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ABSTR ACT: Influenza is a highly contagious disease that causes seasonal epidemics with significant morbidity and mortality. The ability to predict 
influenza peak several weeks in advance would allow for timely preventive public health planning and interventions to be used to mitigate these 
outbreaks. Because influenza may also impact the operational readiness of active duty personnel, the US military places a high priority on surveillance 
and preparedness for seasonal outbreaks. A method for creating models for predicting peak influenza visits per total health-care visits (ie, activity) 
weeks in advance has been developed using advanced data mining techniques on disparate epidemiological and environmental data. The model results 
are presented and compared with those of other popular data mining classifiers. By rigorously testing the model on data not used in its development, 
it is shown that this technique can predict the week of highest influenza activity for a specific region with overall better accuracy than other methods 
examined in this article.
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Introduction
Influenza is a highly contagious acute febrile disease caused 
by a single-stranded RNA orthomyxovirus transmitted by 
airborne respiratory droplets and aerosols, as well as direct 
contact.1 While many influenza viruses infect humans, some 
only infect certain animal species (eg, chickens, ducks, and 
swine). However, even these viruses have the potential to 
develop the ability to infect humans. The genetic material 
of the virus is organized into eight segments of negative-
sense RNA. New strains of the virus can rapidly emerge via 
antigenic shift or the re-assortment of these different RNA 
segments when a cell becomes infected by more than one 
strain. New influenza strains also develop via antigenic drift 
of their surface proteins, allowing the virus to evade the host 
immune response.2 Therefore, new influenza vaccines are 
developed each year to keep up with newly emerging strains 
of the virus.3

Influenza typically presents with sudden onset of fever of 
37.8 C or greater, along with a cough, pharyngitis, rhinorrhea, 
myalgia, headache, and fatigue. In the pediatric population, 
symptoms may also include vomiting and diarrhea.4 Although 
the disease is commonly self-limiting, it can progress to 

influenza pneumonia, which has a significant mortality.5 
Influenza-associated deaths in USA have been estimated to be 
less than 0.4 per 100,000 persons per year in general but can 
be as high as 17 deaths per 100,000 persons per year in those 
over 65 years of age.6 Taubenberger and Morens reviewed 
influenza pandemics since the year 1500 and noted that 
influenza pandemics often result in greater-than-expected 
mortality even among those without comorbid conditions.7 
The 2009 influenza outbreak illustrated the rapidity with 
which a new strain can develop into a pandemic and the limi-
tations of available rapid point-of-care testing to detect the 
outbreak.8 Because influenza causes significant morbidity, can 
be fatal, and often presents with new strains, the prediction of 
influenza outbreaks in advance can be of value in allowing for 
timely preventive public health planning and interventions to 
be used to mitigate the effect of these outbreaks, particularly 
when outbreaks may be large enough to challenge or over-
whelm medical treatment facilities.

The US military places a high priority on surveillance and 
preparedness for seasonal influenza because it may impair the 
operational effectiveness of active duty personnel and cause 
morbidity and mortality among the broader US Department 
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of Defense (DoD) health-care beneficiary population. While 
immunization against seasonal strains is required for active 
duty personnel, military units may still experience signifi-
cant influenza outbreaks,9 and recruits may acquire infection 
early in training, before vaccine-induced immunity develops.10 
Across the global Military Health System, which provides 
care for active duty personnel as well as family members and 
retirees, influenza-like illness (ILI) dynamics mirror those of 
civilian populations in their regions.11

Nsoesie et al12 published a systematic review of influ-
enza prediction models in 2013. They found that there were 
significant differences in measures used to assess accuracy 
of these models, making it difficult to compare them. Many 
of these models were based on retrospective determination of 
statistically significant correlation coefficients, which more 
accurately measure data trends instead of how close a prediction 
is to the observations.12 Another difficulty with comparing the 
models was the variability in how far in the future the predic-
tions were made. For example, one model might have better 
performance than another but only predict one to two weeks 
in advance instead of five to six weeks in advance. Models 
also differed in exactly what they predicted, such as outbreak 
onset versus outbreak peak. Some models used analysis of 
web-based query trends, although the Web reports of possible 
influenza activity that often means an outbreak has already 
begun; thus, the model is more of an  early detector than a 
predictor of outbreak onset. Such models may still be useful in 
predicting the outbreak peaks, although Nsoesie et al12 noted 
that such web-based estimates might distort the accuracy of 
the predicted outcomes.

Near the end of 2013, Shaman et al13 published a method 
for predicting the peak weeks of seasonal influenza using 
ensembles of susceptible–infected–recovered–susceptible mod-
els that included adjusting for absolute humidity conditions. 
These models were trained using a metric that the authors 
referred to as ILI+, which they defined as a product of the 
weekly Google Flu Trends estimate with a weekly estimate 
(obtained from laboratory data) of the percentage of patients 
presenting with ILI who actually have influenza. Predictions 
of peak seasonal influenza were considered to be accurate 
if they were within plus or minus one week of the observed 
ILI+ peak. Also, starting from the beginning of the season, 
the model predicted the week number of the (single) peak for 
the entire season and updated the prediction each week. As 
a result, some of the predictions were very far in the future 
(.10 weeks), and many were actually in the past. The reported 
accuracy varied a great deal among jurisdictions but appeared 
to be good overall.

In 2014, Chretien et al14 published a review that was not 
meant to be systematic but was scoping in order to characterize 
the prediction methodologies and identify research gaps. They 
found that there was an apparent acceleration in the number 
of influenza prediction articles in recent years. These articles 
described diverse prediction model approaches ranging from 

purely statistical to mechanistic epidemiological modeling. 
Consistent with the results of Nsoesie et al,12 Chretien et al14 
recommended that future prediction studies should provide a 
consistent and realistic measure of accuracy so that they might 
be more indicative of real-time prediction.

The purpose of this study is to use the US military ILI 
data to predict the week of peak ILI visits per total health-care 
visits. The US Centers for Disease Control and Prevention 
(CDC) specifies that the case definition of ILI is a fever greater 
than or equal to 37.8 C, plus a cough and/or sore throat, in the 
absence of a known cause other than influenza.15 The influenza 
outbreak prediction method presented herein was developed 
by beginning with techniques for creating models that were 
successful in previous studies for dengue16,17 and malaria out-
break predictions18 but are now adapted to influenza. These 
techniques include data mining from disparate data sets 
(such as meteorological, climatological, socioeconomic, and 
influenza case data), the use of an automatic fuzzy associa-
tion rule model builder, and the objective evaluation of the 
resulting classifiers to determine a final influenza prediction 
model. This data-driven approach takes into account the very 
complex interrelationships that may exist among the disparate 
variables. By keeping separate the data used in model develop-
ment from that used for testing, a much less biased estimate of 
prediction accuracy is provided. This approach helps to avoid 
accuracy assessments complicated by model overfitting.19 To 
provide a model that is operationally useful, our approach 
takes into account the fact that all data are not always immedi-
ately available on the date of collection. Finally, this approach 
involves criteria derived from the intended user in order to 
provide a timely advance notice of an influenza outbreak for 
a region while minimizing false positives (FPs), which may 
result in alarm fatigue and unnecessary preparation of limited 
resources, and false negatives (FNs), which may lead the users 
to question whether the predictive capability is adding value.

Materials and Methods
Extract–transform–load refers to a process in database usage, 
especially in data warehousing that involves extracting 
(downloading) data from outside sources, transforming (or 
normalizing) the data to fit operational needs, and loading 
the data into the end database or operational store.20 In  the 
context of our prediction methodology, the raw predictor-
variable data are downloaded, transformed to work with the 
prediction model, and loaded into a geospatially enabled 
database for easy retrieval by the model. The raw data are ref-
erenced by jurisdictional division and mapped to geographical 
resolution. The data are also selected and arranged with 
respect to both geographic and temporal resolution for export-
ing to the model.

Predictor variables and their preprocessing.
Military influenza case data. The US Armed Forces 

Health Surveillance Center provided health data as two 
large files. One of these contained each military health-care 
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visit designated as ILI, as defined earlier, and included fields 
for date, military treatment facility (MTF), cohort (service 
member or other health-care beneficiary), age group, and sex. 
The other file was designated summary data and included 
these same fields for all military health-care visits. We define 
ILI activity as ILI visits divided by total visits, by date. While 
this ratio is often called incidence in the literature, it may not 
strictly be incidence because the available data did not distin-
guish new cases from repeat cases, and because the total visits 
do not necessarily reflect the number of people in the popula-
tion at risk for the disease. In this article, it is assumed that the 
ILI activity defined above is a proxy for incidence. The weeks 
designated in the MTF data often, but not always, coincided 
with CDC’s epidemiological weeks. CDC’s epidemiological 
weeks are numbered from the beginning of the calendar year 
with weekly intervals beginning on Sundays.15 Converting to 
CDC’s epidemiological weeks was necessary because this was 
the convention used for all data in the data mining methods.

In order to obtain US state-level aggregation, the data 
were first parsed into MTF-level files. The ILI time series 
and summary time series were then extracted for each MTF. 
The ILI time series were created by accumulating patients for 
each date according to CDC’s epidemiological weeks. Using 
a military-designated list of active MTFs and the US states 
in which they were located, all MTFs in each state were 
aggregated to obtain state-level data.

Preanalysis of the data included scrutinizing the data 
for anomalies, possible nonstationarity, and changes in the 
collection and reporting over the duration of the data. These 
data were analyzed first at the county level for all counties 
in the National Capital Region, which includes the District 
of Columbia and surrounding counties in Maryland and 

Virginia. Data were then analyzed at the state level for all US 
states, the District of Columbia, and territories of Guam, the 
Virgin Islands, and Puerto Rico.

Because the goal of the analysis was to calculate the 
week of peak ILI activity, several methods for automatically 
calculating the peaks in historical data were devised. These 
methods were evaluated, and the most precise method was 
chosen to identify peaks in the formatted data. Discussion of 
the peak algorithms appears in the “Methodology” section.

Preanalysis of the data uncovered a change in the char-
acter of the data in nearly all the MTFs after mid-2006. The 
anomaly is illustrated via the aggregated data for Maryland as 
shown in Figure 1. In this figure, we see that the normalized 
totals for ILI rise slightly after mid-2006, but the total visits 
jump very abruptly after mid-2006. This reflects increased 
access to health-care encounter data beginning at that time 
and yielded lower ILI activity due to the increased number 
of summary visits (denominator used in ILI activity). There-
fore, we excluded data prior to August 2006 from this study. 
In contrast to this 2006 anomaly, a smaller ILI data increase 
occurred in 2012 in the Maryland data. However, no known 
external factors could be associated with it so it was possibly 
a real data change. It did not seem to impact the overall ILI 
data, so we did not exclude these data.

US CDC’s influenza data. In addition to the US military 
ILI activity described earlier, the following additional 
predictor variables were obtained from the US CDC’s Weekly 
Influenza Surveillance Reports.21 Data from 2006 to present 
were preprocessed to get one weekly value per jurisdiction.

•	 Weekly percentage of patient visits to US health-care pro-
viders for ILI, weighted on the basis of state population. 
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Figure 1. illustration of data anomaly prior to mid-2006. the normalized ili cases and the normalized total cases are plotted versus time for all military 
treatment facilities in maryland. the ili cases rise slightly after mid-2006, but the total cases jump sharply after mid-2006.
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These rates are provided for 10 regions in USA. Each 
US state within a region was assigned the value for that 
region.

•	 Weekly percentage of influenza tests positive for all types 
of influenza, as reported by laboratories located in all 
50  states, Puerto Rico, and the District of Columbia. 
These rates are provided for 10 regions in USA. Each 
US state within a region was assigned the value for that 
region.

•	 Weekly percentage of all deaths reported through 
the 122  Cities Mortality Reporting System that had 
pneumonia and influenza reported as the underlying 
or contributing cause of death on the death certificate. 
These data were provided for nine regions in USA. Each 
US state within a region was assigned the value for that 
region.

•	 Weekly reports of laboratory-confirmed influenza-
associated hospitalizations per 100,000 population in 
children and adults are monitored through the Influenza 
Hospitalization Surveillance Network. Each US state 
within a region was assigned the value for that region.

Environmental data. Previous studies have found that 
certain environmental variables appear to be related to influ-
enza incidence. A recent review22 described studies character-
izing relationships between influenza cases and precipitation, 
humidity, and temperature. Therefore, based on the environ-
mental variables reported in the literature, the data decribed 
below were examined for use as predictor variables for influ-
enza. For the following, data from 2006 to present were pre-
processed to obtain one weekly value per jurisdiction.

Weather station measurement data were obtained from 
the US National Climate Data Center.23 Appropriate weather 
stations were manually identified for each of the states. These 
data were not used as predictor variables per se but were used 
to derive the relative and specific humidity values described 
below: weekly maximum and mean air temperature and weekly 
maximum and mean atmospheric pressure. The following is a 
list of the predictor variables that were based upon the weather 
station data:

•	 Weekly maximum and mean dew point temperatures. 
The dew point temperature is one type of measurement 
of atmospheric water vapor and is the temperature below 
which this water vapor will condense into liquid and at 
the same rate evaporate at constant atmospheric pressure. 
The dew point temperature data were obtained directly 
from the weather station measurements.

•	 Weekly maximum and mean relative humidity values. 
Relative humidity is the percentage or ratio of the par-
tial pressure of water vapor in humid air to the saturation 
vapor pressure over a flat surface of water at the same 
temperature. Because saturation vapor pressure is a func-
tion of temperature, relative humidity therefore depends 

upon temperature as well as water vapor content. The 
relative humidity was calculated from the temperature, 
pressure, and dew point data.24

•	 Weekly mean and maximum specific humidity values. 
Specific humidity is the ratio of the mass of water vapor 
to the total mass of a parcel of moist air. The specific 
humidity was calculated from the temperature, pressure, 
and dew point data.24

The following satellite-based measurements were used as 
predictor variables:

•	 Rainfall—weekly mean rainfall amounts were derived 
from satellite measurements of three-hour rainfall 
amounts.25 For each state, the values that fall within its 
borders are summed and then converted from rainfall 
rate to rainfall amounts by aggregating a week’s worth of 
these data.

•	 Land surface temperature—weekly mean land surface 
temperatures were derived from daily land surface tem-
perature data measured by satellite.26 These daily data 
included both day and night temperatures, which were 
aggregated by week to obtain a mean weekly value.

Methodology.
Peak identification. Because the task associated with this 

analysis is the prediction of influenza peaks, historic peaks 
need to be identified. The definition of peak is somewhat 
ambiguous in this context. Weekly data aggregation and noise 
yield a nonsmooth time series, even when the data are aggre-
gated by week (Fig. 2). The first large oscillation on the left 
exhibits two possible peaks. Other large oscillations typically 
exhibit a noncentral peak. Another possible ill-defined issue is 
when a yearly period contains more than one peak. In order to 
resolve these issues in an automated fashion (ie, to make the 
definition of a peak consistent throughout the identification 
process), we developed four automated peak-finding objective-
based algorithms and then chose the one that consistently 
identified a subjective definition of peak. Having a consistent 
definition of ILI peak is important for evaluating the predic-
tion accuracy.

The automated peak identification method relies on the 
definition of a candidate peak as a local maximum, that is, as 
a time series value that has a positive (discrete) derivative on 
the left and a negative derivative on the right. As illustrated in 
Figure 2, there are typically many such local maxima, which 
make peak identification difficult. The peak-finding algorithm 
must screen these peak candidates using statistical criteria that 
do not require human re-identification.

Various candidate algorithms using both the running 
average of the time series (at each point, the algorithm 
calculates the average and standard deviation of all values up 
to and including that point) and the local average of the time 
series (at each point, the algorithm calculates the average and 
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standard deviation of the 25 weeks previous to the value, the 
value itself, and 24 weeks after the value, with adjustments on 
either end of the time series). These two averaging methods, 
respectively, insure that peak averages are larger than other 
local maxima and that peak selection responds to variation in 
the flu season from year-to-year.

We ran comparisons of four candidate algorithms on 
selected state-level aggregate data (Fig. 3) and determined 
that our Method 3 most consistently identified one peak per 

year, identified what appeared to be the highest peak in a year, 
and did not identify many spurious peaks. These criteria were 
consistently fulfilled by Method 3 across all states. Therefore, 
Method 3 algorithm was chosen for automated peak identifi-
cation on all state data.

Method 3 identifies the peak candidates using the discrete 
derivative criterion (positive derivative immediately prior to 
the candidate and negative derivative for the time immediately 
following the peak) and then calculates the running mean and 
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Figure 2. Notional example of peak identification, illustrating why influenza peak identification can be difficult. The highest points of each year should be 
the peaks, but some years exhibit multiple peaks. the question marks indicate those points that do not exhibit maximum activity for the year but arguably 
could be considered as peaks.
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Figure 3. Peak identification for Maine, using four different methods. The red asterisks are the peaks identified by each method.
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standard deviation of both the data and the discrete deriva-
tives of the data at every point. A candidate peak is chosen as 
a peak if the following criteria are met:

•	 The candidate peak’s data value is higher than the run-
ning average + two times the running standard deviation 
AND.

•	 The absolute value of the candidate peak’s pre- and 
postderivatives is higher in magnitude than the 
average + one standard deviation of the respective pre- 
and postderivatives.

If there are more than 10 peaks identified over the entire 
time series, peaks are retained only if they are the maximum 
peak in a 20-week window centered at the peak. The crite-
ria for deciding peaks were chosen to be objective measures 
for which there are some statistical and geometric bases. 
Two standard deviations away from the mean are typically 
considered outliers, so this was the basic criterion using sev-
eral different ways to smooth the data and account for local 
fluctuations. The discrete pre- and postderivative conditions 
describe a peak geometrically: cases before the peak should 
rise and cases after the peak should fall. The ability to identify 
multiple peaks per year was necessary but carefully screened 
by looking for the highest value in the local window. None 
of the criteria alone could identify what a human would con-
sider the yearly peak, but together the criteria approximated 
the judgment that a human observer would use to identify one 
or more yearly peaks. Moreover, the automated criteria were 
chosen to be defensible (in terms of the definition of peak) and 
consistent even with fluctuating data.

Final peak algorithm. Although Method 3 was relatively 
consistent in mathematical terms, its definition of a peak was 
still unclear. Based on telephone conversations with person-
nel from the CDC’s Influenza Division, the final step of 
peak identification was performed manually on the results of 
Method 3. Figure 4 shows an example of final peak identifica-
tion. Peaks around weeks 100, 185, 205, 255, and 310 were 
designated as spurious and removed. Peaks around weeks 155, 
280, and 284 were added. When a candidate peak’s value was 
within 5% of the value of the highest peak for a given season, 
it was included. This rationale is to compensate for possible 
reporting problems. In some cases, it is difficult to identify one 
true peak in a season. For example, in Figure 4, peaks at 280, 
284, and 286 are all certainly reasonable candidates. Method 3 
alone successfully identified 87.4% of the 421 true peaks in the 
data. The use of the automated algorithm together with clearly 
defined manual rules insured that peak identifications for 
ground truth purposes were consistent. The above-described 
method consistently identified at least one peak per year and 
in some cases more than one peak per year.

Steps in the prediction method. Prediction models are 
created using data mining from a large number of data sources 
by following these steps:

1. Identification of predictor variables: predictor variables are 
identified by a manual literature review for articles that 
report significant correlations of the given disease inci-
dence with environmental and socioeconomic variables. 
These data are downloaded from available sources. These 
variables were described in the “Predictor Variables and 
Their Preprocessing” section.
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2. Model builder: this is the principal part of the method 
where all the data mining elements reside. After prepro-
cessing, the data are used to find fuzzy association rules. 
A subset of these rules that satisfy certain criteria is then 
selected to create a classifier that becomes the prediction 
model. The data mining elements are detailed as follows:
a. Data preprocessing and fuzzification: preprocessing 

is performed to convert the predictor variables into 
the desired spatiotemporal resolution, as described 
in detail in Buczak et al.16 For these predictor data, 
the spatial resolution is one state, and the temporal 
resolution is one week. Using the fuzzy set theory,27 
these training data are then transformed into mem-
bership values (ie, fuzzified).

b. Rule extraction using fuzzy association rule mining 
(FARM): FARM,28 a set of data mining methods 
that use a fuzzy extension of the Apriori algorithm,29 
is used to automatically extract the so-called fuzzy 
association rules from the training data. Fuzzy 
association rules are of the following form:

IF (X is A) -. (Y is B) 

where X and Y are variables, and A and B are 
membership functions that characterize X and Y, 
respectively. X is called an antecedent, and Y is 
called a consequent of the fuzzy association rule. 
An example of a fuzzy association rule (not used in 
influenza prediction) is

IF (Rainfall is LARGE) and (Temperature  
 is HOT) -. (Humidity is HIGH)

This rule uses the linguistic term (fuzzy set) 
HOT for temperature. In this example, the fuzzy 
set HOT assigns temperatures of 70°F, 80°F, and 
100°F to have a degree of membership of 0.1, 0.8, 
and 1, respectively. Note that fuzzy association 
rules use linguistic terms (eg, LARGE, HOT, and 
HIGH) so they are easily understood by humans.

c. Rule selection using specific metrics: the prediction 
model is based upon a classifier, which is a set of 
rules. After the new data are downloaded and pre-
processed, all the rules that match the antecedent 
of the rule are executed. The average of consequents 
constitutes the prediction for the given data point. 
The final classifier is selected based on a set of prede-
termined criteria, and this classifier constitutes the 
prediction model. Therefore, it is necessary to deter-
mine which of the thousands of rules automatically 
extracted by FARM should be used. A small sub-
set of rules is automatically chosen to minimize the 
misclassification error on the fine-tuning data set. 
These choices are made using selection criteria based 

upon the following three most important metrics for 
association rules: confidence, lift, and support.

Confidence may be considered as the condi-
tional probability that, if the antecedents are true, 
then the consequent is true. A rule with confidence 
of 1 is always true. Support is a measure of how 
general a given rule might be in the data. Support 
may be considered as the probability of occurrence 
of records with given antecedents and consequents 
in a particular data set. A support of 0.01 means 
that a given rule describes 1% of a particular data 
set. Lift indicates the extent to which the ante-
cedents and consequents are not independent. The 
higher the lift, the more dependent the variables are. 
A  thorough description of these rule metrics and 
associated equations can be found in Buczak et al16 
and Kuok et al.28

Two approaches for building the classifier were 
developed and are called One-Classifier 1 and One-
Classifier 2. One-Classifier 1 is based on extensions 
of the method of Liu et al,30 as described in Buczak 
et al,16 and orders all the rules first by confidence, 
next by lift, and finally by the number of anteced-
ents. One-Classifier 2 is based on extensions of the 
method of Liu et al,30 as described in Buczak et al,18 
and orders all the rules by the pessimistic error rate 
of Quinlan.31 This ranking was developed to better 
handle noisy data sets. Both methods were tried so 
that this expectation could be verified.

Finally, a grid search is performed to select 
optimal misclassification weights for each class by 
comparing performance on the fine-tuning data 
set. By optimizing the misclassification weights, a 
much higher weight may be selected for misclassify-
ing the cases with a small number of exemplars than 
for those with a large number of exemplars. The ILI 
dataset contained fewer peaks relative to nonpeaks, 
so it was important to account for this imbalance to 
enable the classifier to accurately classify the peaks. 
This weighting of the misclassification errors dur-
ing the training step forces the classifier to learn to 
predict the rare class accurately (even if this causes 
the unweighted overall accuracy to go down). As 
mentioned earlier, the selected classifier becomes 
the prediction model, which is used in Step 3.

3. Prediction generator: using the prediction model cre-
ated in Step 2, the prediction generator periodically 
computes predictions. This is done weekly as new input 
data become available because the temporal resolution is 
one week. It should be emphasized that this model uses 
only data that would actually be available on the date 
when the prediction was generated. For example, say we 
want to do a prediction now (week T) and temperature 
data are available only for week T-2 because of latency 

http://www.la-press.com
http://www.la-press.com/biomedical-engineering-and-computational-biology-journal-j170


Buczak et al

22 Biomedical engineering and computational Biology 2016:7(S2)

in data availability for downloading. The model would 
not attempt to use data for week T-1 because it is not 
available. However, the model can still produce a predic-
tion even without the unavailable data. Once these data 
become available, they automatically undergo prepro-
cessing and are fed into the prediction model that com-
putes predictions, which are then displayed on a map. 
The outcome variable is peak present/not present in four 
to six weeks.

Metrics used for model evaluation. The following four per-
formance metrics were used and are defined later: true positive 
(TP), true negative (TN), FP, and FN.

•	 Positive predictive value (PPV): the proportion of posi-
tive ILI peak predictions that are real peaks, given by 

PPV TP
TP FP

=
+

.

•	 Negative predictive value (NPV): the proportion of 
negative peak (ie, no peak) predictions that are not peaks, 

given by NPV TN
TN FN

=
+

.

•	 Sensitivity: the proportion of correctly predicted ILI 
peaks (also called the probability of detection), given by 

sensitivity TP
TP FN

=
+

.

•	 Specificity: the proportion of correctly predicted non-
peaks (1 − specificity equals the false alarm rate), given 

by specificity TN
TN FP

=
+

.

The importance of each of these metrics may vary with 
how the model is used in practice. One consideration is 
whether the user considers it more important for the model 
output to have a high PPV or a high sensitivity. A high PPV 
indicates that, when the model predicts an ILI peak for a par-
ticular week at a particular location, such a peak is very likely 
to actually occur. When disease prevention and mitigation 
resources are limited, public health departments consider it 
very important to have a high PPV in order to mitigate the 
effects of ILI peaks and thereby reduce morbidity and mor-
tality. Having a high PPV and a low sensitivity means that, 
when a peak is predicted, the probability is high that it will 
occur, but only a small percentage of actual peaks are pre-
dicted. Therefore, the models were also evaluated using the 
F score,32 which is derived from the PPV and sensitivity 
metrics described earlier:

 
β β

β
= +

+
2

2

PPV * sensitivity(1
* PPV sensit y

)
ivit

F
 

When β equals one, PPV and sensitivity are weighted 
equally. Assigning β a value less/greater than one gives more 

importance to PPV/sensitivity. Therefore, β values of 0.5 and 
3 were used to give more importance to PPV and sensitivity, 
respectively. This was done because the public health practi-
tioners whom we consulted thought that both sensitivity and 
PPV were important but could not agree on which was more 
important. The performance of the models with the best F0.5 
and F3 values is presented in this article.

Results
The original data set consisted of ILI case data from the MTFs 
across all 50 states and 4 US territories during the period from 
December 2000 through April 2013. These data were aggre-
gated both geographically and temporally to obtain weekly 
military ILI counts for each state and territory. All the data 
were combined geographically such that any regional correla-
tion effects were ignored for this study. As mentioned earlier, 
an anomaly was discovered during analysis that necessitated 
the removal of all data prior to the 2006–2007 flu season from 
the study. In addition, because the time series were incomplete 
for two of the states (North Dakota and Vermont) and all four 
territories, these were excluded from the study.

For model development and testing, the data from the 48 
remaining states were divided into training, fine-tuning, and 
testing sets. The training set covered August 27, 2006, to 
July  31, 2011. The fine-tuning set covered August 1, 2010, 
to  July 31, 2011. The testing data set covered August 7, 
2011, to January 6, 2013. Note that there were 117 true peaks 
in the testing data set. The results are always reported only on 
testing data, as these data were not seen by the model during 
development.

For the predictor variables, time lags of 1–12 weeks (ie, 
time stamps T-1, …, T-12) were used as inputs to the model 
builder. For some of these variables (eg, temperature), the data 
most recently available at the time of prediction are from time 
T-2 instead of T-1, so only data from T-2 to T-12 were used.

It is worth noting here that there is a difference in the 
nomenclature for how many weeks ahead the prediction is 
made between what is used in this study and what is some-
times used in the literature.13 In actual practice, there is almost 
always a lag between when data are collected and when they 
are available. In the literature, the counting of the number of 
weeks ahead often starts from the last date on which the data 
were collected even if the actual prediction was made later 
because the data were not immediately available. While this 
may be a legitimate way to count, it can be confusing to end-
users and result in accuracy values better than that expected in 
actual practice. To provide accuracy measures closer to those 
expected in operational use, this study defines the count as 
starting from when the data would actually be available and 
the prediction could be made, which is assumed to be one 
week after it is collected. Therefore, when we describe a four- 
to six-week ahead prediction window, this is actually five to 
seven weeks removed from the last date on which any data 
used to make the prediction were collected.
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Two different approaches for building the classifiers 
have been developed. The first approach is a fusion approach 
in which three separate classifiers are built and their results 
fused; the second approach consists of training a single 
classifier. In the fusion approach, we built the following three 
separate classifiers: one for predicting a peak at T + 4, one for 
T + 5, and one for T + 6. The outputs of the classifiers were 
fused by an OR statement:

If (Predicted_Peak_T + 4 OR Predicted_Peak_T + 5 OR 
Predicted_Peak_T + 6) then Predicted_Peak 4_6.

Therefore, if any one of these three classifiers predicts 
a peak, then the fusion result is a peak predicted sometime 
during weeks 4–6 from the date of prediction. Note that the 
fusion approach only predicts whether there is an ILI peak dur-
ing weeks 4–6 without identifying which one of these weeks 
might occur. A TP would then be an actual ILI peak occurring 
any time during weeks 4–6 when the fusion model predicts a 
peak. The results for the fusion approach are shown in Table 1.

The three separate classifiers use the same input data 
but produce different results for desired output. The classifier 
predicting a peak at T + 4 uses a set of rules to produce the 
desired output peak information at T + 4 weeks; similarly, for 
the one for predicting a peak at T + 5, it uses a set of rules to 

produce the desired output peak information at T + 5 weeks, 
and so on. This means that different rules will be extracted for 
predicting T + 4, T + 5, or T + 6, leading to classifiers with 
different rules.

In the second approach, a single classifier is trained that 
produces peak prediction windows of three weeks in length. 
These windows are predicted four weeks in advance (ie, they 
cover weeks T  +  4 through T  +  6). For this approach, any 
actual peak that occurred within one of the predicted windows 
was counted as a TP and any that did not were counted as FN. 
Any predicted window that did not coincide with an actual 
peak was counted as a FP, and all other weeks were TN. 
This is equivalent to predicting a peak five weeks in advance 
and counting predictions that are accurate within one week 
of the actual peak, as was done by Shaman et al.13 Two such 
classifiers were trained, and their metrics are shown as One-
Classifier 1 and One-Classifier 2 in Table 1. Recall that One-
Classifier 1 uses the rule ranking from Buczak et al,16 while 
One-Classifier 2 uses the pessimistic error rate of Quinlan.31 
Figures 5–7 show some examples of the actual peaks and 
the prediction windows from the second of these classifiers. 
Figure 5 shows the results for Hawaii where there are 2 TPs, 
1 FP, and 72 TNs. Figure 6 shows the results for Wisconsin 
where there are 2 TPs and 73 TNs. Figure 7 shows the results 
for Mississippi where there are 2 TPs, 1 FN, and 72 TNs.

Table 1. performance of different prediction methods on test data set.

METHOD PPV NPV SENSITIVITY SPECIFICITY F0.5 F3

Fusion of three classifiers 0.379 0.935 0.622 0.842 0.411 0.585

One-Classifier 1 0.509 0.990 0.698 0.977 0.538 0.672

One-Classifier 2 0.603 0.987 0.613 0.986 0.605 0.612

Note: the best value of each performance metric is underlined.

Figure 5. Weekly ILI activity versus time for August 2011 through March 2013 for military data in the state of Hawaii. The first and the third peaks were 
accurately predicted, but the second peak is a Fp.
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Figure 6. Weekly ili activity versus time for august 2011 through march 2013 for military data in the state of Wisconsin. the two prediction windows 
correspond with the actual peaks.

Figure 7. Weekly ili activity versus time for august 2011 through march 2013 for military data in the state of mississippi. the second actual peak is 
missed by the prediction method and is a Fn.

All the approaches have a very high NPV (.93%). One-
Classifier 1 and One-Classifier 2 have superior PPV and 
specificity compared with the fusion approach. Specificity 
is important for keeping the false alarm rate to a minimum 
in order for the methods to be operationally useful. The sen-
sitivity obtained by all the methods is between 60.9% and 
69.2%. The best F0.5 score (emphasizing PPV) is obtained 
by One-Classifier 2, and the best F3 score (emphasizing 
sensitivity) is achieved by One-Classifier 1.

The performance of the FARM-based method was 
compared with some well-known classifiers, a decision tree 
(DT), a random forest (RF), and a support vector machine 
(SVM). Because DT, RF (as an ensemble classifier), and 

SVM are among the top 10 data mining algorithms accord-
ing to Wu et al,33 we selected these three classifiers to com-
pare to the FARM method developed in this work. Weka34 
implementations were used for all three classifiers. A two-
dimensional grid search was performed to optimize the clas-
sifier parameters on the training data set using a 10-fold cross 
validation. During the grid search, the average accuracy of 
these 10-folds is optimized by selecting the set of classifier 
parameters that lead to the highest average accuracy. In 
order to deal with unbalanced classes (many more nonpeak 
than peak examples) when computing the optimization error, 
weights (0.08 and 0.92 for nonpeak and peak, respectively) 
were introduced. The remaining parameters of the respective 
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classifier models were used as default values from the Weka 
toolbox where applicable. Each trained classification model 
with the best parameters determined by the grid search was 
then evaluated on the test data to determine the classifica-
tion accuracy. For the DT classification model, the minimum 
number of parameters per leaf and the number of folds for 
reduced error pruning were optimized. For the RF model, the 
number of trees and the number of random features per tree 
were optimized. For the SVM model with radial basis func-
tion kernel, the nonseparable cost parameter and the radial 
basis function gamma parameter were optimized. These opti-
mized parameters are determined by the two-dimensional 
grid search in the Weka toolbox. The results for the alternative 
models are shown in Table 2.

Of these three methods, the RF has the highest PPV 
and specificity. The SVM has the highest sensitivity and 
NPV; however, it has a low specificity (73.8%), meaning that 
its false alarm rate is very high (26.2%). Comparing Table 2 
with Table 1, One-Classifier 2 has a higher PPV and specific-
ity than any method from Table 2. One-Classifier 1 has the 
highest NPV, and the SVM has the highest sensitivity as well 
as the lowest specificity (ie, highest false alarm rate).

Figure 8 shows F0.5 and F3 scores for all the methods. 
Because F scores combine PPV and sensitivity, they are a more 
robust way of assessing classifiers than PPV or sensitivity 
alone. One-Classifier 2 achieves the highest F0.5 (emphasizing 
PPV). One-Classifier 1 has the highest F3, while the SVM 
has the second highest F3 (emphasizing Sensitivity). Overall 
One-Classifier 2 is the method that achieves both high F0.5 
and F3, as well as low false alarm rate.

Conclusion
The DoD maintains a global laboratory-based surveillance 
program35 as well as a near-real-time syndromic surveillance 
system to detect outbreaks of influenza and other conditions 
at military health-care facilities.36 An additional capability to 
forecast influenza activity, integrated into this routine surveil-
lance programs, could help guide DoD risk communication 
and resource allocation.

The data mining methods described in this article were 
used to produce a model for weekly influenza peak location 
prediction for each of 48 states in USA. Unlike an outbreak 
prediction model in which one predicts high or low likelihood 
of an outbreak during a specified period of time, this is a model 
for predicting when there would be seasonal peaks in influenza 
visits as a proportion of total health-care visits. It was compli-
cated by the fact that there has not been an easily automated, 
consistent, and objective definition of what constitutes a sea-
sonal peak. However, this model was able to utilize the results 
of previous efforts involving multiple and disparate types of 
data.16–18 In addition, the practice of separating the data used in 
model development from that used for testing results in a much 
less biased estimate of prediction accuracy. The data mining 
techniques in this article take into account the very complex 
interrelationships that may exist among the large numbers of 
variables, while avoiding the pitfalls of model overfitting when 
using autocorrelation techniques. Because the desired outcome 
was an operationally useful model, our approach takes into 
account the fact that input data are not always immediately 
available on the date of collection. In addition, our approach 
paid special attention to minimizing FPs and FNs, so that the 
resulting model might be more operationally useful.

The One-Classifier methods that were predicting peaks 
four to six weeks into the future gave very encouraging results. 
The sensitivity of the methods ranged from 60.9% to 69.2%. 
The NPV and specificity were .97.5%, and PPV ranged from 
50.9% to 60.3%. It is difficult to compare our results with those 
of Shaman et al13 due to the very significant differences in the 
prediction methodology, the data sources used, the method of 
counting lead time, and the spatial scales of the predictions. 
For example, their results were for predicting weekly Google 
Flu Trend estimates, while our results were for weekly peak 
ILI activity in military data. Also, our definition of the num-
ber of weeks ahead in the prediction differed from Shaman 
et al13 because our method takes into account the actual data 
availability. Shaman et al13 reported that the probability of 
accuracy (equivalent to PPV) of a peak predicted four to six 
weeks in advance ranged from approximately 0.4 to 0.5 for 
their high confidence predictions. However, because of the 
differences noted earlier, it is not possible to draw definitive 
conclusions about which method is more effective from these 
metrics. We also compared our results with those of three 
other popular data mining classifiers (DT, RF, and SVM). 
Overall, our data mining methods had a better PPV, NPV, 
and specificity, but the SVM had a higher sensitivity.

Table 2. Performance of alternative classification methods on test 
data set.

METHOD PPV NPV SENSITIVITY SPECIFICITY F0.5 F3

decision 
tree

0.397 0.940 0.450 0.926 0.407 0.444

random 
forest

0.553 0.922 0.236 0.979 0.436 0.250

SVm 0.247 0.971 0.798 0.738 0.287 0.652

Note: the best value of each performance metric is underlined.

Figure 8. comparison of F scores for the six methods used.
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Our method for creating the prediction models was 
previously used for dengue fever16,17 and malaria,18 but it can 
be used to create new models for different diseases. The use 
of widely available data enhances the generalizability of our 
method. This article has described a method for the predic-
tion of peaks in influenza activity several weeks in advance 
for different regions in USA. Such predictions may provide 
public health officials and health-care providers with advance 
warning to plan mitigation procedures (eg, persuading people 
at a given location to get their influenza vaccinations before 
the predicted peak). By deploying such mitigation procedures 
before the peak, it may be possible to reduce morbidity and 
mortality from the seasonal influenza outbreak.
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