [PubMed]

72. Wang, M.; Ma, X.; Shen, J.; Li, C.; Zhang, W. The ongoing story: The mitochondria pyruvate carrier 1 in plant
stress response in Arabidopsis. Plant Signal. Behav. 2014, 9, e973810. [CrossRef] [PubMed]

73. Taylor, N.L.; Rudhe, C.; Hulett, J.M.; Lithgow, T.; Glaser, E.; Day, D.A.; Millar, A.H.; Whelan, J. Environmental
stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Lett. 2003, 547,
125–130. [CrossRef]

74. Riccardi, F.; Gazeau, P.; de Vienne, D.; Zivy, M. Protein Changes in Response to Progressive Water Deficit in
Maize: Quantitative Variation and Polypeptide Identification. Plant Physiol. 1998, 117, 1253–1263. [CrossRef]
[PubMed]

75. Kaouthar, F.; Ameny, F.-K.; Yosra, K.; Walid, S.; Ali, G.; Faiçal, B. Responses of transgenic Arabidopsis plants
and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD
to various abiotic stresses. J. Plant Physiol. 2016, 198, 56–68. [CrossRef] [PubMed]

76. Dahal, K.; Wang, J.; Martyn, G.D.; Rahimy, F.; Vanlerberghe, G.C. Mitochondrial Alternative Oxidase
Maintains Respiration and Preserves Photosynthetic Capacity during Moderate Drought in Nicotiana tabacum.
Plant Physiol. 2014, 166, 1560–1574. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jplph.2014.07.014
http://www.ncbi.nlm.nih.gov/pubmed/25151126
http://dx.doi.org/10.3389/fpls.2017.00489
http://www.ncbi.nlm.nih.gov/pubmed/28421106
http://dx.doi.org/10.1016/j.plantsci.2010.12.004
http://www.ncbi.nlm.nih.gov/pubmed/21421402
http://dx.doi.org/10.1111/plb.12573
http://www.ncbi.nlm.nih.gov/pubmed/28403551
http://dx.doi.org/10.1016/j.plantsci.2015.03.017
http://www.ncbi.nlm.nih.gov/pubmed/26025520
http://dx.doi.org/10.1093/abbs/gmp113
http://www.ncbi.nlm.nih.gov/pubmed/20119627
http://dx.doi.org/10.1002/pmic.201600160
http://www.ncbi.nlm.nih.gov/pubmed/27546101
http://dx.doi.org/10.1104/pp.109.143651
http://www.ncbi.nlm.nih.gov/pubmed/19710232
http://dx.doi.org/10.3389/fpls.2017.01214
http://www.ncbi.nlm.nih.gov/pubmed/28744298
http://dx.doi.org/10.1016/j.plantsci.2009.08.007
http://dx.doi.org/10.1104/pp.125.4.2068
http://www.ncbi.nlm.nih.gov/pubmed/11299386
http://dx.doi.org/10.4238/2012.October.4.3
http://www.ncbi.nlm.nih.gov/pubmed/23096681
http://dx.doi.org/10.1093/mp/ssu061
http://www.ncbi.nlm.nih.gov/pubmed/24842572
http://dx.doi.org/10.4161/15592324.2014.973810
http://www.ncbi.nlm.nih.gov/pubmed/25482773
http://dx.doi.org/10.1016/S0014-5793(03)00691-4
http://dx.doi.org/10.1104/pp.117.4.1253
http://www.ncbi.nlm.nih.gov/pubmed/9701581
http://dx.doi.org/10.1016/j.jplph.2016.03.019
http://www.ncbi.nlm.nih.gov/pubmed/27152457
http://dx.doi.org/10.1104/pp.114.247866
http://www.ncbi.nlm.nih.gov/pubmed/25204647


Int. J. Mol. Sci. 2018, 19, 1130 28 of 29

77. Galle, A.; Florez-Sarasa, I.; Thameur, A.; de Paepe, R.; Flexas, J.; Ribas-Carbo, M. Effects of drought stress
and subsequent rewatering on photosynthetic and respiratory pathways in Nicotiana sylvestris wild type and
the mitochondrial complex I-deficient CMSII mutant. J. Exp. Bot. 2010, 61, 765–775. [CrossRef] [PubMed]

78. Hincha, D.K.; Thalhammer, A. LEA proteins: IDPs with versatile functions in cellular dehydration tolerance.
Biochem. Soc. Trans. 2012, 40, 1000–1003. [CrossRef] [PubMed]

79. Borovskii, G.B.; Stupnikova, I.V.; Antipina, A.I.; Vladimirova, S.V.; Voinikov, V.K. Accumulation of
dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA
treatment. BMC Plant Biol. 2002, 2, 5. [CrossRef]

80. Grelet, J.; Benamar, A.; Teyssier, E.; Avelange-Macherel, M.-H.; Grunwald, D.; Macherel, D. Identification in
Pea Seed Mitochondria of a Late-Embryogenesis Abundant Protein Able to Protect Enzymes from Drying.
Plant Physiol. 2005, 137, 157–167. [CrossRef] [PubMed]

81. Boswell, L.C.; Moore, D.S.; Hand, S.C. Quantification of cellular protein expression and molecular features of
group 3 LEA proteins from embryos of Artemia franciscana. Cell Stress Chaperones 2014, 19, 329–341. [CrossRef]
[PubMed]

82. Boswell, L.C.; Hand, S.C. Intracellular localization of group 3 LEA proteins in embryos of Artemia franciscana.
Tissue Cell 2014, 46, 514–519. [CrossRef] [PubMed]

83. Clifton, R.; Millar, A.H.; Whelan, J. Alternative oxidases in Arabidopsis: A comparative analysis of
differential expression in the gene family provides new insights into function of non-phosphorylating
bypasses. Biochim. Biophys. Acta 2006, 1757, 730–741. [CrossRef] [PubMed]

84. Das, S.; Ferlito, M.; Kent, O.A.; Fox-Talbot, K.; Wang, R.; Liu, D.; Raghavachari, N.; Yang, Y.; Wheelan, S.J.;
Murphy, E.; et al. Nuclear miRNA Regulates the Mitochondrial Genome in the Heart. Circ. Res. 2012, 110,
1596–1603. [CrossRef] [PubMed]

85. Leung, A.K.L. The Whereabouts of microRNA Actions: Cytoplasm and Beyond. Trends Cell Biol. 2015, 25,
601–610. [CrossRef] [PubMed]

86. Ro, S.; Ma, H.-Y.; Park, C.; Ortogero, N.; Song, R.; Hennig, G.W.; Zheng, H.; Lin, Y.-M.; Moro, L.;
Hsieh, J.-T.; et al. The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res. 2013, 23,
759–774. [CrossRef] [PubMed]

87. Rurek, M. Participation of non-coding RNAs in plant organelle biogenesis. Acta Biochim. Pol. 2016, 63,
653–663. [CrossRef] [PubMed]

88. Dai, X.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server. Nucleic Acids Res. 2011, 39,
W155–W159. [CrossRef] [PubMed]

89. Wu, H.; Wu, X.; Li, Z.; Duan, L.; Zhang, M. Physiological Evaluation of Drought Stress Tolerance and
Recovery in Cauliflower (Brassica oleracea L.) Seedlings Treated with Methyl Jasmonate and Coronatine.
J. Plant Growth Regul. 2012, 31, 113–123. [CrossRef]

90. Kiyosue, T.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Characterization of two cDNAs (ERD10 and ERD14)
corresponding to genes that respond rapidly to dehydration stress in Arabidopsis thaliana. Plant Cell Physiol.
1994, 35, 225–231. [PubMed]

91. Nylander, M.; Svensson, J.; Palva, E.T.; Welin, B.V. Stress-induced accumulation and tissue-specific
localization of dehydrins in Arabidopsis thaliana. Plant Mol. Biol. 2001, 45, 263–279. [CrossRef] [PubMed]

92. Mizoi, J.; Shinozaki, K.; Yamaguchi-Shinozaki, K. AP2/ERF family transcription factors in plant abiotic stress
responses. Biochim. Biophys. Acta 2012, 1819, 86–96. [CrossRef] [PubMed]

93. Thamilarasan, S.K.; Park, J.-I.; Jung, H.-J.; Nou, I.-S. Genome-wide analysis of the distribution of AP2/ERF
transcription factors reveals duplication and CBFs genes elucidate their potential function in Brassica oleracea.
BMC Genom. 2014, 15, 422. [CrossRef] [PubMed]

94. Haake, V.; Cook, D.; Riechmann, J.; Pineda, O.; Thomashow, M.F.; Zhang, J.Z. Transcription Factor CBF4 Is
a Regulator of Drought Adaptation in Arabidopsis. Plant Physiol. 2002, 130, 639–648. [CrossRef] [PubMed]

95. Mohavedi, S.; Tabatabaei, B.E.S.; Alizade, H.; Ghobadi, C.; Yamchi, A.; Khaksar, G. Constitutive expression
of Arabidopsis DREB1B in transgenic potato enhances drought and freezing tolerance. Biol. Plant. 2012, 56,
37–42. [CrossRef]

96. Laisk, A. Kinetics of Photosynthesis and Photorespiration in C3-Plants; Nauka: Profsouznaya Ulitsa,
Moscow, 1977.

97. Pawlowski, T.; Rurek, M.; Janicka, S.; Raczynska, K.D.; Augustyniak, H. Preliminary analysis of the
cauliflower mitochondrial proteome. Acta Physiol. Plant. 2005, 27, 275–281. [CrossRef]

http://dx.doi.org/10.1093/jxb/erp344
http://www.ncbi.nlm.nih.gov/pubmed/19933320
http://dx.doi.org/10.1042/BST20120109
http://www.ncbi.nlm.nih.gov/pubmed/22988854
http://dx.doi.org/10.1186/1471-2229-2-5
http://dx.doi.org/10.1104/pp.104.052480
http://www.ncbi.nlm.nih.gov/pubmed/15618423
http://dx.doi.org/10.1007/s12192-013-0458-3
http://www.ncbi.nlm.nih.gov/pubmed/24061850
http://dx.doi.org/10.1016/j.tice.2014.09.004
http://www.ncbi.nlm.nih.gov/pubmed/25311474
http://dx.doi.org/10.1016/j.bbabio.2006.03.009
http://www.ncbi.nlm.nih.gov/pubmed/16859634
http://dx.doi.org/10.1161/CIRCRESAHA.112.267732
http://www.ncbi.nlm.nih.gov/pubmed/22518031
http://dx.doi.org/10.1016/j.tcb.2015.07.005
http://www.ncbi.nlm.nih.gov/pubmed/26410406
http://dx.doi.org/10.1038/cr.2013.37
http://www.ncbi.nlm.nih.gov/pubmed/23478297
http://dx.doi.org/10.18388/abp.2016_1346
http://www.ncbi.nlm.nih.gov/pubmed/27801426
http://dx.doi.org/10.1093/nar/gkr319
http://www.ncbi.nlm.nih.gov/pubmed/21622958
http://dx.doi.org/10.1007/s00344-011-9224-x
http://www.ncbi.nlm.nih.gov/pubmed/8069491
http://dx.doi.org/10.1023/A:1006469128280
http://www.ncbi.nlm.nih.gov/pubmed/11292073
http://dx.doi.org/10.1016/j.bbagrm.2011.08.004
http://www.ncbi.nlm.nih.gov/pubmed/21867785
http://dx.doi.org/10.1186/1471-2164-15-422
http://www.ncbi.nlm.nih.gov/pubmed/24888752
http://dx.doi.org/10.1104/pp.006478
http://www.ncbi.nlm.nih.gov/pubmed/12376631
http://dx.doi.org/10.1007/s10535-012-0013-6
http://dx.doi.org/10.1007/s11738-005-0003-9


Int. J. Mol. Sci. 2018, 19, 1130 29 of 29

98. Staszak, A.; Pawłowski, T. Proteomic Analysis of Embryogenesis and the Acquisition of Seed Dormancy in
Norway Maple (Acer platanoides L.). Int. J. Mol. Sci. 2014, 15, 10868–10891. [CrossRef] [PubMed]

99. Ramagli, L.S.; Rodriguez, L.V. Quantitation of microgram amounts of protein in two-dimensional
polyacrylamide gel electrophoresis sample buffer. Electrophoresis 1985, 6, 559–563. [CrossRef]

100. Neuhoff, V.; Arold, N.; Taube, D.; Ehrhardt, W. Improved staining of proteins in polyacrylamide gels
including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant
Blue G-250 and R-250. Electrophoresis 1988, 9, 255–262. [CrossRef] [PubMed]

101. Schmidt, U.G.; Endler, A.; Schelbert, S.; Brunner, A.; Schnell, M.; Neuhaus, H.E.; Marty-Mazars, D.; Marty, F.;
Baginsky, S.; Martinoia, E. Novel Tonoplast Transporters Identified Using a Proteomic Approach with
Vacuoles Isolated from Cauliflower Buds. Plant Physiol. 2007, 145, 216–229. [CrossRef] [PubMed]

102. Nantes, I.L.; Fagian, M.M.; Catisti, R.; Arruda, P.; Maia, I.G.; Vercesi, A.E. Low temperature and
aging-promoted expression of PUMP in potato tuber mitochondria. FEBS Lett. 1999, 457, 103–106. [CrossRef]

103. Ježek, P.; Žáčková, M.; Košařová, J.; Rodrigues, E.T.; Madeira, V.M.; Vicente, J.A. Occurrence of
plant-uncoupling mitochondrial protein (PUMP) in diverse organs and tissues of several plants.
J. Bioenerg. Biomembr. 2000, 32, 549–561. [CrossRef] [PubMed]

104. Rorat, T.; Szabala, B.M.; Grygorowicz, W.J.; Wojtowicz, B.; Yin, Z.; Rey, P. Expression of SK3-type dehydrin
in transporting organs is associated with cold acclimation in Solanum species. Planta 2006, 224, 205–221.
[CrossRef] [PubMed]

105. Elthon, T.E.; Nickels, R.L.; McIntosh, L. Monoclonal Antibodies to the Alternative Oxidase of Higher Plant
Mitochondria. Plant Physiol. 1989, 89, 1311–1317. [CrossRef] [PubMed]

106. Luethy, M.H.; Horak, A.; Elthon, T.E. Monoclonal Antibodies to the α- and β-Subunits of the Plant
Mitochondrial F1-ATPase. Plant Physiol. 1993, 101, 931–937. [CrossRef] [PubMed]

107. Havelund, J.F.; Thelen, J.J.; Møller, I.M. Biochemistry, proteomics, and phosphoproteomics of plant
mitochondria from non-photosynthetic cells. Front. Plant Sci. 2013, 4, 51. [CrossRef] [PubMed]

108. Nakaminami, K.; Matsui, A.; Nakagami, H.; Minami, A.; Nomura, Y.; Tanaka, M.; Morosawa, T.; Ishida, J.;
Takahashi, S.; Uemura, M.; et al. Analysis of Differential Expression Patterns of mRNA and Protein During
Cold-Acclimation and De-Acclimation in Arabidopsis. Mol. Cell. Proteom. 2014, 13, 3602–3611. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/ijms150610868
http://www.ncbi.nlm.nih.gov/pubmed/24941250
http://dx.doi.org/10.1002/elps.1150061109
http://dx.doi.org/10.1002/elps.1150090603
http://www.ncbi.nlm.nih.gov/pubmed/2466658
http://dx.doi.org/10.1104/pp.107.096917
http://www.ncbi.nlm.nih.gov/pubmed/17660356
http://dx.doi.org/10.1016/S0014-5793(99)01017-0
http://dx.doi.org/10.1023/A:1005648226431
http://www.ncbi.nlm.nih.gov/pubmed/15254369
http://dx.doi.org/10.1007/s00425-005-0200-1
http://www.ncbi.nlm.nih.gov/pubmed/16404580
http://dx.doi.org/10.1104/pp.89.4.1311
http://www.ncbi.nlm.nih.gov/pubmed/16666702
http://dx.doi.org/10.1104/pp.101.3.931
http://www.ncbi.nlm.nih.gov/pubmed/12231744
http://dx.doi.org/10.3389/fpls.2013.00051
http://www.ncbi.nlm.nih.gov/pubmed/23494127
http://dx.doi.org/10.1074/mcp.M114.039081
http://www.ncbi.nlm.nih.gov/pubmed/25277243
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Respiration and Photorespiration Pattern in Cauliflower Leaves 
	Specificity of Mitochondrial Proteome Alterations under Drought in Diverse Cauliflower Cultivars 
	Functional Categorization of Drought-Responsive Proteins in Diverse Cultivars of Cauliflower 
	Abundance of Key Matrix Proteins, cyt. c and Components of Dissipating Energy Systems is Diversely Affected under Two Drought Levels across Cauliflower Cultivars 
	Pattern of Dehydrin-Like Proteins (Dlps) in Cauliflower Mitochondria is Affected in Abundance by Drought 
	Identification of Drought-Responsive Spots Containing Putative Dehydrin-Like Proteins 
	mRNA Abundance and Coordination of Mitochondrial Biogenesis in Drought 

	Discussion 
	Physiological Response of Cauliflower Cultivars under Mild and Severe Drought 
	Mitochondrial Response to Drought Involves Diverse Multifunctional OXPHOS, Transporter and Matrix Proteins in Various Cauliflower Cultivars 
	Diverse Variations in Abundance of Matrix Proteins, cyt. c, Components of Dissipating Energy Systems and Dehydrin-Like Proteins Across Drought Treatments/Cultivars 
	Some Transcriptomic Responses and the Coordination of the Mitochondrial Biogenesis in Drought 

	Materials and Methods 
	Growth of Plant Material and Stress Application 
	Physiological Analyses 
	Isolation of Mitochondria, Purity Assays, and Protein Determination 
	Sample Preparation for the Two Dimensional Isoelectric Focusing/SDS Polyacrylamide Gel Electrophoresis (2D IEF/SDS-PAGE) 
	2D IEF/SDS-PAGE 
	Proteome Analysis 
	Protein Identification by Mass Spectrometry (MS) 
	SDS-PAGE, Western Blotting, and Immunodetection of Proteins 
	RNA Isolation and RT-qPCR 
	Statistical Analysis 

	Conclusions 
	References

