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This paper investigates the spatial distribution of heavy metals (HMs) concentrations in road dusts 
over a part of the Brussels-Capital Region (BCR), with the aim of identifying the most relevant 
factors impacting these concentrations and subsequently mapping them over all road segments. 
For this goal, a set of 128 samples of road dusts was collected over a three years time span in 
the Anderlecht municipality, that covers about a tenth of the BCR area. The concentrations of Cd, 
Cr, Cu, Ni, Pb and Zn have been measured in the finest fraction (⌀ < 250 μm) using ICP-OES. In 
parallel, continuous and categorical-valued proxies have been collected over all road segments. 
Using a multivariate linear modeling (MLR) approach, the most influential proxies that have been 
identified are the distance to the center of the BCR, land use, road hierarchy and roadside parking 
occupation. The performance of the MLR models remains however limited, with adjusted 𝑅2

values around 0.5 for all HMs. From a spatial analysis of the regression residuals, it is likely that 
some useful proxies could have been overlooked. Although these models have clear limitations 
for reliably predicting HMs concentrations at specific locations, the corresponding maps drawn 
over all road segments provide a useful overview and help designing sound monitoring policies 
as well appropriate implementation of mitigation measures at places where road dust pollutants 
tend to concentrate. Further studies are needed to confirm this, but it is expected that our models 
will perform reasonably well over a large part of the BCR. It is believed too that our findings are 
relevant for modeling road dusts pollution in other cities as well.

1. Introduction

Environmental pollution in urban areas is a major and worldwide concern in medium to large cities. Since it impacts people’s 
health and may cause serious environmental issues, it has gained considerable attention over the last decades. Atmospheric pollution 
related to fine particulate matter (PM) can mechanically impair lung function, but it impacts human physiology too due to the 
presence of polycyclic aromatic hydrocarbons (PAHs; [1–3]) and heavy metals (HMs; [4]).
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Because of their toxicity and persistence, atmospheric and direct deposition of HMs is also a major concern [5]. HMs are mainly 
adsorbed on fine particles that accumulate from direct, wet and dry depositions on the road surfaces [6–8] and that are influenced 
by the urban surface properties in the roads vicinity [9–11]. As a result of urbanization, impermeable pavement is becoming 
ubiquitous in cities and it intensifies the accumulation of dust containing those pollutants [12]. Among non-exhaust sources, road 
dust resuspension has generally the highest impact on PM concentrations and is an increasing concern for air quality [13], especially 
within street canyons [14]. It has been shown that the finest polluted road sediment fractions can contaminate adults or children 
either by ingestion, by inhalation or by dermal absorption [15–18]. HMs primarily attached to road dust deposited on urban roads are 
of particular concern too in the urban water environment, since stormwater runoff transports them to receiving waters and degrades 
water quality [8,19–23], thus creating environmental and population health issues at places than can be located far away from their 
emission areas.

Road dust includes HMs originating from multiple sources [24,25], and [26] provided a list of the main sources of HMs in 
contaminated runoff water. They mainly relate to the various parts of the vehicles (brakes, tires and vehicle body [27–29]) and from 
combustion. Other identified sources are road equipment, buildings coating, industrial activities and land use [30,31]. For urban 
runoff, [32] provided loading estimates of Pb, Cu, Cd, and Zn from specific sources, this including vehicles parts and buildings.

The adverse impact of HMs in road dust has motivated scientists to pay increasing attention to their quantification and 
modeling [18,33,34]. This includes the identification of the most important factors that contribute to road dust build-up and HMs 
concentrations. Quantifying the relationship between HMs and these various factors is essential for risk management, but most of 
the past studies have only analyzed them qualitatively [29]. Identifying and ranking these factors in terms of influence is critical for 
implementing effective mitigation measures (including revised street sweeping strategies) and for protecting urban residents [12,19].

Spatial studies confirmed the combined influence of various factors by highlighting hot spots caused by major roads and industries 
[35,36]. They highlight too the need to account for the spatial variability in health risk assessment [12,18]. In spite of these general 
findings, spatial studies related to HMs concentrations in urban road dust are rather scarce and tend to focus on city or regional 
scales using kriging techniques (see, e.g., [37–40]). Spatially predicting HMs concentrations in road dust by relying on relevant 
environmental factors is a much less common approach [12,24]. To bridge this gap, this study aims at proposing a methodology for 
identifying the most relevant factors to be accounted for. Mapping afterwards these concentrations over the various road segments of 
the study area is expected to provide some insight about the spatial distribution of these pollutants and is a requirement for designing 
sound monitoring policies as well as for the appropriate implementation of mitigation measures at places where road dust pollutants 
tend to concentrate.

2. Material and methods

2.1. The Brussels-Capital Region and Anderlecht municipality

The Brussels-Capital Region (BCR) is located in the center of Belgium, covering an area of 161.4 km2 with a population of 1.2 
million. As the economic capital of Belgium and headquarters of the European institutions, the BCR is the most densely populated 
region of the country and is subject to important commuter traffic. In spite of these intense socioeconomic activities, the BCR includes 
about 18.5% of green areas spread over the whole region, along with a wide variety of urban conditions, ranging from residential 
(and even semi-rural areas along its borders) to industrial areas located close to its center along the Brussels-Charleroi canal. As 
most important cities, the BCR is facing pollution issues that cannot be attributed to point sources as for cities with locally intense 
industrial activities. Instead, pollution is more diffuse and is likely resulting from the joint effect of various factors that are hard to 
disentangle.

The BCR is segmented in 19 municipalities of various areas and populations. The Anderlecht municipality (AM) is the third 
biggest one and is located in its south-western part, extending from the densely populated inner ring area that encloses partly the 
City of Brussels to the much greener outer ring that encloses the whole BCR (Fig. 1). It covers 17.7 km2 and has a population of 
120,000 with an average population density of 6,800 km−2. However, as for the whole BCR in general, it exhibits a strong gradient 
of population density between the inner ring (about 20,000 km−2) and the outer ring (about 500 km−2). The AM has an industrial 
and agricultural past reflected by its current land uses, with 34% of non built areas, 4% of industrial areas (mostly located along the 
Brussels-Charleroi canal), 36% of residential and densely populated areas, and 8% of areas related to public services. In the context 
of our study, the Anderlecht municipality (AM) was deemed representative of the whole BCR, as it includes about 10% of the BCR 
area and population, with varied urban conditions that are typically found in the BCR. It is thus expected that findings for the AM 
are likely to be relevant for the whole BCR.

2.2. Heavy metals sampling campaign and analyses

In order to investigate the concentrations of HMs in road dust, a total of 128 samples were collected and analyzed over 3 successive 
years between April and September during dry periods (i.e., a minimum of 24 hours after the last rain). The first 2019 sampling 
campaign collected 100 samples over road segments that were selected in order to keep a balance between spatial coverage over the 
whole AM and variety of the roads types that are typically found in the municipality (Fig. 2). The 2020 sampling campaign added 8 
samples collected at two four-arms crossroads (where the four locations in each crossroad have similar characteristics) and 12 samples 
2

collected along distinct road transects. Finally, the 2021 sampling campaign added 8 more samples along the Brussels-Charleroi ship 
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Fig. 1. Road network of the Brussels-Capital Region (in gray) with its green areas (colored in green) and location of the Anderlecht municipality (bounded in red). 
The blue curve refers to the Brussels canal crossing the region, the thick black curves correspond to the boundaries of the municipalities, while the disk refers to the 
center of the City of Brussels.

canal. The 100 samples of the 2019 campaign were used for the initial modeling, while the 2020 and 2021 additional samples were 
used for improving this modeling and for assessing the spatial independence of the prediction errors.

For all sampled locations, road dusts were collected over an area of 6 m2 using an industrial-grade MAKITA (18V Li-ion 100 mbar 
DCL 501Z) vacuum cleaner. The bulk road dust samples were dried overnight in an oven at 50 °C. After that, sieving was performed 
(Analysette by FRITSCH) to remove the particles larger than 250 μm. The purpose of the sieving is to get rid of coarse objects (such 
as gravel, coarse sand, plant material and other debris such as plastic pieces and cigarette butts), all known to contribute significantly 
to the heterogeneous nature of street residues. The analysis of the heavy metals was conducted on the particle size fractions smaller 
than 250 μm, which are deemed sufficiently homogeneous and have consistently been demonstrated to contain the highest heavy 
metal levels in urban road dusts [34,41,42]. The choice of 250 μm as a particle-size cutting is also consistent with the prospect of 
developing optimized street sweeping practices suitable for moderately polluted urban environments [43].

The fraction smaller than 250 μm is recovered for the analysis of Cd, Cr, Cu, Ni, Pb and Zn. For each sediment analysis, one gram of 
the fraction is extracted in 10 ml aqua regia solution (HNO3:HCl=1:3 v/v) for two hours at boiling state (heating plate programmed 
above 300 °C) in an Erlenmeyer flask placed under a water-refrigerated condensation column in a hood. This digestion strategy is 
derived from [30,44,45]. For each sample the extraction is performed three times (i.e., three consecutive one-gram subsampling) 
in order to reduce the intrinsic spatial heterogeneity of particulate contaminants. After the hot extraction, the mixture is filtered 
(filter n°1 by WHATMAN). The filter is rinsed and the extraction and rinsing liquids are added to Milli-Q quality water in a 50 ml 
volumetric flask. The solutions are then injected in the Inductively Coupled Plasma with an Optical Emission Spectrometry (ICP-OES 
vista pro by VARIAN). The various heavy metal concentrations (in mg/kg) are obtained by taking the average of the three (one-gram) 
replicas.

2.3. Spatial proxies

In parallel to the sampling campaigns, a large set of spatial proxies was collected for the road segments of the AM, with the aim 
of investigating their relationship with HMs concentrations. The term “proxies” refers here to influential factors that can directly 
impact HMs concentrations or to factors that are indirectly related to them. According to the fact that HMs concentrations are 
3

expected to result from the joint effect of several factors that are acting in a diffuse way over the BCR, the largest possible set 
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Fig. 2. Locations of the samples in the Anderlecht municipality, with the initial 100 samples in 2019 (in blue), the 20 additional samples in 2020 (in orange) and the 
8 additional samples in 2021 (in green). The 8 locations sampled in two crossroads are highlighted in the zoomed parts of the figure.

of proxies was collected in order to cover aspects as various as socio-economy, demography, atmospheric pollution, meteorology, 
land use, traffic, road properties and road management. These proxies were gathered from various administrations and services, this 
including the Brussels agency for environment (Bruxelles Environnement, BE), the Brussels agency for mobility (Bruxelles-Mobilité, 
BM), the Royal Meteorological Institute (IRM), the Belgium National Institute for Statistics (IBSA), the IT service of the region 
(URBIS) and the Anderlecht municipality (AM). The list of all proxies is given in Table 1. These proxies are either continuous-valued 
or categorical-valued and are available at various initial spatial and temporal resolutions. As our goal was to map HMs concentrations 
over all road segments using these proxies, their value need to be known for all segments. Accordingly and whenever possible, all 
continuous-valued proxies have been spatially interpolated over all road segments using QGIS [46] and averaged over time when 
needed. On the other side, for categorical-valued proxies, Road coating type and Road condition were only available at the sampled 
locations and were not interpolated but were included in the analyses for the sake of completeness.

2.4. Proxies screening

Due to the large number of proxies at hand, screening methods were used to safely discard those that were not available for all 
road segments, as well as to identify the best subset of remaining ones to be used.

For the proxies that are at hand but which are either only known at the sample locations, are affected by missing values or 
cannot be extrapolated over all road segments, it is important to check that omitting them afterwards in the statistical analyses is not 
likely to negatively impact the subsequent results. A preliminary screening was done by assessing separately the importance of each 
proxy with respect to each HM. For continuous-valued proxies, simple linear regression models were used, while a one-way analysis 
of variance (ANOVA) was used for categorical-valued proxies. Statistical significance was tested in order to assess the impact that 
neglecting these proxies might have on the subsequent modeling stage.

2.5. Regression models

Based on all remaining proxies (i.e., after discarding those that are not known for all road segments), a multivariate linear 
regression (MLR) model was estimated separately for each HM, with the aim of selecting the best subset of proxies to be considered 
for predicting HMs concentrations, with

𝐸[𝑌 |𝑥1,… , 𝑥𝑘] = 𝛽0 + 𝛽1𝑥1 +⋯+ 𝛽𝑘𝑥𝑘 (1)

where 𝑌 is the log-concentration of a given HM and where 𝑥1, … , 𝑥𝑘 are the 𝑘 proxies included in the model. Proxies were selected 
4

using a forward selection procedure, where the statistical significance of each proxy was assessed using its 𝑝-value, while the 
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Table 1

List of the available spatial proxies. First part of the table refers to continuous-valued proxies, whereas second part refers to categorical-valued ones.

Proxy Details Unit Provider

Distance to BCR center center of BCR: Great Market place km URBIS
Crossroad distance closest street node m URBIS
Black carbon peak time, bulk time μg/m3 BE
Atmospheric pollutants Cd, Cr, Cu, PM10, PM2.5 μg/m3 BE
Street canyon index average building height/street width – BE
Population density by district km−2 IBSA
Road occupation rate by district, 8-9 am and 17-18 am – ISBA
Roadside parking Occupation rate by district, 5-7 am and 10-12 am – ISBA
Waterproof surface ratio by district – ISBA
Buildings older than 1961 by district, ratio – IBSA
Number of shops by district, per 1000 people – IBSA
Employment rate by district – IBSA
Sedentary rate by district – IBSA
Number of vehicles (MUSTI) daily, rush hours – BM
Distance to shopping area closest shopping area m BM
Average & total precipitation week before sampling mm IRM
Average & total sun exposure week before sampling hours IRM

Proxy Classes Unit Provider

Road coating type asphalt, pavement, mixture – samples
Road condition new, good, degraded – samples
Speed Limit 30 km/h, 50 km/h, 70 km/h – URBIS
Land use green area, densely populated, industrial, – URBIS

residential, mixed
Road hierarchy metropolitan road, main & interdistrict road, – BM

district collector & district road
Regular Street Sweeping yes, no – AM
Street Manager municipality, region – AM

Legend: AM: Anderlecht municipality, BE: Bruxelles Environnement, BM: Bruxelles-Mobilité, IRM: Royal Meteorological Institute, ISBA: Belgium National Institute 
for Statistics, URBIS: IT service of the region, samples: obtained during the samples collection. The word “MUSTI” stands for the Strategic multimodal mobility 
model, operated by Bruxelles-Mobilité in the BCR. The word “district” refers to the 78 individual statistical sectors covering the total territory of the municipality of 
Anderlecht

performance of the regression models was assessed using the adjusted determination coefficient 𝑅2
𝑎

(i.e., the part of variance explained 
by the model), with

𝑅2
𝑎
= 1 −

𝑅𝑆𝑆∕(𝑛− 𝑘− 1)
𝑇𝑆𝑆∕(𝑛− 1)

(2)

where 𝑛 is the number of samples, 𝑇𝑆𝑆 is the total sum of squares and 𝑅𝑆𝑆 is the residual sum of squares. Model selection was done 
using the Akaike’s information criterion (AIC), with

𝐴𝐼𝐶 = 𝑛 ln(𝑅𝑆𝑆∕𝑛) + 2(𝑘+ 1) +𝐶 (3)

where 𝐶 is a constant that can be ignored for the sake of models comparison (see, e.g., [47] for more details). Both eqs. (2) and (3)
where used jointly for selecting the best final model for each HM.

For each HM considered separately, a regression model was first estimated using the 100 samples of the 2019 campaign and 
was improved afterwards by including the additional samples from the 2020 and 2021 campaigns (see Section 2.6 below). For each 
HM, the proxies to be included in the MLR models were chosen using a forward selection procedure using the ols_step_forward_aic()

function in R [48], with the goal of identifying the model that maximizes AIC, where included proxies are all statistically significant.
After estimating the final models that make use of all samples from the 2019, 2020 and 2021 campaigns, the potential benefit 

of including additional interactions terms 𝑥𝑖𝑥𝑗 and quadratic terms 𝑥2
𝑖

was tested for all proxies appearing in these models. Finally, 
using for each HM the estimated MLR model, HMs concentrations were mapped over all road segments of the AM using QGIS [46], 
thus providing some insight about the spatial distribution of the HM concentrations over the municipality.

2.6. Repeatability and validation

As mentioned in Section 2.2, the first 2019 sampling campaign was conducted without having prior information about the most 
relevant proxies and their benefit for predicting HMs concentrations. Using the 100 samples from this first campaign, identifying 
these relevant proxies was possible and corresponding regression models were estimated. Using the additional samples from the 2020 
and 2021 campaigns, several important points were addressed.

The first one was to check that the MLR models calibrated using data collected in 2019 are still relevant when applied for 
subsequent years. This implicitly assumes that HM concentrations are reasonably stable over time when no changes of proxies are 
5

taking place, so that the model estimated from the 2019 campaign will apply equally well for subsequent years. If this is verified, 
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Table 2

Main statistics for the 𝑛 concentrations (in mg/kg) of the various HMs collected during the 2019 
campaign (first part) and the 2020-2021 campaigns (second part).

𝑛 = 98 Cd Cr Cu Ni Pb Zn

Min. 0.20 2.48 5.23 5.09 4.16 21.43
Median 2.69 82.07 159.41 41.25 75.46 330.99
Mean 2.66 94.98 210.74 47.83 117.39 353.55
Max. 6.71 473.24 1076.80 218.22 1671.75 1511.78

𝑛 = 28 Cd Cr Cu Ni Pb Zn

Min. 1.71 49.58 46.68 26.18 47.24 163.32
Median 6.44 148.55 304.90 88.20 166.69 456.37
Mean 5.96 158.34 360.52 85.13 202.03 478.67
Max. 8.46 288.60 994.91 171.69 624.37 1018.95

this also offers the possibility to combine the 2019, 2020 and 2021 sampling campaigns in order to improve the estimation of the 
MLR model and the quality of the predictions. For a MLR model estimated from the 2019 campaigns and which is consistent with the 
observed values for the 2020 and 2021 campaigns, it is expected that, on the average, (1 − 𝛼)100% of the observed values for 2020 
and 2021 will lie within the prediction intervals at the 1 − 𝛼 confidence level. A value of 𝛼 = 0.05 was selected here for this purpose. 
More formally, if 𝑛 = 28 is the number of predictions and 𝑚 is the number of observed values that lie within their corresponding 
prediction intervals, this is equivalent to check that the frequency 𝑓 = 𝑚∕𝑛 is compatible with the binomial distribution 𝐵𝑖(𝑛, 𝑝), 
where 𝑝 = 1 − 𝛼 = 0.95. Stated in other words, 0.95 should belong to the confidence interval for 𝑝 delimited by the lower and upper 
bounds 𝑝𝑎 and 𝑝𝑏 when using 𝑓 as an estimate of 𝑝.

The second point was to assess the spatial independence of the MLR residuals. As our study is accounting for a limited number 
of proxies, it can be suspected that there are other proxies that are impacting the HMs concentrations and that could have improved 
the MLR models if they were accounted for. The omission of a relevant proxy acting at a large scale would be translated by an 
apparent spatial correlation for the regression residuals. This motivated the 2020 sampling campaign that added 8 samples in two 
four-arms crossroads (where each crossroad is characterized by the same values for the proxies), so that the spatial dependence at 
very short distances can be estimated from them. More generally, the spatial dependence of the residuals can be measured using the 
semivariogram 𝛾(||𝐡||), defined as

𝛾(||𝐡||) = 1
2
𝑉 𝑎𝑟[𝜀(𝐱 + 𝐡) − 𝜀(𝐱)]

where 𝛾(||𝐡||) is a measure of the dissimilitude between regression residuals 𝜀(.) at locations 𝐱 and 𝐱 + 𝐡 as a function of the euclidean 
distance ||𝐡|| that separates them. For each HM, 𝛾(||𝐡||) was estimated and modeled using an exponential variogram model, i.e.

𝛾(||𝐡||) = 𝛼1𝛿(||𝐡||≠0) + 𝛼2 (1 − exp(−3||𝐡||∕𝑟)) (4)

with 𝛿(.) the Kronecker delta (the nugget effect). Parameters 𝛼1 and 𝛼2 are associated with the spatially uncorrelated and correlated 
part of the residuals, respectively, where 𝛼1 +𝛼2 is the variance of the residuals. Accordingly, 𝛼2∕(𝛼1 +𝛼2) is measuring the part of the 
variance of the residuals that can be attributed to spatially correlated variations, while 𝑟 (the range) is measuring the spatial extent 
of this correlation. More details about variogram estimation and modeling can be found in [49].

3. Results and discussion

3.1. Heavy metal distributions

The main statistics for the collected values are given in Table 2. Two samples from the 2019 sampling campaign were discarded 
due to abnormally high concentrations that can be related to their peculiar locations (close to a railroad and in a tunnel).

From a scatter plots analysis of the remaining samples (Fig. 3), it can be seen that all HM concentrations are reasonably close to 
normality after a logarithmic transform. All HMs are significantly correlated (𝑝𝑣 ≤ 0.01). The highest correlation (𝑟 = 0.92) is observed 
for {Cr,Ni} that are jointly found in stainless steel. The lowest correlations are observed for {Cd,Cu} (𝑟 = 0.62), where Cd has the 
lowest correlations with other HMs in general and exhibit the lowest concentrations too. These correlations are consistent with those 
found by [31] and are in agreement with the fact that most of these HMs are directly linked to vehicles emissions. In agreement with 
[32], low Cd concentrations are expected as little Cd was found from any of the sources they evaluated, by comparison with other 
HMs.

From now on, as normality is easing both statistical analyses and visualization, all subsequent processing of the HMs 
concentrations will be based on their natural logarithm. The correspondence with the non transformed values will be provided 
6

when it comes to mapping the concentrations over the road segments of the municipality.
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Fig. 3. Histograms for the 126 heavy metals concentrations (in natural logarithm), along with the corresponding scatter plots and correlations for all pairs.

3.2. Proxies screening

Table 3 presents the results for the individual screening of each proxy, where proxies affected by missing values (i.e., 𝑛 < 98) are 
ranked in increasing order with respect to their mean 𝑝-value, while proxies that are only at hand at the sample locations (i.e., Road 
coating and Road condition) are presented at the bottom of the table. For the sake of comparison, the first part of the table presents 
the five most influential proxies.

From these results, it can be seen that proxies that cannot be used for predicting HMs concentrations over all road segments are 
lagging behind in terms of 𝑝-values (except for Employment rate), and most of them are not highly significant (𝑝𝑣 > 0.01) or are not 
significant at all (𝑝𝑣 > 0.05) for a majority of HMs. They can thus be safely omitted for the subsequent analyses. From a correlation 
analysis (details not shown here), it appears that Employment rate is correlated (𝑟 = 0.85) to Roadside parking occupation (10-12 
am), a proxy which is at hand for all road segments. Discarding Employment rate is thus expected to have a limited impact, as its 
effect is indirectly accounted for by Roadside parking occupation.

3.3. Regression model and subsequent sampling campaigns

Based on the 98 samples from the 2019 campaign and using only the set of proxies that are known for all road segments, the best 
MLR model (i.e. the model that maximizes AIC) was estimated separately for each HM using the forward selection procedure (results 
not shown here). Based on these models and the knowledge of the values for the proxies at the sample locations for the 2020 and 
2021 campaigns, the HMs concentrations at these locations were predicted and compared to the measured ones. For a MLR model 
estimated from the 2019 campaigns and which is consistent with the measured concentrations for the 2020 and 2021 campaigns, it is 
expected that, on the average, 95% of the 2020 and 2021 measurements will lie within the 0.95 prediction intervals. This was verified 
separately for each HM and the results are provided in Table 4. It can be seen that, except for Cd, this a reasonable assumption, so 
that it is possible to pool the data for all campaigns in order to redo the estimation of the MLR models with an increased number 
of samples, thus leading to a better estimation of these models. This also means that the global behavior of the HMs concentrations 
did not appear to change in a significant way over the three years time span covered by our study. As mentioned, this does not 
seem to be completely true for Cd, but it is worth remembering that Cd exhibits much lower concentrations by comparison with the 
7

other HMs (see Table 2), so that these measured concentrations are thus subject to a much higher relative analytical uncertainty. As 
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Table 3

𝑝-values for the simple linear regression models (continuous proxies) and one-way ANOVA models (categorical proxies) that relate the concentration of each HM with 
each proxy. The first part refers to the five most influential proxies based on their mean 𝑝-value (denoted as 𝑝𝑣); the second part refers to proxies that are impacted 
by missing values (𝑛 < 98); the third part refers to proxies that are only known at the sample locations. Proxies are sorted in increasing order of 𝑝𝑣 in each part of the 
table.

Proxy Cd Cr Cu Ni Pb Zn 𝑝𝑣 𝑛

Distance to BCR center 4.2e-5 2.3e-9 1.5e-9 1.3e-10 1.2e-8 2.3e-13 7.0e-6 98
Roadside parking occupation (5-7am) 5.4e-4 5.9e-5 1.5e-6 4.6e-5 1.4e-4 3.7e-7 1.3e-4 98
Land use 9.3e-4 4.3e-5 5.6e-9 9.0e-5 5.4e-6 8.7e-9 1.8e-4 98
Waterproof surface ratio 3.9e-3 2.2e-6 1.0e-8 6.6e-7 9.9e-6 1.4e-10 6.5e-4 98
Distance to shopping area 0.022 1.4e-5 5.7e-8 2.4e-5 4.0e-3 2.9e-7 4.0e-3 98

Employment rate 5.1e-4 4.14e-3 9.8e-4 3.4e-3 1.2e-4 4.0e-4 1.6e-3 78
Speed limit 1.6e-3 0.013 6.7e-3 0.055 0.026 7.7e-3 0.018 95
Road occupation rate 0.048 0.093 5.4e-3 0.039 0.119 0.013 0.053 44
Street Manager 0.058 0.020 0.016 6.6e-3 0.306 0.026 0.072 93
Atmospheric pollutants (Cu) 0.149 0.168 0.281 0.067 0.024 0.022 0.118 87
Atmospheric pollutants (Cr) 0.318 0.264 0.437 0.132 0.061 0.038 0.208 87
Atmospheric pollutants (Ni) 0.251 0.295 0.275 0.247 0.185 0.047 0.217 87
Road occupation rate (17-18 am) 0.376 0.069 0.117 0.267 0.444 0.220 0.249 96
Sedentary rate 0.952 0.326 7.0e-3 0.221 0.891 0.041 0.406 78
Road occupation rate (8-9 am) 0.616 0.121 0.246 0.321 0.836 0.460 0.433 96

Road coating 0.138 7.4e-3 8.8e-3 0.021 0.134 0.099 0.068 98
Road condition 0.327 0.868 0.329 0.408 0.012 0.125 0.346 98

Table 4

Number of values 𝑚 lying within the corresponding 95% prediction intervals and corresponding 
frequencies 𝑓 = 𝑚∕𝑛 for the 𝑛 = 28 predictions at the sample locations for the 2020 and 2021 
campaigns, along with the lower and upper bounds 𝑝𝑎 and 𝑝𝑏 of the confidence interval for the 
probability 𝑝 of the binomial distribution 𝐵𝑖 ∼ (𝑛, 𝑝). HMs for which 𝑝𝑎 ≤ 0.95 ≤ 𝑝𝑏 corresponds to the 
non rejection of the null hypothesis 𝑝 = 0.95 (at the confidence level 0.99).

Cd Cr Cu Ni Pb Zn

𝑚 21 28 27 27 28 25
𝑓 0.75 1 0.96 0.96 1 0.89
𝑝𝑎 0.49 0.83 0.76 0.76 0.83 0.66
𝑝𝑏 0.92 1.00 1.00 1.00 1.00 0.99

Table 5

Selected proxies (𝑝𝑣 ≤ 0.05) for the MLR models, with their corresponding 𝑝-values. Last two lines give the adjusted 𝑅2 values for the corresponding models and for 
models that additionally include statistically significant (𝑝𝑣 ≤ 0.05) quadratic and interaction terms (where no additional terms are significant for Cd).

Proxy Cd Cr Cu Ni Pb Zn

Distance to BCR center 2.7e-2 5.4e-3 – 1.3e-8 1.7e-5 2.6e-7
Land use 5.0e-2 9.0e-3 4.2e-5 – 1.8e-2 8.0e-4
Road hierarchy 1.0e-2 1.0e-3 5.4e-4 3.6e-3 – –
Roadside parking occupation (5-7am) 4.2e-5 2.5e-4 – 4.4e-2 4.9e-3 –
Street canyon index – – 2.8e-2 4.9e-3 1.6e-2 –
Population density 3.5e-2 6.0e-4 – – – –
Roadside parking occupation (10-12am) 1.9e-2 – – – – –
Black carbon (peak time) – – – – 1.7e-2 –

𝑅2
𝑎

(models given above) 0.45 0.50 0.51 0.48 0.48 0.49

𝑅2
𝑎

(with higher terms ) 0.45 0.54 0.54 0.54 0.55 0.53

processing Cd differently from the other HMs would largely complicate the subsequent processing steps, it was decided to proceed 
without specific corrections for this issue.

Accordingly, Table 5 presents the final MLR models that account for all sampling campaigns together. Overall, all 𝑅2
𝑎

values are 
close to 0.5, showing that only half of the variability is explained by these MLR models, with a slightly lower values for Cd. However, 
this is better than 𝑅2 values reported by [24] in a comparable study for predicting Cd, Cr, Cu, Ni, and Pb concentrations using a set 
of 66 proxies in Tianjin, China.

Using the number of times each proxy is involved for the various HMs, it is seen that Distance to BCR center and Land use seem 
to be the most relevant ones (5 HMs out of 6), followed by Road Hierarchy and Roadside parking occupation from 5 to 7 am (4 HMs 
8

out of 6). Road Hierarchy and Land use proxies were expected to be relevant by reference to previous studies. Indeed, road hierarchy 
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Table 6

Values of the coefficients for the MLR models. The intercept corresponds to the hypothetical expected (log-)concentration for a location at the center of the city, in a 
green area and on a district collector & district road with null Roadside parking occupation. Proxies are unitless except when mentioned between brackets.

Coefficients Cd Cr Cu Ni Pb Zn

Intercept 1.541 4.708 3.412 4.862 5.460 5.963
Distance to BCR center [km] -0.096 -0.208 – -0.271 -0.324 -0.235
Land use : Densely populated 0.086 0.688 1.442 – 0.623 0.783
Land use : Industrial 0.128 0.951 1.568 – 0.348 0.858
Land use : Mixed 0.334 0.836 1.463 – 0.733 0.882
Land use : Residential 0.044 0.522 0.815 – 0.162 0.456
Road hierarchy : Metropolitan 0.279 0.475 0.947 0.439 – –
Road hierarchy : Main, Interdistrict 0.205 0.500 0.504 0.335 – –
Roadside parking occupation (5-7 am) -0.011 -0.017 – -0.005 -0.011 –
Street canyon index – – 0.749 0.497 0.549 –
Population density [km−2] 2.36e-5 6.99e-5 – – – –
Roadside parking occupation (10-12 am) 7.22e-3 – – – – –
Black carbon (peak time) [μg/m3] – – – – 0.100 –

is linked to expected traffic and land uses are associated with various levels of human activities, that have been shown to impact 
HMs concentrations in road deposits [30,31,34,36]. E.g., using a more limited set of proxies, [19,29] concluded that spatial variation 
of HMs concentrations could be attributed to the variability in pollutant sources such as traffic and land use.

It is worth remembering here that the non significance of a proxy for some HMs does not prove that this proxy should be discarded 
for these HMs, but rather that the data failed to clearly evidence its effect. This could be linked to a mild effect of this proxy on the 
HMs concentrations, and it is an expected issue too when low signal-to-noise ratio occurs, as highlighted by the moderate 𝑅2

𝑎
values 

of our MLR models. Accordingly, the interpretation of the results should thus be conducted at the global level instead of interpreting 
them separately for each HM, by remembering that all HMs are correlated and are thus expected to be impacted in comparable ways 
by similar proxies.

The estimated coefficients of the MLR models are given in Table 6, by considering the Green area class and the District 
collector/road class as the reference classes for Land use and Road Hierarchy, respectively (i.e., their associated coefficients are 
equal to 0). Whenever significant, it can be seen that HMs concentrations decrease when moving away from the center of the city, as 
expected from the spatial organization of the AM and BCR in general. This is consistent with the findings by [50], who related this 
gradient to increasing traffic in the most central urban areas, while [51] reported that metal pollutants are related to anthropogenic 
activities, with road traffic being an important contributor.

By comparison with the Green area reference class, it is clear too that other land uses lead to increased concentrations, with the 
highest increase observed for Cu. In general, the Industrial and Mixed classes lead to the highest increases, while Residential areas 
leads to the smallest ones. This is consistent too with the findings by [41,52,53] in China, that reported industrial area roads dust as 
the most polluted ones. However for our study, even if the contrast with Green areas is clear, the differences between other land use 
classes are more limited and vary between HMs. This is in agreement with the fact that only few production industries are still active 
in the BCR, and those that are in activity are subject to strict environmental controls. Most of the differences are thus expected to 
come from traffic intensity.

Looking now at the impact of Road Hierarchy, whenever significant, the coefficients emphasize that larger roads lead to higher 
concentrations by comparison with the reference class, but differences between metropolitan and Main & interdistrict roads are 
limited, except for Cu. Similarly, [36] reported that the spatial patterns observed for Cu, Pb, Cr and Zn were mainly associated 
with main roads with high traffic density, thus suggesting that these concentrations are directly related to vehicles emissions, as 
expected. Moreover, larger roads are associated with heavy vehicle traffic, and these vehicles are characterized by braking systems 
and combustion emissions that largely differ from those for standard cars.

Whenever significant too, Roadside parking occupation rate (5-7 am) consistently evidence a negative impact on concentrations. 
This is in agreement with the fact that high occupation rates before working hours are mainly associated with dense urban residential 
areas. On the other side, Street canyon index has a consistently positive impact, in agreement with the fact that high street canyon 
index values are associated with conditions that locally concentrate atmospheric pollutants, while [5,8] highlighted the relationship 
between atmospheric deposition and HMs concentrations in road dusts.

For other proxies, they can hardly be interpreted as they are significant for only one or two HMs. It is worth emphasizing that 
Population density does not seem to have a clear impact, while [31] evidenced it. However, this proxy is related to a large extent to 
the distance to the center of BCR, which is clearly impacting the concentrations.

Overall, it can be concluded that all proxies that were identified as relevant for most of the HMs lead to consistent results for 
these HMs and are also in agreement with their expected effects as documented from previous studies. However, it can be seen too 
that evidencing their effect for all HMs at the same time is a much more difficult task, most likely due to our limited samples size 
and a low signal-to-noise ratio.

So far, our MLR models (as given in eq. (1)) only include linear effect with respect to each proxy, while including curvatures (i.e. 
quadractic terms) and interactions could potentially improve them. For each HM, the statistical significance of these terms was thus 
tested. The corresponding results (not detailed here) show that, for all HMs, a total of 11 quadratic and interaction terms (out of 49 
9

possible terms) are statistically significant (𝑝𝑣 ≤ 0.05). However, the involved proxies largely differ between HMs, thus impairing the 



Heliyon 9 (2023) e13312P. Bogaert, G. Diélie, A. Briffault et al.

Table 7

Estimation of the spatially correlated part of the MLR residuals, as measured by the ratio 𝛼2∕(𝛼1 +𝛼2), 
where 𝛼1 + 𝛼2 corresponds to the variance of these residuals.

Cd Cr Cu Ni Pb Zn

𝛼2

𝛼1 + 𝛼2
0.24 0.81 0.26 0.63 0.53 0.38

global interpretation of these terms. Moreover, only 5 of these terms are highly significant (𝑝𝑣 < 0.01). As seen from Table 5 (last 
line), accounting for these additional terms does not substantially modify the predictive performance of the regression models, as 
measured by the moderate increase of the 𝑅2

𝑎
values. Accordingly, they were not accounted for predicting HMs concentrations over 

the road segments of the AM. This also eases the interpretation of the MLR and the corresponding maps, as the result corresponds to 
the summation of the separate effect for each proxy.

3.4. Mapping HMs concentrations

Using the road network of the AM as presented in Fig. 2 along with the estimated MLR as given in combined Tables 5 and 6, it was 
possible to map the predicted HMs concentrations over all road segments of the municipality, except for segments that are associated 
with land use classes that were not represented in our samples (namely “Administrative activity” and “Transport & port activity”), 
along with the “Highway” road hierarchy class that cannot be safely sampled. For the sake of brevity, the corresponding maps in 
Figs. 4a and 4b are presented here for Cu and Zn only because these two HMs exhibit the most distinct patterns. As Zn concentrations 
were modeled by accounting for the Distance to the center or BCR and for Land use, they exhibit a linear gradient with few locally 
contrasting areas that are associated with distinct land use classes (with only Green areas and Residential areas that markedly differ 
from the other ones; see last column in Table 6). As green areas are mostly located in the West part of the municipality (see Fig. 1) 
and are the most distant ones from the center of the region, the corresponding expected concentrations are particularly low over 
the Western road segments. The map of predicted Cu concentrations shows similarly low values in the Western part, but the local 
variations in the Eastern part are more complex and pronounced, due to the inclusion of Road Hierarchy and Street canyon index as 
additional proxies for that metal (see third column in Table 6). It is worth noting that even if Cu does not explicitly account for the 
Distance to the center of the BCR, concentrations are still globally higher on the Eastern part (i.e. close to the center), as observed for 
the other HMs. The maps for these other HMs (that are presented in Figs. 6a to 6d in the Appendix) share the same general behavior.

It is worth emphasizing here that mapping HMs concentrations in urban areas is usually done on a regular spatial grid, either 
using kriging or other interpolation techniques from a set of sampled locations (e.g., [4,17,38,40,53]) or using regression models 
with gridded values for the proxies, as long as the values of the proxies are known everywhere [24]. On the opposite, mapping was 
done here on a road-segment basis. The benefit of this approach is that very local variations between adjacent road segments can be 
evidenced when these segments are characterized by distinct values of land use, road hierarchy, roadside parking occupation, etc. 
This mapping is also more consistent with monitoring policies and with the implementation of mitigation measures (such as enhanced 
street sweeping modes), as specific road segments can be targeted for these goals. It is however a more demanding approach, as the 
values for the proxies need to be known for all road segments.

3.5. Spatial dependence of the regression residuals

In order to assess the spatial dependence of the regression residuals, variograms were estimated for all HMs and were modeled 
using eq. (4). The corresponding results for Cr and Cu are shown in Figs. 5a and 5b, respectively, while the estimation of the spatially 
correlated part is given in Table 7 for all HMs. It can be seen from Fig. 5 that these residuals are spatially correlated up to a distance 
of about 700 meters, but the amount of this correlation largely varies between HMs, with moderate values 𝛼2∕(𝛼1 + 𝛼2) for Cd and 
Cu but a high value for Cr. Based on these results, it is thus likely that our MLR models could be improved by including spatially 
correlated proxies that have been overlooked in our study. From the fact that regression residuals are all positively correlated between 
HMs (results not shown here), with correlations ranging from 0.24 to 0.81 (average value is 0.52), it is likely too that these omitted 
proxies would affect all HMs in similar ways. On the other side, for the spatially non correlated part of the residuals, it emphasizes 
that concentrations can be subject to large variations over small distances, as caused by very local effects that are difficult to identify 
at the scale of our study due to the limited number of samples collected over the spatial extent of the municipality. Overall, the part of 
this unexplained residual variability (either spatially correlated or uncorrelated) as measured by 𝛼1 + 𝛼2 is about 50% for all HMs, as 
previously mentioned and seen from Table 5. However, it is worth remembering that a very detailed mapping of the concentrations 
would bring little benefits from an environmental perspective and for management aspects at the scale of the municipality, while the 
additional experimental costs required for this mapping would be overwhelming.

4. Conclusions

In this paper, we investigated the spatial distribution of various HMs concentration in the smallest fraction (⌀ < 250 μm) of road 
dusts collected over the Anderlecht municipality in the Brussels-Capital Region, that covers about 18 km2 and that can be considered 
10

as representative of the whole region. Based on a three years sampling campaign, it has been shown that the main proxies (among 



Heliyon 9 (2023) e13312P. Bogaert, G. Diélie, A. Briffault et al.

Fig. 4. Predicted Zn (part a) and Cu (part b) concentrations over the road segments of the Anderlecht municipality, based on the corresponding estimated MLR models. 
Concentrations are presented in four classes that correspond to the quartiles of the distribution of the predicted concentrations. Limits for the quartiles are given both 
in log-scale and original values. The few “No data” road segments correspond to two Land use classes and one Road hierarchy class that were not represented in the 
samples.

those that were at hand) that best relate to these concentrations are the distance to the center of the region, land use, road hierarchy 
and roadside parking occupation before working hours. The predictive performance of the corresponding multivariate regression 
models remains limited for all HMs, as half of the variance is left unexplained. From a spatial analysis of the regression residuals, it 
can be suspected that relevant spatial proxies could have been omitted, though their identification is not possible in the framework 
of this study. Using these models for accurately predicting local HMs concentrations is thus not possible, but the corresponding maps 
of expected concentrations over the municipality give a useful overview when it comes to improve street cleaning management at 
the municipality level, either by identifying hot spots or by sorting areas in terms of priority.

From the results obtained here for a single municipality in the region, it is expected that the same model could be applied for other 
municipalities as well, without requiring new extensive sampling campaigns. Indeed, our samples cover a wide range of conditions 
with respect to the proxies that were identified as relevant. However, further targeted sampling is required in order to account for 
specific land use, i.e., few areas of intense transport and port activities that were not represented in the municipality but that are 
occurring in other parts of the region, and where typical concentrations are expected to be higher too. In parallel, it is expected 
that improved results could be obtained by using proxies that are available at a higher spatial resolution. Indeed, due to the limited 
11

spatial resolution of several proxies that were used in this study, most of them were interpolated to various extents and in different 
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Fig. 5. Semivariograms of the regression residuals for Cr and Cu. Dashed lines correspond to the estimated semivariograms while plain lines correspond to the fitted 
exponential models. For each model, the intercept is equal to 𝛼1 while the plateau corresponds to the variance 𝛼1 + 𝛼2 .

ways over the road segments of the municipality. As these interpolations lead to reduced performance for the regression models, a 
line of action is to improve the databases of the Brussels-Capital Region in order to provide spatially more detailed information, thus 
limiting the impact of such approximations.

By comparing the evolution of the HMs concentrations over the three years time span, it can be tentatively concluded that they 
are not subject to major changes over time, as long as one is focusing on the finest fraction of the road dusts. As far as it is feasible, 
attention should however be paid to collecting samples in similar weather conditions and over the shortest possible time period in 
order to limit the effect of physico-chemical processes (transport and runoff in combination with sorption and desorption processes) 
that might negatively impact the comparability of these concentrations over time. Further studies that aim at tracking and modeling 
the dynamics of HMs concentrations at few locations would obviously increase the ecological and management value of such models. 
Doing so would help to quantify both the accumulation rate of HMs in road dusts over time and the proportion of these HMs that is 
removed during runoff events.

In spite of all aforementioned limitations, it is believed that our study is beneficial for other ongoing studies in this field of 
research, as it offers guidelines for the selection and improvement of the most relevant proxies and for mapping HMs concentration 
in other cities, as long as adaptations are made in order to account for their specificities, of course.
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Appendix A. Maps of predicted concentrations for Cd, Cr, Ni and Pb
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