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Abstract: Neurological and psychiatric patients have increased dramatically in number in the past
few decades. However, effective treatments for these diseases and disorders are limited due to
heterogeneous and unclear pathogenic mechanisms. Therefore, further exploration of the biological
aspects of the disease, and the identification of novel targets to develop alternative treatment strategies,
is urgently required. Systems-level investigations have indicated the potential involvement of the
brain–gut axis and intestinal microbiota in the pathogenesis and regulation of neurological and
psychiatric disorders. While intestinal microbiota is crucial for maintaining host physiology, some
important sensory and regulatory cells in the host should not be overlooked. Intestinal epithelial
enteroendocrine cells (EECs) residing in the epithelium throughout intestine are the key regulators
orchestrating the communication along the brain-gut-microbiota axis. On one hand, EECs sense
changes in luminal microorganisms via microbial metabolites; on the other hand, they communicate
with host body systems via neuroendocrine molecules. Therefore, EECs are believed to play important
roles in neurological and psychiatric disorders. This review highlights the involvement of EECs
and subtype cells, via secretion of endocrine molecules, in the development and regulation of
neurological and psychiatric disorders, including Parkinson’s disease (PD), schizophrenia, visceral
pain, neuropathic pain, and depression. Moreover, the current paper summarizes the potential
mechanism of EECs in contributing to disease pathogenesis. Examination of these mechanisms may
inspire and lead to the development of new aspects of treatment strategies for neurological and
psychiatric disorders in the future.

Keywords: enteroendocrine cells; enterochromaffin; GLP1; GLP2; serotonin; Parkinson’s disease;
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1. Introduction

The number of patients suffering from neurological and psychiatric disorders has
increased dramatically in the past few decades. According to the World Health Organi-
zation (WHO) epidemiology statistics, the number of Parkinson’s disease (PD) patients
has doubled within the last 25 years [1]. Moreover, recent updates from the WHO indicate
that there are nearly a billion people suffering from mental disorders, while approximately
280 million people suffer from depression around the world [2,3]. However, effective
treatments for neurological and psychiatric disorders are currently limited due to the het-
erogeneous disease pathogenesis and targets of treatments. For example, it has been shown
that visceral pain or depression patients sometimes express resistance to treatment [4–7].
Therefore, in order to develop novel therapeutic strategies, the exploration of novel aspects
of neurological or psychiatric pathogenic mechanisms is urgently required.

Enteroendocrine cells (EECs) are chemosensory cells residing in the intestinal ep-
ithelium, and they function as important sensors monitoring changes in the lumen of
the gastrointestinal (GI) tract. The EECs orchestrate not only the communication with
luminal microorganisms via microbial metabolites, but also the communication with host
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body systems via neuroendocrine hormones (Figures 1 and 2). For example, epithelial
EECs continuously respond to short-chain fatty acids (SCFAs) generated by luminal mi-
croorganisms via free fatty acid receptor 2 and 3 (FFAR2/3). Following this transceptor
or receptor activation, EECs secrete pre-made peptide hormones to conduct paracrine
and endocrine functions [8–11]. Further, the neuropod structure of EECs allows direct
or indirect signal transductions to enteric glia cells and enteric neurons [12,13]. An in-
creasing body of evidence indicates the unique involvement or pathogenic role of the
gut–brain axis and gut microbiota in neurological and psychiatric disorders, in which EECs
might participate [14–19].
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Figure 1. General structure of EECs involved in gut–brain axis. The EECs present receptors on the
brush border to sense the microbiota metabolites, toxins, pathogens, and nutrients in the lumen.
Enteric glia cells and neurons connect to EECs. The secreted endocrine molecules affect afferent
neuron signalling directly and (or) indirectly via EECs enteric glia cells. Efferent neurons bring the
signal into the central nervous system. On the other hand, the central nervous system can pass the
signal to EECs through efferent neurons. EECs, enteroendocrine cells.
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fin cells (ECs) secrete serotonin; and enterochromaffin-like cells secrete histamine [20,21]. 

Figure 2. GLP1, 2, and serotonin secretion mechanisms in EECs and ECs, respectively. In ECs, TRPA1,
piezol 1/2, Olfr, and ST2 bind to microbiota metabolites, pathogens, or nutrients, which increases
calcium levels through directly increasing cAMP or endoplasmic reticulum IP3. Once the calcium
level increases, it triggers the release of serotonin. Similar to ECs, EECs sense microbiota metabolites,
toxins, pathogens, and nutrients through nutrient transporters and taste receptors. Further, they
trigger an increase in calcium and sodium by directly increasing cAMP or endoplasmic reticulum IP3.
Once the calcium level increases, it triggers the release of GLP1 and GLP2. cAMP, cyclic adenosine
monophosphate; ECs, enterochromaffin cells; EECs, enteroendocrine cells; GLP1, glucagon-like
peptide 1; GLP2, glucagon-like peptide 2; IP3, inositol trisphosphate; Olfr, olfactory receptor; TRPA1,
transient receptor potential ankyrin 1.

The present paper reviews the current understanding and newly published evidence
regarding how EECs and their peptide hormones are involved in neurological and psy-
chiatric disorders. Moreover, the current paper focuses on the mechanism of EECs to
summarize the potential pathways for the development of new aspects of treatment strate-
gies in the future. The papers in the present review were generally selected under the scope
of EECs and endocrine molecules including serotonin, glucagon-like peptide 1 (GLP1),
glucagon-like peptide 2 (GLP2), peptide YY (PYY), as well as their involvement in particular
neurological psychiatric disorders, such as PD, schizophrenia, visceral pain, neuropathic
pain, and depression.

2. Enteroendocrine Cell Functions That Might Be Related to Neurological and
Psychiatric Disorders

EECs are located in the epithelium throughout the GI tract. They dynamically produce
and store various peptide hormones and bioactive components, depending on the intestinal
segments and epithelial homeostasis status. The regulation of EECs’ content profile, as
well as their functions in energy metabolism and roles as incretins, has been reviewed
elsewhere [20,21]. EECs can be further categorized into multiple subtypes, depending on
their endocrine molecules production and secretion. For example, G cells can be identified
by the secretion of gastrin; K cells uniquely secrete gastric inhibitory peptides; L cells
produce and secrete GLP1, GLP2, PYY, and oxyntomodulin; I cells produce cholecystokinin
(CCK); N cells secrete neurotensin; S cells secrete secretin; enterochromaffin cells (ECs)
secrete serotonin; and enterochromaffin-like cells secrete histamine [20,21]. Here, we
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only focus on the subtypes of EECs that are potentially involved in neurological and
psychiatric disorders.

L cells mostly secrete GLP1, GLP2, PYY, and oxyntomodulin, although PYY might
also be co-expressed with gastrin, which is mostly secreted by G cells [22]. GLP1, GLP2,
and PYY, which are secreted by L cells, and serotonin, secreted predominantly by ECs
(Figure 2), are discussed in this paper. GLP1 and GLP2 have been shown to correlate with
multiple neurological disorders. Serotonin also showed a correlation with depression and
visceral pain, although this is still under debate. Besides incretin functions, GLP1 has been
shown to exert anti-inflammatory effects in both the GI tract and central nervous system
(CNS) [23–25]. Moreover, GLP1 possesses neuroprotective effects and triggers neuroge-
nesis [26–31]. New evidence suggested that GLP1 and glucagon-like peptide 1 receptor
(GLP1R), a receptor of GLP1, have protective effects on hypothalamic inflammation and
leptin sensitivity in mice [25,32]. Despite the well-known source and their effects within
the CNS, the GLP1 derived from intestinal EECs has also been suggested to play a role
in neurological pathology, due to the feature wherein GLP1 is able to pass through the
brain–blood barrier [33–35]. Similar to GLP1, L-cell-secreted GLP2 also possesses anti-
inflammation effects [36–38]. In cows, GLP2 administration increased the intestinal villi
height, mucosal surface, and proliferating cells, and decreased inflammation [39]. Further,
GLP2 has a neuroprotective effect and can trigger neurogenesis in a similar manner as
GLP1 [29,37,40–42]. Interestingly, the anti-inflammatory effects of other components of EEC
content have recently been revealed, including PYY [43,44] and serotonin [45,46], which
are likely associated with neuroinflammation. Therefore, accumulating evidence suggests
that EECs and ECs could play important pathogenic and regulatory roles in neurological
and psychiatric disorders.

3. Enteroendocrine Cells in Parkinson’s Disease

PD is a common movement disorder that was originally characterized as a neurode-
generative disorder due to the loss of dopaminergic neurons and accumulated aggregation
of α-synuclein fibrils (called Lewy bodies) (reviewed elsewhere previously [47]). However,
studies have shown a new pathogenic aspect of PD, which could be linked to intestinal
disorders, as well as to changes in intestinal microbiota and metabolites [15,48,49]. For
instance, inflammatory bowel disease (IBD) has increased by 22 to 35% regarding the
incidence of PD [50]. In addition, Sampson et al. reported that the GI microbiota was re-
quired for motor deficits, microglia activation, and α-synuclein pathology (PD symptoms),
in a germ-free mice model overexpressing α-synuclein. Further, their results indicated
that the microbial metabolites produced in PD patients enhanced the pathophysiology of
PD [15]. Although with a negative correlation, others also found an association among the
GI microbiota, the total faecal SCFAs, and PD incidence [48]. Researchers hypothesized
that the origin of PD might lie in the enteric nervous system (ENS) [51,52]. Accordingly,
α-synuclein was detected in GI mucosa in early PD patients [53,54].

Given the important luminal chemo-sensing and neuroendocrine functions of EECs,
these recent results point to a hypothesis that EECs contribute to and regulate the patho-
genesis of PD. Interestingly, in human intestinal tissue, the α-synuclein that triggers PD
was colocalized with EECs, such as L cells and K cells [55,56]. Although the authors have
not confirmed the original secretion location of the α-synuclein, the data in these studies
strengthen the possibility of EECs’ involvement in PD progression.

Two potential mechanisms of EECs’ contribution in PD pathogenesis have been pro-
posed. On one hand, the EECs are likely to be a source of α-synuclein, which is generated
in response to specific microbial activation. Thereafter, the α-synuclein is transported
into the brain via nerves, leading to the accumulation of α-synuclein [57] (Figure 3a). In
line with this hypothesis, a very recent research work revealed the potential mechanisms.
The authors identified an increased population of microorganism Akkermansia muciniphila
in the guts of PD patients. The metabolites of this microorganism initiated α-synuclein
aggregation in EECs, via activation of ryanodine receptor (RyR), calcium ion (Ca2+) release,
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and increased mitochondrial reactive oxygen species (ROS) generation [58] (Figure 3b).
Moreover, a newly published paper indicated that another microbial metabolite, sodium bu-
tyrate, increased the α-synuclein mRNA expression in EECs through the autophagy-related
5 (Atg5) dependent autophagy pathway [59]. Holmqvist et al. provided evidence that
α-synuclein was able to move from the intestine to the brain in rats [60]. Further, the trans-
portation of α-synuclein from EECs to neurons requires GTPase called Ras-related protein
Rab-35 (Rab35) and cell-to-cell contact, which is in line with the EECs’ characteristics [61].
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Figure 3. α-synuclein accumulates in Parkinson’s disease through EECs. (a) The general pathway by
which EECs trigger α-synuclein transfer into brain. Aggregated α-synuclein produced by EECs is
transported into brain through afferent neurons and vagal nerve. (b) Cell signalling of α-synuclein
aggregation present in EECs. The EECs present receptors on the brush border to sense the microbiota
metabolites. Triggering of endoplasmic reticulum releases calcium through RyR. The increase in
calcium induces reactive oxygen species (ROS) synthesis in mitochondria, which further creates
α-synuclein aggregates. Microbiota metabolites also increase α-synuclein expression through Atg5
pathway in EECs. Atg5, autophagy-related 5; EECs, enteroendocrine cells; ROS, reactive oxygen
species; RyR, ryanodine receptor.

On the other hand, the EECs’ secretion could also be suppressed by alterations in
luminal SCFA concentrations and profiles. This could be the consequence of changes in
specific microbes, which then increase the systemic inflammation, and this eventually
enhances the progression of PD [62–64]. It was suggested that sodium butyrate increased
the pro-inflammatory cytokines and α-synuclein mRNA expression in an EECs cell line and
neuroblast cell line treated with EECs conditional medium [59]. Further, the EECs facilitate
α-synuclein transport, which could trigger inflammation responses in microglia [65,66]. In
contrast, a study in a PD mouse model suggested that the oral administration of butyrate
could have protective effects on the neurobehavioral impairment via increased EEC activi-
ties, such as increased colonic GLP1 expression and brain GLP1R gene expression [67]. A
recent animal study also indicated the neuroprotective effect of GLP1, triggered by chloro-
genic acid [31]. These conflicting characteristics of EECs might be due to the variations in
EECs’ homeostasis status or the hormone composition of EECs. In other words, the EECs
that secrete GLP1 could be beneficial in terms of inflammation reduction, while the EECs
that cannot secrete GLP1 but produce α-synuclein could be harmful. However, the detailed
mechanism for either hypothesis is still unclear, especially regarding the extent to which
EECs contribute to inflammation in PD patients. Future study will be needed to investigate
the detailed mechanisms of EECs in PD progression.

4. Enteroendocrine Cells in Schizophrenia

Schizophrenia is a complex neurodevelopmental disorder that could be significantly
defined by observations of psychosis signs. In most cases, schizophrenia patients present
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paranoid delusions and auditory hallucinations [68]. Due to the complexity of neurodevel-
opment and schizophrenia, the mechanism behind schizophrenia remains unknown [16].

Schizophrenia has been suggested to be associated with the impaired function and
structure of synapses [69,70]. Moreover, the microbiota is also associated with synaptogen-
esis and synapse maturation [16,71]. While the dietary manipulation and intestinal SCFAs
enhancement in schizophrenia patients have been discussed elsewhere [72], there have
been fewer connections identified between schizophrenia and luminal SCFAs and EECs.

A recent study provided new evidence that linked schizophrenia and epithelial
EECs [73]. Uellendahl-Werth et al. reported the susceptibility genes shared between
EECs and schizophrenia. Their results indicated that protein phosphatase 3 catalytic
subunit alpha (PPP3CA) is the shared susceptibility locus for IBD (Crohn’s disease and
ulcerative colitis) and schizophrenia. The genes were expressed in restricted tissues, includ-
ing neurons in the brain, intestinal epithelial EECs, and Paneth cells in the ileum, colon,
and rectum [73]. The authors also provided two possible mechanisms by which PPP3CA
in EECs contributes to disease pathology. First, EEC modulation altered the neuronal
signal transduction in the striatum. Second, the EECs modulated inflammation responses.
Several studies discussed the beneficial effects of the GLP1 (EECs product) agonists on
metabolic disorders in schizophrenia patients [74], while others also revealed the potential
neuroprotective effect of GLP1 agonists [75,76]. In contrast, several controversial data also
suggested that the GLP1 agonists did not improve the cognition or psychosocial function in
schizophrenia patients [77]. These conflicts might be due to dosage differences or variations
in GLP1 agonists; for example, the differences between Bydureon and Liraglutide [76,77].

5. Enteroendocrine Cells in Visceral Pain and Neuropathic Pain

Visceral pain is a severe form of pain originating from the internal organs. How-
ever, it is generally difficult to localize. Among heterogenous pathogenic hypotheses, the
neurological dysfunction is significantly linked to visceral pain [78–82]. In fact, visceral
pain and neuropathic pain are mostly characterized by hypersensitivity to stimulus, po-
tentially due to hypersensitivity of primary sensory afferent neurons and dysregulation of
neurotransmission [79,83].

Visceral pain is often correlated with digestive disorders such as IBD or irritable bowel
syndrome (IBS) [84–87]. Due to the complicity of disease pathology, visceral pain some-
times shows resistance to treatment, especially to opioid drugs. In the worst-case scenario,
opioid drugs might even worsen the disease symptoms [4,5]. Therefore, an understanding
of the novel biological aspects, such as intestinal microbiota and epithelial EECs, in visceral
pain would improve the therapeutic treatments. The relationship between the intestinal mi-
crobiota and visceral pain modulation has been discussed recently [88,89]. We highlight the
potential connections of EECs to visceral pain via unique proteins and peptide hormones,
including serotonin, GLP1, PYY, and Guanylate cyclase 2C (GUCY2C) (Figure 4).

Serotonin is predominantly (90%) secreted by ECs in the intestinal epithelium. It
could activate the receptors on serotonergic neurons and trigger the enteric nerve system
activity for pain [90]. Numerous studies indicate that serotonin signalling is associated
with neuron hypersensitivity to pain. An increased number of ECs has been observed
in IBS patients, who usually suffer from pain symptoms [91]. Further, the blockage of
serotonin signalling by 5-hydroxytryptamine 3 (5-HT3) receptor antagonists reduced pain
in IBS patients [92]. Subcutaneous or tissue injection of serotonin induced the hyperalgesia
response and interacted with the endocannabinoid system, which further exacerbated
pain [93–96]. The mechanism of serotonin-induced hypersensitivity has been investigated
in the past few decades. Serotonin is known to activate 5-HT3 receptors, thus inhibiting
the expression of catecholamine-O-methyltransferase (COMT), which contributes to the
downregulation of the pain perception and sensitivity [94,97–100]. Moreover, a recent study
provided new evidence of serotonin-mediated visceral hypersensitivity, which worked via
5-hydroxytryptamine 7 (5-HT7) dependent mucosal neurite outgrowth [101]. Therefore,
EECs could play important roles in the pathogenesis and severity of visceral pain. Alter-
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ations in the characteristics of EECs (especially ECs) might be an effective target for pain
treatment. However, the detailed mechanism is still unknown. Future studies are needed
to investigate this aspect.
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Figure 4. Visceral pain and depression pathologies involved with EECs and ECs. EECs and ECs
sense the microbiota metabolites, toxins, pathogens, and nutrients in the lumen to secrete GLP1, 2,
and serotonin, respectively. During pathology status, IELs produce proinflammatory cytokines,
which enhance the progression of visceral pain and depression. GLP1 and GLP2 secreted by EECs
have anti-inflammatory effects. Since the inflammation increases the visceral pain and depression
through afferent neurons, the anti-inflammatory effect of GLP1 and GLP2 would decrease the visceral
pain and depression. Although it is not clear how serotonin secreted by ECs affects depression
through the afferent neurons, it has the effect of anti-inflammation, which might reduce depression.
ECs, enterochromaffin cells; EECs, enteroendocrine cells; GLP1, glucagon-like peptide 1; GLP2,
glucagon-like peptide 2; IELs, intraepithelial lymphocytes.

GLP1 is secreted by not only EECs, but also in the CNS system. GLP1 and its receptor
have also been suggested to be associated with neuropathic pain and visceral pain in nu-
merous studies, working mainly through the modulation of inflammation. Recent studies
showed that the activation of the GLP1/GLP1R axis improved recognition memory impair-
ment, neuroinflammation, and neurological pain via regulating the AMP-activated protein
kinase/nuclear factor kappa B (AMPK/NF-κB) pathway [102,103]. Further, the GLP1R
agonist decreases pain hypersensitivity through decreasing pro-inflammatory factors and
increasing microglia anti-inflammatory factors, such as interleukin 10 (IL-10), cluster of
differentiation 206 (CD206), interleukin 4 (IL-4), and arginase 1 (Arg1) [102,104–108]. New
research claimed that the gene regulation in response to GLP1R activation is an effective
strategy in new treatments for neuropathic pain, by confirming that the GLP1R pathway
is involved in pain hypersensitivity mediated by microglia activation [109]. Considering
the inter-organ communication though nerve and endocrine systems, regulation of GLP1
and its receptor in the intestine and CNS system could synergistically improve neural pain
sensitivity. Similar to neuropathic pain, the GLP1 agonist is also able to decrease visceral
pain. In animal models, a GLP1 analogue or GLP1R agonist improved the visceral pain
hypersensitivity in rats [110,111]. New evidence in clinical trials has shown that the subcu-
taneous injection of a GLP1 analogue, ROSE-010, decreased pain hypersensitivity [112,113].
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Although these exogenous peptide treatment data strongly support the connection between
GLP1 and visceral pain, less research has been performed to understand the effects of en-
dogenous EECs-derived GLP1 in mediating visceral pain. More investigations are needed
to identify the potential EECs targets in developing visceral pain treatments.

PYY is mainly expressed in EECs. However, there are only limited data on the
relationship between PYY and visceral pain. Neuropeptide Y is in the same family as PYY
but is secreted mainly by neurons. Although the neuropeptide Y inhibits the transmission of
pain in the spinal cord and brain stem [114], the relationship between PYY and neural pain
is still unclear. In IBS patients, PYY cell density was decreased, which has been proposed
as a potential biomarker for the disease [115,116]. In a recent study, Hassan et al. used PYY
knockout mice to investigate the relationship between pain, PYY, and the Y2 receptor. Their
data suggested that the Y2 receptor antagonist and knockout of PYY increased visceral
pain [117]. However, future studies are needed to confirm the effect of PYY on visceral pain
and to investigate the details of the mechanism.

Finally, the hypothesis of GUCY2C signalling has been linked to visceral pain patho-
genesis. A recent study suggested that GUCY2C-enriched intestinal neuropod cells could
modulate visceral pain [118]. Further, GUCY2C agonists decreased pain through increasing
the cytoplasm cyclic guanosine monophosphate (cGMP) synthesis from guanosine triphos-
phate (GTP), as well as through releasing the cGMP from the basolateral membrane of the
epithelium to the ENS [119–123]. Therefore, GUCY2C agonists have been proposed as a
potential treatment for visceral pain (well reviewed previously) [124]. Not surprisingly,
GUCY2C is expressed in whole intestinal epithelial cells, including EECs [125,126]. Given
the fact that EECs are close to and actively communicate with ENS neurons, one would
strongly expect EECs-derived GUCY2C to modulate visceral pain [13,127]. However, there
is not yet a clear understanding of EECs’ involvement in GUCY2C-modulated visceral pain.
Future research is required to address this.

6. Enteroendocrine Cells in Depression

Depression is a common disease that affects up to 350 million people around the
world [128]. Although depression is a neurological disease, it has been believed to be
related to gastrointestinal disorders. Evidence suggests that constipation is a common
comorbidity in depression patients [129]. Further, chronic constipation patients have a 33%
of incidence of major depression [129,130]. In depression patients, a high number of ECs
has been observed, which indicates a potential relationship between depression, ECs, and
serotonin production [91].

In contrast to above hypothesis, serotonin deficiency has long been believed to be one
of the potential mechanisms of depression, due to the fact that effective medicines have
been serotonin-related [131]. Although a recent systematic review questioned the serotonin
deficiency hypothesis due to a lack of sufficient supportive data, it might be due to the
heterogenous nature of depression among different studies [132]. In fact, several studies
have suggested a relationship between depression and the metabolism of tryptophan, a
precursor of serotonin [133,134]. Further, selective serotonin reuptake inhibitor (SSRIs)
drugs have been used as treatments for depression patients. Therefore, serotonin is still a
potential mechanism and pathway for depression. In addition, recent studies suggested
that the modulation of intestinal serotonin metabolism through ECs and oral probiotics
improved depressive symptoms in an animal model [14,135–137]. The potential mecha-
nism has been proposed to be associated with tryptophan hydroxylase and tryptophan
metabolism. For instance, mice fed with probiotics showed increased tryptophan hydroxy-
lase 1 mRNA expression in the colon, and the treatment alleviated depressive behaviour in
mice with induced chronic stress [135]. However, more research and evidence are needed
to investigate the detailed mechanism of ECs involved in depression.

Recent studies suggest that other EEC products, namely GLP1 and GLP2, are also po-
tentially involved in depression. In stressed mice models, GLP2 played a role in regulating
monoamine pathways, which in turn exhibited anti-depressive effects [138–140]. Similar to
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GLP2, GLP1 has also shown anti-depressive effects. Both intraperitoneal administration
of a GLP1 analogue (Liraglutide) and or oral delivery of an enhancer (metformin) of en-
dogenous GLP1 secretion have shown an anti-depressive effect in animal models [141,142].
The potential mechanisms of GLP1 in depression have been well reviewed in [143]. Briefly,
there are four potential mechanisms of GLP1 involved in depression treatment. First,
neuroinflammation is modulated by GLP1. Second, the dysregulation of neurotransmitters
is modulated by GLP1. Third, the neurogenesis caused by depression is modulated through
GLP1. Finally, GLP1′s regulation of depression induces synaptic dysfunction and memory
loss [143]. Given the fact that GLP1 might be produced via a multi-organ system, as well as
the dynamically regulated EECs activity in response to the brain–gut–microbiota axis, one
should not overlook the potential contribution and significance of EECs-derived GLP1 in
modulating depression. Further, since the microbiota metabolites trigger EECs to secrete
GLP1 and GLP2, this increases the possibility of EECs serving as mediating regulators
between the microbiota and enteric nerve system. However, research is needed to provide
evidence to support this hypothesis and investigate the details of the involved mechanism.

7. Conclusions

In the present paper we summarized the direct and indirect involvement mechanisms
of the EECs in neurological and psychiatric disorders, and discussed the potential treat-
ments. Besides the accumulation of EECs-derived α-synuclein that exacerbates the disease
progression in PD, most of the disorders showed significant associations with dysregulation
of the neuroendocrine molecules (such as GLP1, GLP2, PYY, serotonin, etc.) produced by
EECs and subtype cells. Most of the current treatment strategies focus on administrating
exogenous agonists or analogues (GLP1 in schizophrenia, visceral pain hypersensitivity,
and depression) and receptor antagonist (serotonin in visceral pain) of these molecules.
Alternatively, optimizing the endogenous production of these neuroendocrine molecules
could also be considered for developing novel therapeutic strategy. Accumulating evidence
connect brain–gut–microbiota axis to the pathogenesis and regulation of neurological and
psychiatric disorders. Future investigation should focus on characterizing healthy EECs
and reshaping EECs homeostasis in diseases. Intestinal EECs serve as significant source of
neuroendocrine molecules. The number and content profiling of EECs depends on intrinsic
factors, such as intestinal epithelial stem cells, and the extrinsic microenvironment, such as
luminal microbiota. Therefore, the new strategy could be focusing on the differentiation
and homeostasis of EECs in the intestinal epithelium, as well as optimizing the EECs func-
tions via regulation of microbiota and nutrition, especially the probiotics and prebiotics.
However, the detailed mechanisms are still unclear due to the limitations of techniques and
current evidence. The present paper humbly provides a direction for future studies.
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