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Although noise has a proven beneficial role in brain functions, there have not been any attempts on the
dedication of stochastic resonance effect in neural engineering applications, especially in researches of
brain-computer interfaces (BCIs). In our study, a steady-state motion visual evoked potential
(SSMVEP)-based BCI with periodic visual stimulation plus moderate spatiotemporal noise can achieve
better offline and online performance due to enhancement of periodic components in brain responses,
which was accompanied by suppression of high harmonics. Offline results behaved with a bell-shaped
resonance-like functionality and 7–36% online performance improvements can be achieved when identical
visual noise was adopted for different stimulation frequencies. Using neural encoding modeling, these
phenomena can be explained as noise-induced input-output synchronization in human sensory systems
which commonly possess a low-pass property. Our work demonstrated that noise could boost BCIs in
addressing human needs.

N
oise, as a ubiquitous random or unpredictable fluctuation or perturbation, commonly exists in neural
systems of humans and other mammals. The concept of stochastic resonance (SR), which was introduced
in the early 1980s by Benzi1, describes the phenomenon whereby random fluctuations or noise can

enhance the detectability and/or synchronization of a weak signal in certain non-linear dynamic systems, i.e.,
noise paradoxically does not worsen but improves system performance. The ‘‘beneficial’’ effects of noise have
widely existed in excitable neural systems, and both experimental studies and theoretical investigations have
shown particular circumstances in which synchronization of neuronal firing was enhanced by the presence of
random fluctuations2–5. At the level of neural ensembles, synchronized firing patterns would give rise to large-
scale macroscopic oscillations, which can be observed in electroencephalography (EEG). Srebro and Malladi6

have successfully observed the enhancement of steady-state visual evoked potential (SSVEP) with presentation of
alternating visual noise and gratings. However, as some researchers like Farquhar J. et al.7–9 have used noise-
tagged stimulation for its spread spectrum advantage in BCI applications, there have not been any reports on
noise-benefited brain-computer interfaces (BCIs) under SR mechanism. Moreover, the extent of performance
improvements in SR-manipulated BCIs has not yet been demonstrated.

In this work, we showed that presenting visual noise to subjects can reliably enhance oscillatory EEG activities
for BCI applications. We proposed a novel steady-state motion visual evoked potential (SSMVEP, i.e., one kind of
SSVEP) based BCI (SSMVEP-BCI) paradigm10 with motion stimulation plus three-dimensional (3D) spatial-
temporal visual noise to investigate the influence of external noise on promotion of SSMVEP that would
eventually enhance BCI performance. In this paper, visual noise under different intensity levels was used to mask
steady-state motion stimulation for the evoking of SSMVEP, while a multivariate objective detection method
evaluated the optimal noise level that would maximize SSMVEP responses and thus BCI accuracy and efficiency.
Finally numerical simulation analysis to qualitatively mimic encoding of periodic stimulation into spike trains in
the presence of visual noise was used to elucidate how such irregularity affected spiking and synchronization of
neuron ensembles. Our work demonstrates that SR effect would enable a new generation of BCIs to provide
superior performance and additional flexibility.

Results
SR effect was observed in offline experimental analysis. Of the twenty subjects that participated in this study,
seven male subjects (Subjects 1–7) were first studied in offline experiments to examine brain responses under SR
mechanism. Here 3D spatial-temporal visual noise, which referred to as dynamic changes of two-dimensional
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(2D) spatial noise speckles in one-dimensional (1D) timeline, was
used to mask stimulators and updated in 1/60 second. Noise speckles
obeyed 2D Gaussian intensity distributions with gray mean (gray
level 5 128), and noise intensity level was graded by noise
standard deviation (NSD) of 0, 8, 24, 40, 48, or 56 (see
Supplementary Figure S1 online). For each subject, 30 epochs were
recursively implemented as the subject attending on a specific
stimulator under a certain visual noise level. Among the seven
subjects, the magnitudes of grand-averaged SSMVEP evoked by
motion reversal frequencies (MRFs) of 15 and 12 Hz were
progressively increased to maxima under NSD of 48 and then
decreased, showing a bell-shaped resonance-like form as a function
of noise strength (i.e., a fingerprint of SR phenomenon; Figure 1).
The maxima were about two and three times higher than that under
NSD of 0. Corresponding SSMVEP spectra at sub-harmonics (i.e.,
motion stimulus harmonics, MSHs) of 7.5 and 6 Hz increased about
three and six times under NSD of 48 compared to that under NSD of
0 (Figure 1). Specifically, motion reversal harmonics (MRHs) and

MSHs did not reach their maxima concurrently. As forcing
frequency decreased, a noise-induced suppression of MRHs
occurred along with the resonance enhancement at the MSHs,
which can be clearly observed in SSMVEP spectra evoked by MRF
of 8.57 Hz (Figure 1) till the NSD increased up to 8. More specific
phenomena can be found in individual subjects (see Supplementary
Figure S2 online), where averaged SSMVEP on some subjects (e.g.,
MRF of 12 Hz in Subject 1 and 6 and MRF of 8.57 Hz in Subject 7)
consisted of two nearly identical waves corresponding to each
motion reversal when no noise masked, and merged to a single
wave when noise increased.

For the simultaneous suppression of MRH and enhancement of
MSH when noise increased, SSMVEP spectra on the two compo-
nents were concurrently introduced into multi-harmonic-general-
ized Circular Hotelling’s T2 test (GT2

circ)11 to quantify whether
SSMVEP magnitudes boost at a certain noise level would quantita-
tively benefit SSMVEP-BCI performance. Across all three MRFs,
offline success rates (Figure 2a) over 5-s epochs exhibited bell-shaped

Figure 1 | Grand-averaged offline SSMVEP magnitudes and spectra as a function of NSD for seven subjects. For grand-averaged SSMVEP,

each panel shows averaged SSMVEP within two cycles of motion-reversal stimulation (i.e., four motion reversals) with the NSD marked above it. In

panels, two cycles are separated by vertical dotted lines in red and two motion reversals within one cycle are separated by dotted lines in gray. For

amplitude spectra of averaged SSMVEP, each panel shows SSMVEP spectrum at the MRH and MSH with the NSD marked above it. Horizontal dotted

lines in red indicate the threshold to visualize the significance of SSMVEP spectra under different NSDs, which was empirically chosen as six times the

mean of the amplitude spectra between 3 and 30 Hz. Gray circles indicate the MRHs of SSMVEP spectra above the threshold. Red circles indicate the

MSHs above the threshold.
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correlation with noise for most subjects, and also peaked at NSD of 48,
similar to SSMVEP spectra distributions (Figure 1). The mean success
rate across all seven subjects significantly increased from 60.42% 6

17.68 (range: 43.33–93.33% correct epochs) under NSD of 0 to a
maximum of 86.25% 6 7.86 (range: 80.00–100.00% correct epochs)
under NSD of 48 at MRF of 15 Hz (one-way ANOVA: F(1,12) 5

14.27, P 5 0.002, Cohen’s d 5 1.888), and from 49.58% 6 22.99
(range: 23.33–83.33% correct epochs) to a maximum of 71.25% 6

15.63 (range: 56.67–100.00% correct epochs) at 12 Hz (F(1,12) 5 4.86,
P 5 0.045, Cohen’s d 5 1.102). The same trend of increase can be seen
at 8.57 Hz, from 57.14% 6 20.59 (range: 36.67–96.67% correct
epochs) under NSD of 0 to a maximum of 67.14% 6 12.24 (range:
50.00–83.33% correct epochs) under NSD of 48; however, this effect
does not reach statistical significance (F(1,12) 5 1.22, P 5 0.291,
Cohen’s d 5 0.590; Figure 2b). More specific success rates over six
different time-window lengths from 2.5 to 5 second per epoch can be
found in Supplementary Figure S3 online. Corresponding cumulative
mean accuracy, which statistically approximates expected SR correla-
tion, is represented in Figure 2a. Exceptions can also be found at MRF
of 8.57 Hz whose resonance points shifted to lower noise values (e.g.,
in Subject 4) or even vanished (e.g., in Subject 7), which was consistent
with SSMVEP magnitudes and spectra distributions (see Supple-
mentary Figure S2 online). This resulted in multiple peaks in the
cumulative mean-accuracy curve averaged across subjects (Figure 2b).

SR promoted accuracy and efficiency in online brain-control
tasks. Motivated by the performance promotion of offline
experimental tasks under visual noise masking, we developed an
online SSMVEP-BCI under non-noise and NSD of 40 conditions
to quantify whether practical BCIs could benefit from SR. Eight
male subjects (Subjects 8–15) participated in online brain-control
tasks performed using a cathode-ray tube (CRT) monitor. The task
was implemented in a semi-synchronous way, wherein the duration
of stimulation varied from 2 to 10 second until the target was
successively identified twice as being the same. Thus, online
success rate and correct detection time, which characterized BCI
accuracy and efficiency, were assessed to benchmark system
performance under different noise levels. Since the concurrence of
high success rate and the preference of correct detection time to
predefined minimal values implied superior performance, it can be
seen that tasks at MRFs of 15 and 12 Hz under NSD of 40 performed
better than that without visual noise, especially in Subjects 8–9 and
11 (Figure 3a). Exceptions also occurred at MRF of 8.57 Hz in
Subjects 10 and 11, where both accuracy and efficiency prevailed
under NSD of 0 rather than 40. This was analogous to offline
results in Subjects 4 and 7 (Figure 2).

Across subjects, grand-averaged online success rates under NSD of
40 significantly increased 36% (one-way ANOVA: F(1,14) 5 13.50, P
5 0.003, Cohen’s d 5 1.837) at MRF of 12 Hz (NSD40, 95.21% 6

3.50 vs. NSD0, 70.00% 6 19.09), while the same trend of variation of
14% (F(1,14) 5 3.47, P 5 0.084, Cohen’s d 5 0.931) can be found at
15 Hz (NSD40, 89.92% 6 8.89 vs. NSD0, 79.17% 6 13.69). But only
7% difference (F(1,14) 5 0.43, P 5 0.525, Cohen’s d 5 0.326) existed
at 8.57 Hz (NSD40, 77.63% 6 14.26 vs. NSD0, 72.67% 6 16.09).
Whereas grand-averaged correct detection time under NSD of 40
was significantly less than that under NSD of 0 at 15 Hz (NSD40,
2.60 6 0.20 seconds vs. NSD0, 2.83 6 0.61 seconds; unbalanced one-
way ANOVA: F(1,298) 5 20.33, P 5 9.390 3 1026, Cohen’s d 5

20.519) and at 12 Hz (NSD40, 2.67 6 0.31 seconds vs. NSD0, 2.88 6

0.74 seconds; F(1,288) 5 10.74, P 5 0.001, Cohen’s d 5 20.392;
Figure 3b). The smaller fluctuation of correct detection time under
NSD of 40 also signified greater identification consistency and fewer
potentially frustratingly long epochs. This was largely due to the
higher percentage of successfully detected epochs (91% at 15 Hz
and 82% at 12 Hz) around 2.5 second (minimal time to identify
targets) under NSD of 40 versus 0 (70% at 15 Hz and 67% at

12 Hz; Figure 3b). Small variation of correct detection time was
observed under NSD of 40 versus 0 at 8.57 Hz (NSD40, 2.98 6

0.79 seconds vs. NSD0, 2.96 6 0.76 seconds; F(1,261) 5 0.04, P 5

0.845, Cohen’s d 5 0.026), where visual noise wielded little beneficial
influence on this frequency. These results suggested that certain
noise level can effectively promote both accuracy and efficiency of
SSMVEP-BCI on most forcing frequencies, while little inconsistency
on lower frequencies would not substantially affect BCI performance
across subjects. Some tasks above showed nearly perfect performance
in 100% success rates when optimal visual noise was applied, that is, a
ceiling effect (see Figure 3a). Thus, to evaluate the explicit difference
between conditions with and without visual noise, we tested an
additional group of nine subjects on LCD monitor. Results in
Supplementary results and Supplementary Figure S4a online showed
that tasks on LCD monitor prevented the ceiling effect and uncov-
ered some import phenomena, such as the similar, but more prom-
inent, exceptions at MRF of 8.57 Hz. The difference between CRT
and LCD tasks may due to the fact that the stimulation brightness of
LCD monitor is lower than that of CRT monitor12.

SR and low-pass behavior can be explained by neural encoding
simulation. Considering the addition of visual noise on the
promotion of SSMVEP-BCI performance and its different impacts
on higher and lower forcing frequencies, we investigated the
ensemble properties of 10,000 perfect-integrate-and-fire (PIF)
neurons in response to motion stimulation with spatial-temporal
noise, while the SR effect was characterized by interspike intervals
(ISIs) at MSH periods13. This selection was consistent with
experimental results that the SSMVEP boost came from resonance
enhancement at the MSHs.

In Figure 4, it can be seen that the normalized ISIs at each forcing
frequency increased to a maximum and then decreased with increas-
ing noise. This is because low noise levels were associated with ran-
dom cycle skippings between any two successive firings, which led to
aperiodic firings and multimodal distribution of ISIs. As noise
increased, the ISIs drew closer to the MSH period, indicating that
spikes fired more regularly with less skipping. This is referred to as
noise-induced synchronization, or SR. Further increase of noise
would result in an increased proportion of firings within a single
cycle, tending towards noise-induced bursts regardless of forcing
frequency.

It also can be seen in Figure 4 that the effective region of normal-
ized large ISIs extended to larger noise levels when the forcing fre-
quencies became higher; low forcing frequencies tended to be
optimized at low noise levels, while stronger noise was required to
maximize high-frequency responses regardless of where PIF thresh-
old boundaries were drawn. Distinct dispersion between responses at
MRFs of 8.57 Hz and at 12, 15 Hz was also observed. This may be
due to the low-pass phenomenon, wherein membrane voltage was
progressively dampened below threshold with increasing forcing
frequency. So, large noise was required to push the membrane volt-
age across threshold when forcing frequency was high. The slope of
the ‘‘optimal NSD – forcing frequency’’ curve (Figure 4) varied as a
function of forcing frequency, which approximately obeyed NSDOPT

, e2mf with m . 0. This function demonstrated that the growth rate of
optimal noise level NSDOPT would slow down when forcing fre-
quency f increased, which qualitatively confirmed the dispersion
between responses at MRFs of 8.57 Hz and at 12, 15 Hz and the
almost identical optimal noise levels needed by MRFs of 12 and
15 Hz in the experimental results.

Discussion
Up to the present, SR terminology was used frequently in a broad
sense, referring to any kind of noise-constructive phenomena in non-
linear systems14. The beneficial role of noise in the nervous system
was supposed to enhance the transmission of neural signaling15–17

www.nature.com/scientificreports
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Figure 2 | Offline success rates as a function of NSD. (a) Success rates for individual subjects. Each circle on the solid black curve indicates actual

success rate over the 5-s epochs with the NSD marked below it. The actual success rates under different NSDs were calculated as the percentage of correctly

judged epochs within 30 epochs. Dotted gray curves indicate the cumulative average of accuracies, which was calculated as the mean of the success rates

over six different time-window lengths from 2.5 to 5 second per epoch in steps of 0.5 second. (b) Success rates across seven subjects. Error bars in black

indicate mean and SD of accuracies over 5-s epochs across subjects. Dotted gray curves indicate the cumulative average of accuracies across subjects. The

character ‘M’ in brackets indicates male subjects.

www.nature.com/scientificreports
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and was evidenced in photo- and mechanoreceptors of crayfish2,18,
sensory cells of sharks19, and visual perception tasks of humans20.
Since nerve cells in sensory organs are described as thresholding
devices without assuming particular mechanisms, the subject of SR

has evoked excitement in the field of computational neuroscience,
especially in visual21 and auditory22 processing, and cognition23. The
purpose of the present study was to gain a general understanding of
noise-enhanced neural encoding in the human visual system using a

Figure 3 | Online success rate and correct detection time under NSD of 40 versus 0 in semi-synchronous online brain-control tasks performed
using a CRT monitor. (a) Online success rate and correct detection time for individual subjects. Results under NSD of 40 are shown in magenta and those

under NSD of 0 are in blue. Each error bar characterizes the distribution of correct detection time upon a certain success rate that was calculated as the

percentage of correctly judged epochs. The upper and lower bounds of each error bar were set with maxima and minima of the time distribution, and the

central point (circle and square) represents the mean. For convenience, the upper end of the ordinate was set above 1. (b) Histograms of detection time of

correctly detected epochs across eight subjects. Insets show grand-averaged correct detection time. Arrows below plots mark the mean value for each

histogram.
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SSMVEP-BCI approach and provide a model that bridged the com-
plexity of biophysical observations with the simplicity of noise-
induced synchronization and linearization in neural firings. This
work helps clarify the conditions under which such SR phenomena
could occur, as well as their underlying mechanisms.

In our study, offline and online tasks with periodic visual stimu-
lation plus moderate spatiotemporal noise can achieve better per-
formance, implying that human visual systems may exploit the
power of randomness to enhance neural signal transmission.
Noticeable exceptions were that the tasks at MRF of 8.57 Hz mani-
fested low performance under a certain noise level which seemed to
optimize performance of the other two stimulations (i.e., 12 and
15 Hz). This was likely caused by the low-pass property of sensory
neurons. Therefore, it would be more feasible to utilize each indi-
vidual optimal noise level for each stimulation frequency separately
to promote BCI performance. However, in the current study, a fixed
noise level would be adequate to promote SSMVEP-BCI perform-
ance on almost all stimulation frequencies and a little inconsistency
would not substantially affect BCI performance across subjects. In
addition, individual optimal noise levels were needed for different
subjects even at the same stimulation frequency. This may be due to
the high variability of sensory thresholds and internal noise sources
which would result in different selectivity of cells in the visual cortex
such that some subjects may have already been optimized intrins-
ically6. Applying the right amount of noise to each specific subject
would reduce the inter-subject variability.

It is important to note that sensory neurons frequently interact
with periodic stimulations. When a subject is presented with a visual
stimulation, light information will arrive at the photoreceptors of the
retina and propagate through the optic nerves to the visual cortex and
other higher-order sensory or cortical regions. The relation between
visual modulations and sensory neuronal input is monotonically
proportional, so modulation strength which is not large enough to
push the neuronal membrane voltage across the intrinsic threshold
non-linearity alone would be properly assisted with visual noise at a
moderate intensity to accomplish threshold-crossings. Therefore, the
appearance of SR can be roughly explained by that addition of visual
noise effectively turn neurons from sub- to supra-threshold. This
procedure was illustrated by the simultaneous stimulation of PIF
neurons with periodic drive and noise. The model qualitatively

predicted some of salient features which can be observed in experi-
mental recordings; the fits from PIF simulation to experimental
results are surprisingly good, which indicates that the model has
theoretical and practical significance.

It is also known that neural responses to sinusoidal visual mod-
ulations often show considerable harmonic distortions which can be
attributed to threshold non-linearity; the amplitudes of Fourier com-
ponents at the harmonics will be modified and the responses dis-
torted in comparison to the input. With addition of visual noise, the
input shifts from the threshold so regularly that the synchronization
between periodic drive and crossing events increases, while the con-
tribution of threshold non-linearity decreases. The output becomes
more sinusoidal to the input than it would have been. This enlarges
the spectral coherence that measures the periodicity and removes
other harmonic distortions (i.e., addition of noise linearizes the res-
ponses). This so-called noise-induced linearization (NIL) can be
categorized within the framework of SR24–26. The NIL phenomena
can be observed in Figure 1, where the spectra quantifying the input-
output synchronization exhibited a strong increase of peak height at
each MSH (i.e., SR) and a steady reduction of peak height at each
MRH when noise increased. Growing noise would bring linear sus-
ceptibility at high frequencies (Figure 4), and with the further
increase of noise, the Fourier peak which closed to the MSH would
finally disappear due to the variability of firings is increased so as to
cause the responses to be noisy and even destroyed.

Results display an abundance of low-pass behaviors (Figures 1–4),
wherein an increase in forcing frequency would be optimized by an
increasing noise level. This may originate from the low-pass phe-
nomenon existing in visual pathways27; attenuation of the average
high-cutoff frequency can be observed from spike responses of lateral
geniculate nucleus (LGN) cells to responses in input layers of the V1
region when multiple LGN cells converged into a single V1 cell. A
major attenuation from V1 input layers to the second- and higher-
order neurons in V1 and even to extrastriatal area V2 also exists. The
occurrence of this low-pass phenomenon in real visual systems may
result from membrane resistive and capacitive characteristics of
sensory neurons and associate with the fact that an increased input
frequency would weaken the modulation of noise-free membrane
voltage28. Therefore, the higher the forcing frequency, the more noise
is required to make real neuron fire. The capacitive low-pass

Figure 4 | Simulation of SR evolutions among different forcing frequencies. For eight MRFs of 6, 6.67, 7.5, 8.57, 10, 12, 15, and 20 Hz (i.e., with

MSHs of 3, 3.33, 3.75, 4.29, 5, 6, 7.5, and 10 Hz) and seventeen NSDs of 0–64 in increments of 4, normalized ISIs at the period of each MSH was assigned to

the surface plot using linear interpolation, and the positions of larger values are depicted by warmer colors. Asterisk (*) indicates maximal ISIs at each

MSH period. Solid black curves indicate the contour of the effective region of large ISIs, while dotted gray curve indicates the exponential approximation

of relationship between optimal NSDs and forcing frequencies.
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membrane modeling in the neuron-like model is directly related to
cellular biophysics29 so simulation results were in line with experi-
mental observations among different forcing frequencies. The excep-
tional deviation between the position of optimal noise levels in
experiments and that of normalized maximal ISIs in theoretical
simulations may be due to the presence of internal noise in living
neurons30,31, which was not taken account into neuron-like modeling.
Therefore, more external noise was needed in the theoretical model
to mimic the same total amount of noise.

Our simulation study of parallel arrays differs from other types of
neural networks in that elements are not actually coupled. The
motivation primarily stems from a number of neurophysiological
studies showing that sensory neurons tend to be arranged in a highly
parallel structure and possess all features necessary for exhibiting
SR32. Note that, the numerical parameters in our study are at a
physiologically relevant range and tuning neural signal transmission
independent of specific parameter values does not remove the bene-
ficial role of noise.

Taken together, our work suggests that it may be possible to arti-
ficially introduce noise into sensory neurons in order to improve
neural signal transmission. With ‘‘optimal’’ transduction, noise-
induced neuronal synchronization at the single neuron level may
lead to a similar effect in large-scale synchronization of certain sens-
ory organs33, or even brain waves34, as improving SSMVEP-BCI per-
formance in our study. Given evidence of SR in various functional
levels of biological systems, our results may provide insight on how
resonance promotes perceptual and behavioral functions in neural
engineering applications; it is not surprising that SR holds potential
for the future design of neural prostheses controlled by BCIs in health
rehabilitations, by suggesting that rehabilitation paradigms, which
take advantage of cortical neuronal plasticity, will likely benefited
from the excitability of neurons with SR mechanism35.

Methods
Subjects. All subjects, aged 23–29 years old, were graduate students from Xi’an
Jiaotong University (Shaanxi, China). All had normal or corrected-to-normal
eyesight and experienced SSVEP-BCIs before. All subjects were studied after giving
informed written consent in compliance with the guidelines approved by the
institutional review board of Xi’an Jiaotong University. Of the total twenty subjects,
seven male subjects were first tested in offline experiments, which were performed
using cathode-ray tube (CRT) monitor, to assess whether SR existed in SSMVEP or
not. The other thirteen subjects only participated in online brain-control tasks, in
which eight males were tested using CRT and liquid crystal display (LCD) monitors,
and six males and three females were tested with LCD monitor.

Stimulation design. Motion-reversal visual stimulations were introduced into the
spatial selective attention-based steady-state BCI paradigm. Three motion-reversal
stimulators were simultaneously presented to subjects through a gamma-corrected
210 EIZO CRT or a 220 Dell LCD monitor at a resolution of 1024 3 768 pixels and
refresh rate of 60 Hz. Each subject was situated 70 cm from the screen with the center
at eye level. Three stimulators were uniformly arranged in an equilateral triangle with
the eccentricity from the center of the monitor to that of each stimulator at a visual
angle of 7.2u (Supplementary Figure S5 online). Each stimulator was a motion ring
whose width was kept constant at half the radius of the circular region (Michelson
contrast of 98.8%) throughout the motion reversal procedure. The circular area was
4.8u in diameter, in accordance with previous studies showing that a stimulus size
beyond 3.8uwould saturate VEP responses36. Each stimulator was distinct at mutually
irrational MRF, and MRFs of 15, 12, and 8.57 Hz were assigned to the lower right,
lower left, and upper stimulators, respectively, in accordance with the integer division
of 60 Hz refresh rate. The motion reversal procedure was scheduled according to our
earlier study10. Here 3D spatial-temporal noise, which referred to as dynamic changes
of 2D spatial noise speckles in 1D timeline, was used to mask stimulators and screen
background, and updated in 1/60 second. Each noise speckle subtended a square area
of 5 min of visual angle and obeyed 2D Gaussian intensity distributions with gray
mean (gray level 5 128). Noise level was graded by NSD of 0, 8, 24, 40, 48, or 56 (see
Supplementary Figure S1 online). It should be noted that for avoidance of truncation
beyond the gray level range of [0, 255], where grayscale noise becomes black and
white, the strongest NSD is restricted to within 64. Presentation of the stimulation was
controlled by Psychophysics Toolbox (http://psychtoolbox.org/)37,38.

Offline experimental tasks. Subjects were requested to sit on an armchair in a dimly
lit room without electromagnetic shielding. Just as traditional SSVEP-BCIs, subjects
were asked to binocularly fixate on the center of the target stimulator and were
instructed not to track stimulator movement or the varying of noise with their eyes.

The three stimulators were simultaneously presented and visual noise level was
constant throughout the 5-s epoch. Two adjacent epochs were isolated by a gray
screen, and the interval time was fixed to 1.5 second. An experimental run involved
15 such epochs and lasted 1.6 min. For each subject, six experimental tasks were
performed, and each task (Tasks 1–6) was implemented under each of six NSDs,
respectively. Tasks 1–6 were performed randomly to avoid adaptation of long-term
stimulation that could potentially affect assessment of SR effect39. Each task contained
six runs, where every two runs were implemented on an identical stimulator. Subjects
were allowed to blink or rest their bodies as long as they wished between runs.
Therefore, horizontal or vertical electrooculography signals were not recorded and
epochs contaminated by few artifacts were also not excluded.

Target identification. For each epoch, a GT2
circ test, which is a multi-harmonic

version of the famous Circular Hotelling’s T2 (T2
circ) test40, was used to check the

presence of SSMVEP on the statistics of responses at each MRH and its MSH sub-
harmonic. Each rectangular sliding window corresponding to three cycles of each
MRF stimulation (i.e., 840 data points for MRF of 8.57 Hz, 600 data points for 12 Hz,
and 480 data points for 15 Hz) was sequentially slid over the epoch with one-cycle
overlap (i.e., 280 data points for 8.57 Hz, 200 data points for 12 Hz, and 160 data
points for 15 Hz) and then submitted to fast Fourier transform (FFT) operation
individually. If the epoch was not evenly divisible into integer cycles, the end of the
epoch was truncated. The resulting sets of complex Fourier components
corresponding to each MRH and its MSH sub-harmonic were converted to a four-
variable matrix and passed to each GT2

circ test. GT2
circ provides a probability to

determine whether sets of Fourier components are consistent with random
fluctuations alone or imply the presence of periodic components beyond a given
confidence level. If the Fourier components at each MRH and its MSH sub-harmonic
were sufficiently strong to exceed the confidence level, the presence of SSMVEP at this
MRF was statistically identified. In our study, the confidence level was set as 0.95 in
offline analyses and 0.99 in online brain-control tasks. The stimulation with the
maximal confidence probability exceeding the confidence level would be classified as
attended stimulation.

Online brain-control tasks. Similar to offline experiments, two sessions (i.e., each
under NSD of 0 and 40) of online brain-control tasks were implemented on each
subject to compare online brain-control performance under different noise levels.
Each session contained 6–12 runs and each run consisted of 15 epochs. Experimental
runs under NSD of 0 and 40 were also performed randomly to avoid adaptation of
long-term stimulation. The main difference from offline experiments was that online
brain-control tasks were implemented in a semi-synchronous way wherein the
duration of stimulation varied from 2 to 10 second rather than fixed to 5 second. In
each epoch, 1 second of red cue above the target stimulator instructed subjects to pay
attention to that stimulation. Then two seconds of stimulations were presented and
EEG signals were recorded and delivered to GT2

circ test. The duration of stimulation
increased in steps of 0.5 second such that the window sliding, FFT processing, and
GT2

circ evaluation would repeat until the target was twice identified as the same
stimulator in succession (either correct or not). This means that the minimal time to
identify a target was around 2.5 second. Once the target was identified, another 1
second of green cue appeared in the center of the screen to mark the result and the
epoch ended. If brain responses failed to meet the detection criteria for any of the
three stimulations beyond 10 second, this epoch would end with no cue.

To benchmark brain-control performance under different noise levels, we analyzed
online success rate and correct detection time. The online success rate was assessed as
the percentage of correctly judged epochs. The correct detection time encompassed
the stimulation duration and corresponding detection time when the target was
correctly judged.

Statistical analysis. Data are expressed as mean 6 SD. The statistics significance was
evaluated using one-way ANOVA. The criterion for statistical significance was p ,

0.05.

Numerical simulation. To study the information transmission of SR behavior in
SSMVEP of different frequencies, a straightforward neural encoding scheme was
designed to mimic the relationship between sensory stimulation and brain responses
characterized by macroscopic properties of neural populations. Rather than modeling
a specific region of the human visual system, this simulation only considered general
encoding of an array of biophysically uncoupled PIF neurons to capture the diverse
nature of neuronal circuits41.

The procedure was divided into two steps, i.e., a bank of spatiotemporal filters that
modeled receptive fields in cascade with PIF neurons capable of firing spikes time-
locked to the stimulus42. Here, the transmission of stimulation along the visual
pathway was approximated using a 3D spatiotemporal receptive field (STRF) to
describe a neuron’s preference to spatiotemporal patterns of stimulation43. A family of
such filters mapped different stimulation specificities from 3D spatiotemporal space
into 1D feature space. The receptive-field outputs were then encoded by PIF neural
circuits into spike trains. SR measures can be characterized by ISIs, which indicate the
timing difference between two successive spikes13. In our study, STRF was estimated
by the response-triggered average method from the STRFlab Toolbox (http://www.
strflab.berkeley.edu/), and the PIF model was implemented with the TED Toolbox44.

To minimize computational burden, all stimulation frames were first cropped to a
square of 151 3 151 pixels and then spatially down-sampled to 37 3 37 pixels
(Supplementary Figure S1 online). To allow computations to be repeated, 2D noise
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masking was generated by Matlab (Mathworks, Natick, MA) ‘randn’ function
with random number generator set as Mersenne Twister. A 300-frame
(60 frames/s 3 5 second) stimulation movie was passed through a bank of 1369
STRF filters, and the receptive-field outputs were summed with uniformly random
weights after mean removal to form inputs of a group of 10,000 PIF neurons, each
sharing common periodic features but entirely independent fluctuating input parts,
as in real situations when a periodic signal was applied to a heterogeneous population.
Here, we also considered encoding of neuron ensembles with random thresholds to
mimic the underlying diversity of sensory neurons45,46. Thresholds in PIF ensembles
were uniformly distributed within a certain range and each neuron possessed a
unique threshold throughout the simulation. Because the critical threshold for firing
increased as forcing frequency decreased, the upper bound of the threshold range was
selected corresponding to the value where the firing of neuronal ensembles emerged
at least one ISIs at MRF of 20 Hz under NSD of 64, while the lower bound was chosen
to be slightly greater than the grand average of receptive-field outputs.

To eliminate transients caused by stimulation onset, simulation results collected
during the initial 1 second were excluded from data analysis. Thus, within the
stimulation time of 1–5 seconds, the strength of ISIs at the period of forcing, which
roughly represented the number of spikes triggered at every cycle over 10,000 neuron
realizations, was used to measure synchronization of the spike timing with periodic
forcing47–49. It was a direct way to quantify the degree of input-output synchronization
and the ‘‘resonance’’ of the model against different noise levels. Such ensemble
property eliminated statistical fluctuations on the output of individual neurons and
loosely mimicked the behavior of large-scale neural populations. To facilitate the
comparison of SR evolution among different forcing frequencies, for every forcing
frequency, all ISIs under NSD of 0–64 in increments of 4 were normalized to mean of
0 and SD of 1 by Z-scoring. Please see Supplementary methods for more specific
description of the simulation model.
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