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ABSTRACT

RNA-seq is a sensitive and accurate technique to
compare steady-state levels of RNA between differ-
ent cellular states. However, as it does not provide
an account of transcriptional activity per se, other
technologies are needed to more precisely determine
acute transcriptional responses. Here, we have de-
veloped an easy, sensitive and accurate novel com-
putational method, iRNA-seq, for genome-wide as-
sessment of transcriptional activity based on analy-
sis of intron coverage from total RNA-seq data. Com-
parison of the results derived from iRNA-seq analy-
ses with parallel results derived using current meth-
ods for genome-wide determination of transcrip-
tional activity, i.e. global run-on (GRO)-seq and RNA
polymerase II (RNAPII) ChIP-seq, demonstrate that
iRNA-seq provides similar results in terms of number
of regulated genes and their fold change. However,
unlike the current methods that are all very labor-
intensive and demanding in terms of sample mate-
rial and technologies, iRNA-seq is cheap and easy
and requires very little sample material. In conclu-
sion, iRNA-seq offers an attractive novel alternative
to current methods for determination of changes in
transcriptional activity at a genome-wide level.

INTRODUCTION

Recently, RNA-seq has become the method of choice for
assessing global changes of the transcriptome. This method
provides several advantages over microarray analyses in-
cluding higher reproducibility and greater dynamic range
(1–7), reviewed in (8). The ease of performing RNA-seq has
made it a standard technology to accompany almost any
analysis of the genome. For example, it is used to correlate

changes in the epigenome or binding of transcription fac-
tors to changes in the transcriptome. Here, changes in the
transcriptome, as determined by RNA-seq, are used as a
proxy for changes in transcriptional activity. Although this
approximation works reasonably well, it is clearly far from
perfect, since the amount of transcripts are also regulated at
other levels than transcription. In addition, acute changes
in transcriptional activity will be partially masked by ex-
isting mRNA transcripts. Thus, the transcriptome approx-
imation is particularly problematic when addressing acute
effects, and techniques that more directly assess transcrip-
tional activity are required for such studies.

Over the past few years, multiple techniques have been de-
veloped to determine changes in transcription at a genome-
wide level. These include RNA polymerase II (RNAPII)
chromatin immunoprecipitation (ChIP)-seq (9,10), global
run-on (GRO)-seq (11,12), 4-thiouridine (4sU)-RNA-seq
(13) and bromouridine (Bru)-seq (14). These techniques,
each have their strengths and weaknesses; however, all are
significantly more laborious techniques and require much
larger numbers of cells compared to RNA-seq. For exam-
ple, RNAPII ChIP-seq involves DNA-protein cross-linking
by formaldehyde and sonication of chromatin before im-
munoprecipitation and purification of RNAPII-associated
DNA. GRO-seq requires isolation of nuclei, an in vitro tran-
scription reaction, and subsequent pull down of labeled
RNA, whereas techniques, such as 4sU-RNA-seq and Bru-
seq, rely on metabolic labeling of cells prior to harvest and
isolation of newly synthesized RNA. Thus, the applicability
of these techniques for experiments with a restricted num-
ber of cells is limited, as is the potential for high-throughput
experiments.

Here, we have developed a computational method, iRNA-
seq (intron RNA-seq), for easy genome-wide determination
of transcriptional activity based on total RNA-seq data sets.
The method has been implemented in a Perl pipeline that
quantifies differences in intron reads. We have used iRNA-
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seq to analyze our own unpublished data on the acute tran-
scriptional response of human adipocytes to tumor necrosis
factor (TNF) treatment, as well as data derived from the lit-
erature. We demonstrate that this new method is a sensitive,
fast and easy way of simultaneously determining transcrip-
tional activity and levels of mature transcripts at a genome-
wide level from total RNA-seq data.

MATERIALS AND METHODS

Cell culture

Human SGBS cells were obtained from Dr. Martin
Wabitsch, University of Ulm, Germany. Cells were pas-
saged and differentiated to adipocytes as previously de-
scribed (15).

RNA-seq

Following Isol R© extraction and column purification of to-
tal RNA, ribosomal RNAs were removed using the Ribo-
Zero R© Human/Mouse/Rat kit (Epicentre). Library prepa-
ration was performed using TruSeq RNA Sample Prepara-
tion protocol according to the manufacturer’s (Illumina) in-
structions.

cDNA synthesis and quantitative real-time polymerase chain
reaction (qPCR)

cDNA synthesis and real-time qPCR were performed as
previously described (16). Sequences of primers used for
real-time PCR are available upon request.

ChIP-seq

ChIP experiments were performed according to standard
protocol as described in (17). The RNAPII antibody used
was from Diagenode (C15200004). Library preparation was
performed as described in (18).

Additional data

Total RNA-seq data from TNF stimulation of human A549
cells (19) were downloaded from NCBI Sequence Read
Archive (accession SRP020499). Total RNA-seq, GRO-
seq and RNAPII ChIP-seq data from TNF stimulation of
human IMR90 fibroblasts (20), 4sU-RNA-seq data from
LPS stimulation of mouse dendritic cells (13), were down-
loaded from GEO data set browser (accession GSE43070
and GSE25432, respectively).

Data processing

All RNA-seq reads were mapped to their respective ref-
erence genomes with STAR (21) using default parame-
ters. ChIP-seq and GRO-seq data were mapped to their
respective reference genomes with STAR specifying –
alignIntronMax 1 to avoid potentially aligning across exon–
exon junctions.

Definition of unique intron, exon and gene regions

All RefSeq genes, exons and introns were extracted from
the UCSC Genome Browser (22), and the gene lists were
collapsed to the longest transcript for each gene. For each
gene, regions overlapping another coding or non-coding
gene were removed, so that only regions unique to a specific
RefSeq gene were used for quantification. Lists of unique
exon and intron regions were generated in a similar man-
ner. Furthermore, for the intron list, all overlaps with ge-
nomic locations associated with mRNA sequences were
subtracted. These regions were extracted from the UCSC
Genome Browser (22), which uses all mRNA sequences
submitted to the Genbank to create a list of genomic re-
gions of origin of mRNA. For quantification of GRO-seq
and RNAPII ChIP-seq, promoter proximal regions, i.e. re-
gions from −1000 bp to +500 relative to transcription start
sites were excluded to avoid quantification of stalled poly-
merase.

iRNA-seq pipeline

For read quantification and differential expression analy-
sis, a Perl pipeline iRNA-seq was created that takes aligned
RNA/GRO/ChIP-seq reads in either SAM or BAM for-
mat as input and uses featureCount (23) to quantify reads
in all regions defined as unique introns, exons or genes. For
each gene the sum of read counts in unique intron regions
were used for quantification of primary transcripts (tran-
scription), whereas unique read counts in exons were used
for quantification of mature transcripts. iRNA-seq can then
either analyze these summarized counts for differential ex-
pression by standard or blocked two-condition comparison
using edgeR (24) or provide summarized non-normalized
read counts for other purposes. iRNA-seq comes with gene,
exon and intron lists for the human (hg19), mouse (mm9)
and rat (rn5) genomes, as well as a script to generate custom
list for other genome versions or organisms. The pipeline
and instructions on how to use it is available at: http://www.
sdu.dk/mandrupgroup.

Data access

The RNA-seq and RNAPII ChIP-seq data sets gener-
ated in this study have been submitted to the NCBI Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo/) under accession number GSE60462.

RESULTS

Building the iRNA-seq pipeline

Recent studies have demonstrated that information about
nascent transcripts, co-transcriptional splicing and mRNA
dynamics can be extracted from total RNA-seq data by ana-
lyzing intron reads (25,26). We therefore investigated if anal-
ysis of intron reads from total RNA-seq data, can be used
for genome-wide assessment of acute transcriptional reg-
ulation of gene expression. For this purpose, we analyzed
total RNA-seq and RNAPII ChIP-seq data obtained from
in vitro differentiated human SGBS adipocytes treated with
TNF or vehicle for 90 min. Inspection of the data in the
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Figure 1. Effect of acute TNF treatment on transcription in human SGBS adipocytes as assessed by RNA-seq and RNAPII ChIP-seq. Following 10 days
in vitro differentiation, human SGBS adipocytes were treated with vehicle or TNF for 90 min before harvest of RNA for total RNA-seq and chromatin
for RNAPII ChIP-seq. The screenshot from the UCSC genome browser illustrates intron/exon coverage and association with RNAPII at (A) the CTSZ
locus; and (B) the ADH1B locus. Fold changes between vehicle and TNF samples are indicated to the right of the tracks.

UCSC genome browser indicated that at several loci, acute
gene regulation could be detected at the level of intron reads
as well as RNAPII occupancy, despite no apparent effect on
transcript levels as determined by reads in exons (Figure 1A
and B).

To investigate this at a genome-wide level, we designed
a Perl pipeline, iRNA-seq, which for every gene quantifies
and sums intron reads not overlapping with any other tran-
scripts or non-coding RNA. Intron reads are counted and
summed using featureCounts (23), and differential expres-
sion analysis is performed using edgeR (24) (Figure 2A). To
minimize problems arising from inclusion of exon reads due
to differential exon usage (Figure 2B, arrow A) and incom-
plete annotation (Figure 2B, arrow B), all regions associated
with mRNA were subtracted from the regions subjected to
counting (see Materials and Methods). In addition to the
default quantification of intron reads, the iRNA-seq tool
also allows quantification of reads in exons or reads in full-
length genes. Thus, the iRNA-seq tool allows fast and easy
parallel assessment of mature transcript levels as well as ac-
tive transcription from one total RNA-seq experiment.

Evaluation of iRNA-seq

Application of the iRNA-seq pipeline for analysis of total
RNA-seq data obtained from SGBS adipocytes stimulated
with TNF or vehicle for 90 min, shows that significantly
more genes are scored as differentially expressed by quan-
tification of reads in introns as compared to reads in exons
(Figure 3A–C). As would be expected, the difference is more
pronounced for genes repressed by TNF than for genes ac-
tivated by TNF, since reductions in transcription are par-
tially masked by pre-existing mature mRNA (Figure 3C).
This should be particularly true for transcripts with long
half-lives, and to investigate this we obtained mRNA half-
lives determined by an ActinomycinD-chase in human fore-
skin fibroblasts performed by the Wilusz laboratory (27).

Indeed, genes that are detected as regulated by iRNA-seq
have longer mRNA half-lives on average than genes that
are differentially expressed at the exon level (Figure 3D). To
confirm the differential regulation of genes that are detected
by iRNA-seq, we performed qPCR of 3 induced and 4 re-
pressed genes none of which could be detected as differen-
tially expressed by quantification of exon reads. In all cases,
qPCR using primers targeting introns revealed changes in
expression that were not detected using primers targeting
exons (Figure 3E). Importantly, fold change in transcription
as determined by iRNA-seq correlates well with fold change
as determined by RNAPII ChIP-seq (Figure 3F), whereas
the correlation is weak between exon reads and RNAPII
ChIP-seq data (Figure 3G).

To investigate the correlation between sequencing depth
and iRNA-seq performance, we ran iRNA-seq on differ-
ent subsamples of the RNA-seq data (Figure 3H). The
dependency on sequencing depth is higher for iRNA-seq
compared to quantification of exon reads due to the lower
number of reads in introns (Figure 3I). Importantly, how-
ever, the number of significantly regulated genes detected by
iRNA-seq is higher for all sequencing depths. Whereas bi-
ological duplicates markedly improved the performance of
iRNA-seq, triplicates only modestly improved detection of
significantly regulated genes in this system (Figure 3J). The
same tendency was observed when analyzing exon coverage.

Time-course analysis with iRNA-seq

To investigate the relationship between treatment time and
the benefit of iRNA-seq over regular RNA-seq, we down-
loaded data from a time-course experiment from the Brasier
laboratory in which human A549 cells had been treated with
TNF for different time points up to 6 h (19). These data were
then processed through the iRNA-seq pipeline using either
intron or exon reads. Similarly to what was observed for the
SGBS adipocyte data, we identified markedly more differ-
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Figure 2. Outline of the iRNA-seq pipeline. (A) iRNA-seq takes SAM/BAM input files and counts reads within intron regions of the longest isoform for
each gene. All regions associated with Genbank mRNAs are subtracted from the regions to be counted and the remaining intron reads are summarized for
each transcript. edgeR is then used to perform differential expression analysis. (B) Screenshot from the UCSC genome browser illustrating how differential
exon usage (arrow A) and incomplete annotation (arrow B) result exon reads contributing to coverage in introns of PPARG1. In the iRNA-seq pipeline,
such regions are excluded using the Genbank mRNA track.

entially expressed genes using intron reads as compared to
exon reads following 30 and 60 min TNF treatment; how-
ever, this difference levels off after 3 h (Figure 4A). Consis-
tently, fold changes at the intron and exon levels correlate
weakly at the 30- and 60-min time points, whereas there is a
strong correlation at the 3- and 6-h time point (Figure 4B).
Interestingly, acute transcriptional changes (30/60 min in-
tron) show the strongest correlation with exon levels at the
3-h time point, whereas it weakens a little at the 6-h time
point, possibly due to the effect of secondary transcriptional
events at mRNA levels at later time points. In general, there
is strong correlation between changes in primary transcript
at a given time point with mature mRNA levels 2–3 h later,
indicating that most transcriptional changes are translated
into changes in mRNA levels within 2 h.

iRNA-seq performance is comparable to GRO-seq and
RNAPII ChIP-seq

To test the iRNA-seq method in a different model system
and to directly compare it with other approaches for
analyzing acute transcriptional regulation, we downloaded
total RNA-seq data from an experiment from the Ren lab-

oratory, in which IMR90 fibroblasts had been treated with
TNF or vehicle for 60 min (20). These data were processed
through the iRNA-seq pipeline in intron and exon mode,
and parallel GRO-seq and RNAPII ChIP-seq data were
processed in the gene mode, with exclusion of promoter
proximal regions in order to avoid quantifying stalled RNA
polymerase. Consistent with the results obtained for SGBS
adipocytes (Figure 3F and G), fold change determined by
iRNA-seq correlates strongly with changes in RNAPII
occupancy and change in GRO-seq signal (Figure 5A). By
contrast, quantification of exons correlates weakly with
RNAPII ChIP-seq and GRO-seq data. To directly compare
the ability of these methods to detect changes in transcrip-
tion, we determined the number of differentially transcribed
genes using different subsamples of each data set (Figure
5B). At low sequencing depths GRO-seq and RNAPII
ChIP-seq detect more differentially transcribed genes
than iRNA-seq; however, the performance of iRNA-seq
increases dramatically with sequencing depth. Above 30–40
mill reads, i.e. in the range recommended by ENCODE for
RNA-seq (https://genome.ucsc.edu/ENCODE/protocols/
dataStandards/RNA standards v1 2011 May.pdf), the
performance of iRNA-seq is comparable to that of

https://genome.ucsc.edu/ENCODE/protocols/dataStandards/RNA_standards_v1_2011_May.pdf
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Figure 3. Use of iRNA-seq for determination of acute transcriptional changes in response to TNF. Following 10 days in vitro differentiation, human
SGBS adipocytes were treated with vehicle or TNF for 90 min before harvest of RNA for total RNA-seq and chromatin for RNAPII ChIP-seq. (A and
B) MA-Plots illustrating fold changes (log2) and mean expression values (log2 normalized mean tag count) for exon (A) or intron (B) reads within RefSeq
gene bodies in control versus TNF-stimulated SGBS adipocytes. Green and red dots represent genes that were determined to be up- and down-regulated,
respectively, using edgeR (FDR < 0.01). (C) Bar diagram illustrating the number of genes identified to be significantly induced or repressed in intron
and exon mode. A Fisher exact test was used to investigate dependency between the number of significant genes and the analysis method. (D) Boxplots
illustrating mRNA half-lives of genes identified as differentially expressed using exon versus intron reads. mRNA half-lives were obtained from (27).
The significance of the difference between medians was tested using a Wilcoxon signed-rank test. (E) Strip chart comparing the TNF-induced change in
expression of a subset of regulated genes (CFH, CTSZ, LYRM4, ADH1B, TMEM170B, VSTM4 and MARC1) in human SGBS adipocytes at exon and
intron level using iRNA-seq and qPCR. (F and G) Correlation between changes in RNAPII occupancy and fold changes determined by iRNA-seq in intron
(F) or exon (G) mode. To avoid noise from lowly expressed genes, independent filtering on average expression was used to remove the least expressed 30%
of genes for each method before the pairwise comparisons. (H) Graph illustrating dependency on sequencing depth of iRNA-seq performance in intron
and exon mode in terms of number of differentially expressed genes (FDR ≤ 0.01) detected. (I) Bar diagram illustrating the fraction of countable reads
mapping to unique genes, exons or introns. (J) Bar diagram illustrating how iRNA-seq performance using intron reads (blue) and exon reads (purple)
depends on biological replicates. Each total RNA-seq sample was subsampled to 50 million reads, and the number of differentially regulated genes (FDR
≤ 0.01) using monoplicates, duplicates and triplicates were determined. For the 3 monoplicates and the 3 possible combinations of duplicates, the median
numbers of differentially regulated genes were plotted.
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Figure 4. Comparison of exon and intron reads in time-course studies. Total RNA-seq data from a time-course study (0, 30, 60, 180 and 360 min) of the
transcriptional response to TNF in human A549 cells (19), were downloaded from GEO and each time point was analyzed against time point 0 using the
iRNA-seq pipeline in intron and exon mode. (A) Bar diagram illustrating the ratio of the number of differentially expressed genes detected in intron versus
exon mode at each time point. A Fisher exact test was used to determine that the number of significant genes for all time points were dependent on the
analysis method. (B) Heatmaps illustrating the Pearson’s correlation coefficient (left) and the slope of the linear regression through (0.0) (right) for fold
changes determined by analysis of exon and intron reads for each time point. To avoid noise from lowly expressed genes, independent filtering on average
expression was used to remove the 30% least expressed genes before the correlation analysis.

Figure 5. Comparison of iRNA-seq with other methods. (A and B) GRO-seq, RNAPII ChIP-seq and RNA-seq data from a 60-min TNF stimulation
of human IMR90 lung fibroblasts (20), were downloaded from GEO (GSE43070), and RNA-seq raw data were analyzed using iRNA-seq. (A) Heatmap
illustrating the Pearson’s correlation coefficient (red) and the slope of the linear regression through (0.0) (blue) for fold changes determined by GRO-seq,
RNAPII ChIP-seq and iRNA-seq in intron and exon mode. To avoid noise from lowly expressed genes, independent filtering on average expression across
experimental conditions was used to remove the least expressed 30% of genes for each method. Furthermore, only genes with fold changes >2 or <0.5
in the GRO-seq experiment were considered. (B) Graph illustrating dependency on sequencing depth for GRO-seq, RNAPII-ChIP-seq and iRNA-seq
performance in terms of number of differentially expressed genes (FDR ≤ 0.05) detected. (C) 4sU-RNA-seq data from a 60-min LPS stimulation of mouse
dendritic cells (13), were downloaded from GEO (GSE25432) and analyzed using iRNA-seq. Bar diagrams illustrate the number of differentially (FDR
≤ 0.05) induced and repressed genes identified based on reads in introns or whole gene bodies. A Fisher exact test was used to investigate dependency
between the number of significantly regulated genes and the analysis method.

RNAPII ChIP-seq and GRO-seq, although GRO-seq
remains the most sensitive method. In contrast, quantifica-
tion by RNAPII ChIP-seq benefits less from increasing the
sequencing depth above 10 mill reads, which is most likely
due to lower signal-to-noise ratio of the RNAPII ChIP-seq
method compared to the other methods.

We were unable to directly compare iRNA-seq with
labeling-based techniques, such as 4sU-seq or Bru-seq,
since we could not identify any parallel data sets. However,
we downloaded 4sU-RNA-seq data from an experiment by
the Regev laboratory, where mouse dendritic cells had been

treated with LPS for 1 h (13). When these data were an-
alyzed using the iRNA-seq pipeline, we identified signifi-
cantly more regulated genes when restricting the analysis
to only use the introns compared to using the full-length
genes (Figure 5C), demonstrating that detection of regu-
lated genes by 4sU-RNA-seq can be significantly improved
by disregarding exon information in the iRNA-seq pipeline.
This is particularly true for repressed genes, which may be
due to the rather long labeling time used in this experi-
ment (45 min (13)), resulting in inclusion of processed, sta-
ble transcripts, that were synthesized early in the labeling
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Figure 6. Methods overview. Outline of iRNA-seq, GRO-seq and RNAPII ChIP-seq methodologies illustrates the advantages of the iRNA-seq method.
In addition to the low amount of input material required, advantages of the iRNA-seq method include a fast and easy protocol and parallel information
about mature transcript levels. * (30), † (31–33), ‡ (12,28).

period. Thus, the levels of labeled transcripts do not reflect
the transcriptional activities at the time of harvest but rather
reflects the average transcriptional activity over the labeling
period.

Taken together, these analyses demonstrate that with a
sequencing depth in the range where total RNA-seq is usu-
ally performed there are sufficient reads in introns to quan-
tify transcriptional activity with high sensitivity and ac-
curacy using the iRNA-seq pipeline. Direct comparison
with current more labor-intensive methods for assessment
of transcription demonstrates that iRNA-seq can provide
very similar output.

DISCUSSION

In this study we have developed a new pipeline, iRNA-
seq, which counts and sums reads from total RNA-seq
data mapping to uniquely annotated intron regions. We
demonstrate that this is an accurate and sensitive method
for genome-wide quantification of acute transcriptional
changes from total RNA-seq data.

We used the iRNA-seq pipeline to analyze our own to-
tal RNA-seq data from TNF-treated adipocytes as well as
to reanalyze data from the literature. These analyses clearly
showed that while changes in mRNA levels may be an
acceptable proxy for transcriptional changes over several
hours, it is a poor approximation for detection of acute tran-
scriptional changes (minutes to few hours). We demonstrate
that such acute transcriptional changes are much more ef-
ficiently detected by iRNA-seq. Interestingly, however, we
noted that there was a reasonable strong correlation be-
tween reads in introns at a given time point and reads in
exons 2–3 h later. This is well in line with recent findings
by the Lazar laboratory comparing transcriptional changes
by GRO-seq with microarray data following exposure of
3T3-L1 adipocytes to rosiglitazone for different time peri-
ods (28).

Comparison of iRNA-seq with more labor-intensive
methods, such as GRO-seq and RNAPII ChIP-seq, shows

that iRNA-seq estimates similar fold changes in transcrip-
tion and has similar sensitivity as these methods. Due to the
low number of reads in introns, the sensitivity of iRNA-seq
is more dependent on sequencing depth than the two other
methods; however, this limitation is overcome at sequenc-
ing depths of 30–40 million reads, which is within the range
of what is typically used and recommended by ENCODE
for total RNA-seq experiments. Limitations of the iRNA-
seq method include the risk of classifying exon or other
types of non-intron reads as intron due to alternative splic-
ing events, etc. not included in current genome annotations.
The extent of this is hard to measure; however, given the
comparable performance to RNAPII-ChIP-seq and GRO-
seq, such cases must be rare. For correctly annotated genes,
the iRNA-seq readout may even, in some cases, be more
correct than that of the two other methods, the reason be-
ing that these techniques, in addition to elongating poly-
merase, measure engaged, paused polymerase at promoters
and enhancers (29). Thus, changes in occupancy of paused
polymerase at intron enhancers may be falsely quantified
as changes in gene transcription. Another potential limita-
tion of the iRNA-seq method is the fact that intron read
density is influenced by processing rates in addition to pre-
mRNA synthesis rate. However, recent investigations indi-
cated that variation in processing rates is minor compared
to synthesis, leaving intron read densities as an acceptable
proxy for rate of transcription (26). Importantly, this is also
reflected by the strong correlation between fold changes de-
termined by iRNA-seq and those determined by RNAPII
ChIP-seq and GRO-seq. Finally, iRNA-seq is not able to
assess transcription for genes with no introns or few short
introns. However, despite these limitations, we believe that
for most purposes the benefits of this approach greatly out-
weigh the drawbacks.

The iRNA-seq method provides many technical ad-
vantages over other methods for the analysis of acute
transcriptional changes (Figure 6). First, the amount of
material required for total RNA-seq is much smaller than
any of the current technologies for assessment of tran-
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scription (12,28,30,31,32,33). iRNA-seq therefore makes it
possible to study acute transcriptional regulation in rare
cell populations. In theory, since RNA-seq on single cells
is becoming a standard protocol, it should also be possible
to study transcriptional activity at a single-cell level using
the iRNA-seq method (30). Second, the total RNA-seq
procedure is much less laborious than the other methods
and can be performed with standard technologies. In fact,
the RNA-seq procedure is already fully automatized on
multiple platforms (http://www.illumina.com/applications/
sequencing/ngs-library-prep/automation.ilmn). While
some automatized ChIP-seq solutions are also available,
several steps in the ChIP-seq procedure (cross-linking,
sonication, etc.) have to be optimized for each model
system used. Third, the iRNA-seq methodology allows
simultaneous assessment of primary transcript levels
and mature mRNA levels from the same total RNA-seq
experiment. This could be especially useful in time-course
experiments, e.g. by allowing the dissection of the temporal
relationship between active transcription and accumula-
tions of mature mRNA levels in response to a given stimuli.
Finally, iRNA-seq can be used to extract novel information
about transcriptional activity from the large number of
total RNA-seq data sets deposited at various databases.

In conclusion, we have developed a new method, iRNA-
seq, for easy, sensitive and accurate genome-wide assess-
ment of transcriptional activity. Despite minor limitations,
this method offers several advantages over current methods
in terms of time and material spent. The method will be
of particular interest to researchers interested in determin-
ing acute changes in transcription, and researchers working
with limited sample material, e.g. rare cell populations or
even single-cell RNA-seq.
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