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Background: Parkinson’s disease (PD) is a chronic neurodegenerative disorder

characterized by bradykinesia, tremor, and rigidity among other symptoms.

With a 70% cumulative prevalence of dementia in PD, cognitive impairment

and neuropsychiatric symptoms are frequent.

Materials and methods: In this study, we looked at anatomical brain

differences between groups of patients and controls. A total of 138 people

with PD were compared to 64 age-matched healthy people using voxel-based

morphometry (VBM). VBM is a fully automated technique that allows for the

identification of regional differences in gray matter (GM), white matter (WM),

and cerebrospinal fluid (CSF) allowing for an objective comparison of brains of

different groups of people. We used statistical parametric mapping for image

processing and statistical analysis.

Results: In comparison to controls, PD patients had lower GM volumes in the

left middle cingulate, left lingual gyrus, right calcarine and left fusiform gyrus,

also PD patients indicated lower WM volumes in the right middle cingulate,

left lingual gyrus, right calcarine, and left inferior occipital gyrus. Moreover,

PD patients group demonstrated higher CSF in the left caudate compared

to the controls.

Conclusion: Physical fragility and cognitive impairments in PD may be

detected more easily if anatomical abnormalities to the cingulate gyrus,

occipital lobe and the level of CSF in the caudate are identified. Thus, our

findings shed light on the role of the brain in PD and may aid in a better

understanding of the events that occur in PD patients.
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Introduction

Parkinson’s disease (PD) is a degenerative neurological
condition that is chronic and progressive that mainly affects the
motor system. It is the second most common neurodegenerative
disease after Alzheimer’s disease and its prevalence is predicted
to rise as the population ages (1) with 1% of adults over the
age of 65 affected (2). PD is characterized by the degeneration
of dopamine neurons in the substantia nigra (SN) of the
midbrain, with concomitant loss of their axons that project
to the striatum along the nigrostriatal pathway. This results
in loss of the neurotransmitter dopamine which leads to the
primary motor symptoms of PD (3), which were first described
by James Parkinson in 1817 as a heterogeneous manifestation
(4). Currently, it is thought that oxidative stress, mitochondrial
malfunction and protein mishandling play a key part in the
pathogenesis of PD (5). The etiology of the disease is unknown,
however, both genetic and environmental factors are thought
to have a role with males more likely than females to be
affected at a ratio of around 3:2 (6), for example, estrogen and
oxitocin, which are predominantly female neurotransmitters
and hormones, serve as a protective mechanism for the female
nervous system (7). Rigidity, tremor, slowness of movement
(bradykinesia), and postural instability are considered cardinal
indicators of PD (8), which present themselves clinically once
the levels of striatal dopamine decrease by 70% (9). Rigidity
is an increased muscular tone, or a constant and excessive
contraction of muscles, causes stiffness and resistance to limb
movement. It might be homogeneous (“lead-pipe rigidity”) or
ratchet-y (“cogwheel rigidity”) (8, 10), often coupled with joint
pain, which is a common first symptom of the disease. A tremor
symptom is the tendency of the index finger and thumb
to contact and make a circular movement simultaneously.
Bradykinesia is accompanied with difficulties throughout the
movement process and it makes it impossible to do two separate
motor actions at the same time. While most clinicians can
detect bradykinesia, a formal assessment requires people to
perform repetitive finger and foot movements (11). In the later
stages of the disease, postural instability is common, resulting
in loss of balance and frequent falls (12). Instability is generally
absent in the early stages, especially in younger patients, and
especially before bilateral symptoms develop (13). Lewy bodies,
which are protein inclusions, are another important aspect
of PD’s pathology (14). The protein α-synuclein (α-syn) is a
major component of Lewy bodies and its mutant forms can
cause familial PD (3). The mechanisms that govern α-syn
fibrillization and Lewy bodies formation in the brain remain
poorly understood.

In contrast to the wealth of information accessible for
drug research and development, the use of biomarkers in
clinical practice is still underappreciated, and the evidence given
in biomarker research for clinical use is still unpersuasive.
The same is true of kynurenines (KYNs) and kynurenine

pathway (KP) enzymes, which have been linked to a variety of
illnesses, such as cancer, autoimmune diseases, inflammatory
diseases, neurologic diseases, and psychiatric disorders (15).
The tryptophan (TRP)-kynurenine (KYN) metabolic pathway
is the main catabolic route of TRP metabolism through which
over 95% of TRP degrades into several bioactive metabolites.
These metabolites include proinflammatory, anti-inflammatory,
oxidative, antioxidative, neurotoxic, neuroprotective, and/or
immunologic compounds (16). Alteration in TRP metabolism,
glutamate excitotoxicity, and the gut-brain axis have been linked
to the etiology of PD (17, 18). While kynurenic acid (KYNA)
levels and KYNA/KYN ratios were found significantly lower,
the levels of quinolinic acid (QUIN) and ratios of QUIN/KYNA
were observed significantly higher in the plasma of PD patients
compared to healthy controls in another study (19).

The continual interactions of neurons, glia, and the
microenvironment in the central nervous system (CNS) are
essential for the preservation of neural homeostasis, and
failures in this homeostatic state result in neurodegenerative
disorders like PD. The importance of inflammatory processes
in the death of dopamine neurons has recently come to
light and is now considered as being essential to this
process (20–22). The etiology of PD may be significantly
influenced by neuroinflammatory processes, according to
recent speculation. Numerous research on postmortem, brain
imaging, epidemiology, and animal studies have shown that
innate and adaptive immunity play a role in neurodegeneration
(21). Whether these inflammatory processes are directly
responsible for the etiology of PD or are merely subsequent
effects of damage to the nigrostriatal pathway is the subject
of intensive research. Recently, there has been an increasing
emphasis on the identification of mild cognitive impairment
(MCI) in PD (PD-MCI) (23), impairments in recognition of
emotions (24, 25) deficits in executive functioning, attention,
and visuospatial ability, with eventual involvement of memory
and other domains (26). It’s interesting to note that the
way that PD has been conceptualized over time has evolved
from a “motor disease” to a “complex brain disease.” This
turnover was supported by the presence of well-documented
non-motor disorders, particularly cognitive deficits (23). The
pathophysiology of cognitive dysfunction in PD is still up
for debate as of this writing. Of late, numerous scholastics
believe that cognitive deficits in PD are frequently caused
by neuropathological factors such as limbic and cortical
Lewy bodies and neurites, amyloid deposition, neurofibrillary
tangles, cerebrovascular disease, mitochondrial dysfunction,
inflammation, and neurotrophic factors, in addition to
neurochemical changes in dopaminergic, cholinergic, and other
systems (27).

A number of imaging studies have been conducted
in diagnosis of the disease over time such as Computed
Tomography (CT) scans (28), voxel-based morphometry
(VBM) in group investigations (2, 29–31), manually evaluated
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predefined region(s)-of-interest (ROI(s) (32) or Computer-
aided diagnosis (CAD) approaches (33–35) on an individual
basis. Over the last several years, magnetic resonance imaging
(MRI) of the brain has been utilized to aid in the diagnosis
of PD, with increased detection accuracy (36, 37). We used
VBM measurements because of its advanced automation,
comprehensiveness, objectivity, and repeatability.

Voxel-based morphometry is a method for calculating
differences between two groups of subjects in regional gray
matter (GM), white matter (WM), and cerebrospinal fluid
(CSF) concentrations by comparing voxel-wise 3-D brain scans
(38). To perform VBM, Images from several participants are
normalized (contrast stretched) and registered to create a brain
template or atlas that reflects a specific set of subjects. The
total of 138 PD and 64 age-matched controls MRI images
used in this study were obtained from three sites namely Tao
Wu (39), Parkinson’s Progression Markers Initiative (PPMI)
(40) and NEUROCON (39). The goal of this study was to
compare the brains of individuals with PD to controls using
the VBM technique.

Materials and methods

Datasets

Tao Wu
Twenty PD patients (11 males, mean age ± SD 65.2 ± 4.4

years) and 20 age-matched controls (12 males, 64.8± 5.6 years)
were included in the study. Except for one patient with Hoehn
and Yahr stage 3, all patients were in the early to moderate
stages of the disease (H&Y stages 1–2.5) (41). The dataset of MRI
images are available at the Parkinson’s Disease Datasets1 (39).

Magnetic resonance imaging acquisition

High-resolution T1-weighted structural images for the 40
individuals were obtained using a Siemens Magnetom Trio 3T
scanner (TR = 1100ms, TE = 3.39 ms). MPRAGE images (voxel
size 1 × 1 × 1 mm) were also collected for registration to the
Montreal Neurological Institute (MNI) template.

Parkinson’s Progression Markers Initiative
Data from 91 PD patients (63 males, mean age ± SD

61.3 ± 10.2 years) and 18 age-matched controls (14 males,
64.7 ± 9.7). Patients who have had a diagnosis of PD for 2
years or less and are not on PD medications were included
in study. Except for two patients, who were classified as
H&Y stage 3, all patients had H&Y scores of 1 to 2. Dataset
available at http://www.ppmi-info.org/access-data-specimens/
download-data/ (40).

1 http://fcon_1000.projects.nitrc.org/indi/retro/parkinsons.html

Magnetic resonance imaging acquisition

The individuals were scanned in eight separate locations
using Siemens Tim Trio 3Tesla scanners with the same protocol
(TR = 2.3s, TE = 2.98ms). MPRAGE images (voxel size
1 mm × 1 mm × 1 mm, flip angle = 9◦) were also collected for
registration to the MNI template.

NEUROCON
The NEUROCON study included 27 patients with PD (16

males, mean age ± SD 68.7 ± 10.6) and 16 age-matched
normal controls (five males, 67.6 ± 11.9) who had no history
of neurological or psychiatric disease. All of the patients were in
the early to mid-stages of the disease (H&Y stages 1–2.5).

Magnetic resonance imaging acquisition

An MPRAGE sequence was used to acquire high-
resolution T1-weighted images for all individuals (IR
technique, TR = 1,940 ms, TE = 3.08ms, inversion time
(IT) = 1,100 ms, voxel size 0.97 mm × 0.97 mm × 1 mm,
number of averages = 1).

In all three sites, 134 out of 138 (97%) patients were in
early to mid-stages of the disease (H&Y stages 1–2.5) and only 4
(2.8%) were of stage 3. We decided to use all of the available data
for further analysis by combining all patients in one group (90
males, mean age ± SD 63.31 ± 10.06) and controls in another
group (31 males, mean age ± SD 65.91 ± 9.65). We used the
following formulas to combine mean from three groups.

x̄12 =
N1.x̄1 + N2.x̄2

N1 + N2
(1)

Where N1 as number of patients in group 1, N2 number of
patients in group 2, x1 mean of group 1, x2 mean of group 2
and x12 as combined mean. After getting resultant mean for the
two groups. We used the same formula to get combined mean
of three groups. See Table 1.

We also used the following formula to calculate combined
standard deviation (SD) of three groups by first combining two
groups and later combining the resultant with the third group.

σ12 =

√
(N1 − 1) .σ2

1 + (N2 − 1) .σ2
2 +

N1.N2
N1+N2

.
(
x̄2

1 + x̄2
2 − 2x̄1x̄2

)
N1 + N2 − 1

(2)

Where N1 as number of patients in group 1, N2 number of
patients in group 2, x1 mean of group 1, x2 mean of group 2, σ1

SD of group 1, σ2 SD of group 2, and σ12 as combined SD. We
used the same formula to get the combined SD of three groups.
See Table 1.

In view of the fact that we combined multicenter data
for case-control studies, and this might possibly result in a
large variation, we set up the following exclusion criteria to
help ensure data quality: (i) subjects with poor structural
scans, making successful segmentation unlikely, or without
demographic information and (ii) head movement, subjects
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TABLE 1 Participant demographics.

Dataset PD Controls PD age Controls age Disease duration H&Y P-value

Tao Wu 20 (11 Males) 20 (12 Males) 65.2± 4.4 64.8± 5.6 5.4± 3.9 1.88± 0.63 0.803a

PPMI 91 (63 Males) 18 (14 Males) 61.3± 10.2 64.7± 9.7 1.9± 1.0 1.72± 0.48 0.196a

NEUROCON 27 (16 Males) 26 (5 Males) 68.7± 10.6 67.6± 11.9 4.6± 6.5 1.92± 0.33 0.755a

Combined 138 (90 Males) 64 (31 Males) 63.31± 10.06 65.91± 9.65 2.94± 3.6 1.78± 0.48 0.085a

aTwo-sample t-test.
Data are shown in mean± SD.

were excluded if they exceeded the head transition <3 mm,
rotation <3◦(42). No subject was excluded, whether they were
patients or controls, as they all fulfilled the conditions for
further analysis. Furthermore, patients from three sites did not
differ with respect to sex and age nor regarding all collected
clinical variables including age at disease manifestation,
disease duration, times of being inpatient and concomitant
antipsychotic (all p-values ≥ 0.096).

Voxel-based morphometry

The CAT12 toolbox, which is included in the SPM12
(43) package, was used for VBM analysis and was run in
MATLAB (44). The DARTEL technique was used to spatially
normalize and segment all 3D T1-weighted Neuroimaging
Informatics Technology Initiative (NIFTI) MR images into
GM, WM, and CSF tissue classes using default settings of
1.5 mm cubic resolution in MNI space. The normalized
maps were modulated with the resulting Jacobian determinant
maps and smoothed with an 8-mm FWHM Gaussian kernel
to maintain GM volumes of native space. The operations
of segmentation, normalization, and modulation were all
performed automatically in the CAT12 toolbox. The total
intracranial volume (TIV) was used as a covariate of no interest
for estimating the native space volumes of the GM, WM, and
CSF maps. The two-tailed t test was then produced using family-
wise error (FWE) correction and a p < 0.05 threshold. The
100 voxel extent threshold was chosen and finally we used
xjview (45) toolbox for MATLAB to record voxel brain area
(represented with pseudo color),with significant differences,
activation volume (cluster), activation intensity (statistically
analyzed with t-test and expressed as T value; T value is
proportional to the intensity). Figure 1 depicts the VBM analysis
processing framework.

Results

Participants’ demographic data

Table 1 summarizes participants’ demographic information.
In which there was no statistically significant difference between
PD patients and controls with respect to sex and age nor

regarding all collected clinical variables including age at disease
manifestation, disease duration, times of being inpatient and
concomitant antipsychotic (p > 0.05) using two-sample t-test.
The combined data were of 138 PD patients (90 males, mean
age± SD 63.31± 10.06 and 64 age-matched controls (31 males,
65.91 ± 9.65). Combined disease duration 2.94 ± 3.6 years and
H&Y scores 1.78± 0.48. Gender was analyzed by chi-square test;
other variables were analyzed by independent samples t-test.
The three groups of patients were well matched in age, gender
and disease duration.

The voxel-based morphometry analysis

Using Family-Wise Error (FWE) with p < 0.05 in the t test
in voxel by voxel analysis, four locations; left middle cingulate,
left lingual gyrus, left fusiform gyrus and right calcarine in the
PD participants had lower GM ratios than the HC subjects
also WM loss was found extensively in the right calcarine, left
lingual gyrus, right middle cingulate, and left Inferior occipital
gyrus. Moreover, PD patient group demonstrated higher CSF
in the left caudate compared to the controls Figures 2–4 and
Tables 2–4 show the relevant regions and MNI coordinates of
the peak voxels. It should be indicated that when the contrast,
PD > controls subjects was selected, no brain regions exhibited
significant GM (Table 2) or WM (Table 3) alterations in
the patients over the controls, but exhibited significant CSF
(Table 4) alterations in the patients over the controls.

Discussion

The goal of our research was to see if there were any
anatomical differences in the brains of people with PD and
controls. We compared the PD patients to the controls in
Tables 2, 3 using a two-tailed t test with a covariate of no interest
(i.e., TIV), p < 0.05 and extent threshold K = 100. According to
our findings, while the PD patients showed significant clusters
of reduced GM volumes in the left middle cingulate, left lingual
gyrus, left fusiform gyrus, and right calcarine, they also showed
reduced WM volumes in right calcarine, left lingual gyrus, right
middle cingulate and left inferior occipital gyrus. Moreover, PD
patient group demonstrated a higher CSF in the left caudate
compared to the controls.
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FIGURE 1

The processing framework of VBM analysis using the CAT12 toolbox of SPM12 software (100).

Gray and white matter atrophy in
cingulate gyrus

The Cingulate gyrus is located on the medial aspect of
the cerebral hemisphere, a fundamental component of the
limbic system, which regulates emotion and behavior (46).
There were significant reduction of GM and WM in left
middle cingulate and right middle cingulate respectively in
brains of PD patients compared to the controls. To compare
our findings with other studies, a number of highly expressed
genes in the cingulate networks were linked to diminished
GM integrity in PD, according to one study (47), another
study demonstrated that cognitive impairment and excessive
daytime sleepiness were associated with atrophy in cingulate
network in PD (48). Goldman and colleagues (49) revealed GM
atrophy in cingulate among other brain parts in PD patients
with visual hallucinations compared to non-hallucinators. WM
reduction was also found in the cingulate, among other
locations using Network Based Statistic (NBS) analysis in
PD patients compared to young and middle-aged healthy
subject groups (50). While Vercruysse and colleagues (51)
demonstrated anatomical abnormalities in the cingulate cortex
of PD patients utilizing both WM and GM. However, the results
are inconsistent among other studies for example, greater GM
volume was found in the anterior cingulate cortex in PD patients

compared to controls (52), the inconsistencies could be due to
research diversity, methodologic differences, and patient sample
size differences. Moreover, loss of cingulate GM/WM volume
was associated with other illness/disorders i.e., internet gaming
disorder (53), bipolar disorder (54–56), and schizophrenia (57).

Gray and white matter atrophy in
occipital lobe (lingual gyrus, calcarine,
and fusiform gyrus)

The occipital lobe houses the majority of the visual
cortex in the brain, allowing us to view and interpret
external inputs as well as assign meaning to and retain visual
sensations. Our neuroimaging findings are consistent with
earlier VBM investigations in PD patients that have found
a link between cognitive impairment and GM loss in the
occipital lobes, particularly in PD patients with dementia
(PDD) (2, 58) and PD patients with mild cognitive impairment
(MCI) (59). In 2009, a VBM investigation by Pereira and
colleagues revealed that, patients with PD who did poorly on
visuospatial/visuoperceptual tests had GM cortical loss in the
parietal and occipital areas (60). More analysis revealed loss
of GM in the bilateral orbitofrontal and right temporal areas
as well as the limbic system was linked to depression in PD
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FIGURE 2

The significant gray matter (GM) alterations by VBM analyses with the covariate of no interest (TIV) in the left middle cingulate (A), left lingual
gyrus (B), left fusiform gyrus (C), and right calcarine (D), respectively when PD < controls with p < 0.05 and extent threshold K = 100.

(61). In another interesting study on identifying structural
candidates according to cognitive status in PD, GM density
was considerably lower in the left occipital area in PD-intact
cognition (PD-IC) and the right occipital area in mild cognitive
impairment in PD (PD-MCI) compared to controls (62) also
reduced GM volume in the lateral occipital cortex was linked to
cognitive impairment and physical frailty in another study (63).

The primary visual cortex is situated in the calcarine region
of the occipital lobe in which previous research has proven the
link between visuospatial skills and motor function (64). In our
work we found reduction of both GM and WM in the right
calcarine. In line with other studies, lower GM volume in the left

calcarine and right inferior frontal gyrus was linked to the higher
risk of falling (65) especially in patients with PDD. We also
found reduction of both GM and WM in the left lingual gyrus,
as a brain structure involved in visual processing, particularly in
relation to letters and logical condition analysis, other study also
reported the association of Freezing of Gait (FOG+) with the
reduction of GM volume in lingual gyrus compared with both
patients with FOG- and HCs (66) based on their responses to a
validated FOG questionnaire and clinical observation.

The fusiform gyrus has been linked to high-level visual
processing activities, including the processing of information
about faces, bodies, and stimuli with high spatial frequency
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FIGURE 3

The significant white matter (WM) alterations by VBM analyses with the covariate of no interest (TIV) in the right calcarine (A), left lingual gyrus
(B), right middle cingulate (C), and left inferior occipital gyrus (D), respectively when PD < controls with p < 0.05 and extent threshold K = 100.

TABLE 2 Gray matter alterations detected by VBM.

P-value Contrast Anatomical region L/R Size (Voxels) No. of clusters MNI coordinates (mm) Voxel level

X Y Z T-value Z-value

p < 0.05 PD < C Middle cingulate L 136 10 −3 −8 41 4.3 3.85

Lingual gyrus L 58 7 −8 −69 −2 3.72 3.41

Fusiform gyrus L 15 4 −29 −47 −14 3.63 3.34

Calcarine fissure R 5 8 5 −65 9 3.37 3.12

PD > C – – – – − − − – –

PD, Parkinson’s disease; C, controls; L, left; R, Right; MNI, Montreal Neurological Institute.
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TABLE 3 White matter alterations detected by VBM.

P-value Contrast Anatomical region L/R Size (Voxels) No. of clusters MNI coordinates (mm) Voxel level

X Y Z T-value Z-value

p < 0.05 PD < C Calcarine fissure R 98 9 23 −54 12 4.09 3.69

Lingual gyrus L 24 5 −21 −68 −9 3.99 3.61

Middle cingulate R 11 11 9 −23 45 3.49 3.22

Inferior occipital gyrus L 8 6 −32 −75 −8 3.61 3.32

PD > C – – – − − − – –

PD, Parkinson’s disease; C, controls; L, left; R, right; MNI, Montreal Neurological Institute.

TABLE 4 Cerebrospinal fluid alterations detected by VBM.

P-value Contrast Anatomical region L/R Size (Voxels) No. of clusters MNI coordinates (mm) Voxel level

X Y Z T-value Z-value

p < 0.05 PD < C – – – – – – – – –

PD > C Caudate L 134 8 −12 24 0.00 4.23 3.79

PD, Parkinson’s disease; C, controls; L, left; R, right; MNI, Montreal Neurological Institute.

FIGURE 4

The significant cerebrospinal fluid (CSF) alterations by VBM analyses with the covariate of no interest (TIV) in the left caudate when
PD > controls with p < 0.05 and extent threshold K = 100.

(67). Consistent with our work were we found the reduction
of GM in the left fusiform of the PD group, other VBM
analysis found GM reductions in the PD-MCI group, especially
in fusiform gyrus among other areas compared to PD without
MCI and controls (59), another study linked GM reduction
in fusiform gyrus to poor visuoperceptual performance (60).
Patients with PD had lower baroreflex sensitivity (BRS) versus
controls, indicating poor cardiovascular autonomic function,
and reduced GM volume in multiple brain areas, including
the right fusiform, which was linked to an increased presence
of epithelial progenitor cells (EPCs) in the circulation (68).

Reduced effective connections in the fusiform gyrus have
been associated with body size misjudgment score in studies,
suggesting that these areas may play a role in the development
of anorexia nervosa (69).

However, one study reported increased GM volume in
occipital areas in PD patients compared to the controls (52).
Although, to the best of our knowledge, there is no evidence
of the mechanisms causing increased GM volume in PD, which
is a continuously progressing neurodegenerative condition,
the impact could represent a compensatory mechanism to
impaired brain function in early PD (52, 70). WM atrophy using
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VBM analysis was also observed in occipital area according
to the previous reports, such as visual hallucinations both in
PD (71), schizophrenia (72–74), mood and anxiety disorders
(75–77) and association of imbalance in the ratio of WM
fibers in occipital lobe with psychosis in PD (78). Auning
et al. using diffusion tensor imaging (DTI) when compared to
controls, patients with PD demonstrated substantial changes
in WM underlying the temporal, parietal, and occipital area
(79). These study demonstrate that WM affection is linked
to the cognitive impairment in PD, and that brain changes
occur in a sequential pattern, with hypoperfusion coming first,
followed by WM damage and GM atrophy (80). Although there
is some discrepancy across these studies, several contributing
factors, such as number of cases, clinical features, and disease
severity may contribute to the differences. Our findings reveal
that PD patients have more GM and WM loss than controls,
particularly in the cingulate gyrus and occipital lobe. Detecting
these specific anomalies can help with PD diagnosis. It have
been reported that mindfulness-based intervention (81, 82),
stress management training (83) and Mind-Body technique
(relaxation guided imagery) (84, 85) may help in the alleviation
of both motor and non-motor symptoms as well as the slowing
of disease progression.

Higher cerebrospinal fluid in the
caudate nucleus

The caudate nucleus is a component of the basal ganglia
(nervous system). The basal ganglia are a collection of
subcortical nuclei that play a variety of cognitive and affective
roles, but are best known for their role in movement. However,
the caudate is assumed to be involved in more than only
motor function. A neuroimaging study (86), for example, have
suggested that the caudate has a role in goal-directed behavior in
general. Our current study, reveals some intriguing CSF findings
in which PD patients exhibited higher CSF in the left caudate
compared to the controls, to the best of our knowledge, this is
the first demonstration to link PD with increased CSF in the
caudate. CSF is a transparent fluid that circulates across the
intracranial and spinal compartments. The composition of CSF
remains consistent under normal circumstances. However, the
quantity, content, and pressure of the fluid can be altered in
numerous neurological diseases, particularly in PD and other
conditions. For example unilateral and bilateral choroid plexus
papilloma’s have been linked to increased CSF production (87).
The lack of underlying conditions that caused the patient’s
CSF overproduction, as well as comorbidities, posed unique
challenges in this study.

Understanding the structural alterations causing cognitive
deterioration in PD is therefore crucial for early diagnosis
and providing effective treatment. Here is the summary of the
neuroanatomical changes in major brain structures responsible

for cognition in PD. (i) Changes in brain volume in PD;
cognitive abilities and brain size are strongly correlated (88).
Many cortical and subcortical parts of the brain in PD patients
showed signs of shrinkage, which contributed to a reduction
in the brain’s volume (89). It’s interesting to note that PD
patients were found to have increased volume in their frontal
lobe, temporoparietal junction, parietal lobe, insula, anterior
cingulate cortex, basal ganglia, and thalamus (90). Biundo et al.
reported that prefrontal lobe is essential for cognitive processes
and is affected by GM loss in PD patients (91). (ii) Changes in
basal ganglia in PD; the basal ganglia are important for cognitive
processes, and their damage impairs cognitive processes. In
reality, the most damaged part of the brain in PD is the basal
ganglia (89). According to the previous literature, there are two
subtypes of PD, and each type has a unique impact on the basal
ganglia. The subtypes include several clinical manifestations,
such as postural instability/gait difficulties (PIGD) and tremor
dominant (TD) (92). It has also been reported that reduction
in the volumes of the caudate nucleus and thalamus and WM
is observed in PD, which may be an early sign of disease
progression (93). (iii) Changes in cerebellum in PD; basal
ganglia and the cerebellum are connected reciprocally, and
PD-related morphological abnormalities have been observed in
both animal models and humans (94). The left cerebellum has
seen a substantial contraction, while the right quadrangular
lobe’s GM volume has decreased. These alterations might be
brought on by degeneration of dopaminergic neurons (95). (iv)
Changes in thalamus in PD; language, memory, and attention
have all been reported to suffer from thalamic lesions. Thalamic
stimulation was effective in enhancement of cognition through
activation of neocortex and hippocampus and modulating gene
expression (96). In addition, depression affects the majority
of PD patients due to abnormalities in the WM of the
mediodorsal thalamus (97). (v) Changes in hypothalamus in PD;
dopamine dysfunction in the hypothalamus may contribute to
the emergence of sleep, endocrine, and autonomic abnormalities
in PD. Given that melatonin levels are linked to the volume of
GM, it has been reported that sleep disorders may be associated
with hypothalamic GM loss (98) and (vi) Changes in limbic
system in PD; changes in creativity and emotional dysfunction
in PD patients have been linked with dopamine dysfunction in
the limbic system (99). Apart from the said neuroanatomical
changes in major brain structures responsible for cognition in
PD, in this paper we believe that physical fragility and cognitive
impairments in PD may be detected more easily if anatomical
abnormalities to the cingulate gyrus, occipital lobe and the level
of CSF in the caudate are identified.

Limitations and future directions

However, there are some drawbacks to this study. The lack
of clinical assessments associated to PD prevented us from
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assessing potential links between these patterns of abnormalities
identified in PD and clinical evaluations. Moreover, because
the patients were selected from three centers (Tao Wu,
PPMI, and NEUROCON), they may not be representative
to all PD population. Future research may require to clarify
the causal links between GM and WM volumes, cognitive
decline, and physical frailty. To validate our findings, more
research combining neuroimaging, biochemistry, and clinical
assessments are needed.

Conclusion

Using VBM, we explored structural brain differences
between group of 138 PD patients and 64 healthy people.
PD patients exhibited reduced GM and WM volumes versus
controls especially in the cingulate gyrus and occipital lobe and
increased CSF in the left caudate. Thus, physical fragility and
cognitive impairments in PD may be detected more easily if
anatomical abnormalities to the cingulate gyrus, occipital lobe
and the level of CSF in the caudate are identified. Previous
literatures suggest that mindfulness-based intervention, stress
management training and relaxation guided imagery may help
in the alleviation of both motor and non-motor symptoms
and slow the disease progression. In this study, we have
shown how important cognition-related brain areas changed
neuroanatomically in PD. We have also incorporated the major
findings of numerous studies in order to provide current
information for a better understanding of the pathophysiology
of PD, which aids researchers and clinicians in planning
and developing new treatment approaches for the benefit of
PD patients. Although we cannot fully attribute any possible
differences to the effects of GM, WM, and CSF between
the groups due to the lack of clinical data, we believe that
neuroimaging results in this study correspond with the clinical
presentation as well as the cognitive changes. This hypothesis
will need to be investigated in the future as well as integrating
VBM with functional techniques such as functional MRI and
EEG/MEG to better define the links between brain function and
structure in health and disease.
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