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Background: Malaria transmission is measured using entomological inoculation rate (EIR), number of

infective mosquito bites/person/unit time. Understanding heterogeneity of malaria transmission has been

difficult due to a lack of appropriate data. A comprehensive entomological database compiled by the Malaria

Transmission Intensity and Mortality Burden across Africa (MTIMBA) project (2001�2004) at several sites is

the most suitable dataset for studying malaria transmission�mortality relations. The data are sparse and large,

with small-scale spatial�temporal variation.

Objective: This work demonstrates a rigorous approach for analysing large and highly variable entomological

data for the study of malaria transmission heterogeneity, measured by EIR, within the Rufiji Demographic

Surveillance System (DSS), MTIMBA project site in Tanzania.

Design: Bayesian geostatistical binomial and negative binomial models with zero inflation were fitted for

sporozoite rates (SRs) and mosquito density, respectively. The spatial process was approximated from a subset

of locations. The models were adjusted for environmental effects, seasonality and temporal correlations

and assessed based on their predictive ability. EIR was calculated using model-based predictions of SR and

density.

Results: Malaria transmission was mostly influenced by rain and temperature, which significantly reduces

the probability of observing zero mosquitoes. High transmission was observed at the onset of heavy rains.

Transmission intensity reduced significantly during Year 2 and 3, contrary to the Year 1, pronouncing high

seasonality and spatial variability. The southern part of the DSS showed high transmission throughout the

years. A spatial shift of transmission intensity was observed where an increase in households with very low

transmission intensity and significant reduction of locations with high transmission were observed over

time. Over 68 and 85% of the locations selected for validation for SR and density, respectively, were correctly

predicted within 95% credible interval indicating good performance of the models.

Conclusion: Methodology introduced here has the potential for efficient assessment of the contribution of

malaria transmission in mortality and monitoring performance of control and intervention strategies.
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M
alaria is still endemic in more than 100

countries worldwide, leaving children and preg-

nant mothers being the most vulnerable groups

for infections (1). Global estimates report 219 million

malaria cases (range 154�289 million) with about 660

thousands deaths (range 610�971), most of these (�90%)

occurring in Africa. The impact of the malaria burden on

the achievement of Millennium Development Goals is

enormous, and its control is a potential contribution

towards significant progress (1).

Malaria is transmitted by female Anopheles mosqui-

toes. The transmission intensity is therefore highly sensi-

tive to environmental variations that affect the densities

of these vectors and their ability to transmit the infection
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(2�4). Up to 10-fold variations in transmission intensity

have been observed within very small localities due to

geographical, biological or socio-economic factors (5�8).

Understanding the heterogeneity in transmission and

human exposure to malaria infection is critical for

optimizing control programs and targeting interventions

(9�12).

Malaria disease burden and transmission can be

assessed using incidence or prevalence in human hosts.

However, the entomological inoculation rate (EIR) most

directly quantifies the exposure of the human popula-

tion to the infectious stages of the parasite (12�16). EIR

is the product of the human-biting rate, for example,

mosquito bites/person/night (which can also be estimated

using mosquito density) and the sporozoite rate (SR),

which is the proportion of infective mosquitoes (7, 17).

The measure expresses the average number of infective

bites a person receives in a specified unit of time. It can

be also used to predict other measures of transmission,

which are used to evaluate effectiveness of malaria

control program (5, 18). Uncertainty due to small sample,

low values and variability in the SR and cost complicate

precise estimation of EIR requiring standardized ento-

mological surveys conducted over large areas (5, 6, 13,

14). Accurate estimation of EIR requires longitudinal

surveys within the study area to take into account spatio-

temporal variations and seasonality trends. However,

there is a paucity of this type of data due to cost and

resources needed to collect them (19�21).

The Malaria Transmission Intensity and Mortality

Burden across Africa (MTIMBA) project was initiated

by the INDEPTH Network (22, 23) and conducted over a

period of 2001�2004 in several countries in Africa in-

cluding Tanzania, Kenya, Mozambique, Senegal, Ghana

and Burkina Faso. The main objective of the initiative

was to assess the relation between the intensity of malaria

transmission and all-cause as well as malaria-specific mor-

tality across Africa, taking into account the influence of

malaria control activities. The MTIMBA entomological

data have been collected fortnightly over large number

of locations (households) and to date this is the only

available entomological database appropriate to study

space�time heterogeneity of malaria transmission in

Africa. These data are sparse with seasonal variations

and spatio-temporal correlations. High dependence of

climate, environment and ecological factors in the life

of mosquito and seasonality any of the survey locations

had zero mosquitoes or proportion of infected ones.

In standard modelling approaches, EIR is treated as

a continuous outcome, logarithmically transformed to

fulfil the assumption of normality (21, 24�27). However,

when EIR is estimated as a product of the SR and

mosquito density, which are generated from the binomial

and a count distribution like Poisson or negative binomial,

respectively, normality assumptions are void. To our

knowledge, Kasasa et al. (28) is the only literature report

analysis of EIR data considering the two sources of data

separately. In addition, due to the amount of zeros which

is larger than what can be generated by the standard

distributions, the data are over/under dispersed and zero

inflated (21, 29�32). Statistical analysis which accounts for

these characteristics is essential to obtain unbiased esti-

mates for the regression coefficients (33�36).

Moreover, the MTIMBA-EIR data have been collected

at fixed locations and they are typically geostatistical

data. Similar exposures of environmental and climatic

conditions to locations which are geographically close

introduce spatial correlation between them. Geostatistical

models take into account spatial correlation by introdu-

cing location-specific random effects as latent observa-

tions from a multivariate spatial Gaussian process (37).

Spatial correlation between any pair of locations is often

considered as a function of distance on the covariance

matrix of the process. These models have a large number

of parameters. Bayesian formulations (38) allow model fit

via Markov Chain Monte Carlo (MCMC) simulation

methods (39). However, the estimation process involves

covariance matrix computations which are infeasible

when the number of locations is too large (40, 41).

A computational flexible way to overcome this problem

is the approximation of the spatial process from a subset

of locations using properties of conditional multivariate

Gaussian distribution of the process (40�42). Most of

these techniques have been applied in simulated data,

observed in regular grid and mainly with Gaussian char-

acteristics. In this study, selection of subset of locations

is implemented using methods proposed in our previous

work (40, 43).

We now demonstrate a rigorous modelling way of

analysing large spatio-temporal EIR data and study the

heterogeneity, space and temporal patterns of malaria

transmission within one MTIMBA site, the Rufiji DSS

area in Tanzania (44). The Gaussian process approxima-

tion proposed by Banerjee et al. (40) is applied to

binomial (SRs) and negative binomial (density) data

with zero inflation. The models are fitted using Bayesian

MCMC simulation and assessed on the basis of their

predictive ability. Model-based predictions of SR and

density were multiplied to compute EIR. Model formula-

tion details are given in the methodology section and

selected results are presented afterwards. The discussion

and conclusion of the findings consider the implications

for timing and allocation of resources for malaria

interventions.

Methodology

Study site
The study utilized data collected from one of the

MTIMBA sites in Tanzania, the Rufiji DSS (RDSS).
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The RDSS is located in Rufiji District, Coast Region,

Tanzania, about 178 km south of Dar es Salaam.

The RDSS area extends from 7.478 to 8.038 south

latitude and 38.628�39.178 east longitude and operates

in six contiguous wards and 31 villages. The surveillance

area covers an area of 1,813 km2 and monitors 85,000

people, which is about 47% of the total population of

the Rufiji District (INDEPTH Monogram). Rufiji Dis-

trict has an overall mean altitude of B500 metres. Its

vegetation is mainly formed of tropical forests and

grassland. The district has hot weather throughout the

year and two rainy seasons: short rains (October�
December) and long rains (February�May). The average

annual precipitation in the district is between 800 and

1,000 mm. A prominent feature in the District is the

Rufiji River with its large flood plain and delta, the

most extensive in the country (INDEPTH Monogram;

Rufiji DSS Profile, 2000). The majority of the people in

the Rufiji District are subsistence farmers.

The main responsible malariavectors in the area include

A. funestus, and members of the A. gambiae complex,

including A. gambiae (sensu stricto) and A. arabiensis.

Mosquito populations usually peak during the rain

seasons especially in areas where rice cultivation is taking

place and during the dry months, a high population

was usually observed in areas with permanent water

bodies (23).

Mosquito data

The entomological data were collected for the period

of 3 years, October 2001�September 2004 (Source: http://

www.indepth-network.org/dss_site_profiles/rufiji.pdf). The

MTIMBA entomological protocol has been well defined

in MTIMBA documentation (unpublished). In a snap-

shot, mosquitoes were captured at least twice every

month using Centers for Disease Control (CDC) minia-

ture light traps. The human population in the RDSS was

classified into geographical clusters (100�1,000 people),

then for each round a simple random sampling (without

replacement) was employed within clusters to select

between 20 and 100 ‘index’ people (households) for the

set-up of mosquito catches (traps). The traps were fitted

indoors with incandescent bulbs and laid close to a

human volunteer (randomly selected from members

of the household) sleeping under an untreated bednet.

Light traps operated from sundown to sunrise (i.e. 6 pm�
6 am) for two consecutive nights in each household

and bags were emptied every morning. A total of 2,479

unique locations (households) involved were geo-refer-

enced. Collected mosquitoes were counted and sorted

into vector species to allow for separate assessment of

transmission intensity.

Environmental and climatic data

Remote sensing data were extracted from different

sources with different spatial, SpR, and temporal, TR,

resolutions. These include normalized difference vegeta-

tion index (NDVI) (SpR: 250 m2; TR: 16 days; Source:

MODIS), day and night temperature (SpR: 1 km2; TR: 8

days; Source: MODIS), rainfall (SpR: 8 km2; TR: 10 days;

Source: ADDS) and distance to the nearest water bodies

(SpR: 1 km2; Source: Health Mapper).

Statistical analysis
Geostatistical zero inflated negative binomial and logistic

regression models were fitted on the mosquito density and

SR data, respectively. The models accounted for the effect

of environmental and climatic predictors, annual trends,

seasonal patterns, and spatial and temporal correlations.

The predictive process was used to approximate the spatial

process using a subset of locations. Model-based predic-

tion of SR and density were multiplied to obtain esti-

mates of monthly and annual EIR. Details of the model

formulation and its implementation are described in the

subsections below. Programs used for this analysis are

available via contact with the corresponding author.

Model formulation for density data

Let Yit be the number of female mosquitoes and X
ð1Þ
it be a

vector of environmental predictors (extracted from satel-

lite data) observed at location si, i�1,. . .,n, and calendar

month t�1,. . .,36 for a specific species. Yit is assumed to

follow a negative binomial distribution, Yit�NB(r, pit),

where pit�r/(r�mit). r is an over-dispersion parameter

and mit is the mean mosquito density. Covariates X
ð1Þ
it ,

seasonal trends f(t)(1), spatial Ui
(1), temporal ot

(1)�
(e1,e2,. . .,et) and non-spatial fi

(1) random effects are

introduced on the log scale of the mean count via

the equation log(mit)�XT(1)b(1)�f(t)(1)�Ui
(1)�et

(1)�fi
(1),

where b(1) is the vector of regression coefficients, fi
(1) is

a residual error term capturing the remaining variability

in the data. f(t)(1) is modelled via trigonometric function

with a mixture of cycle, C

f ðtÞ ¼
XC

c¼1

dð1Þ1c � cos
2p

Tc

t

 !
þ dð1Þ2c � sin

2p

Tc

t

 !( )
;

C ¼ 2; t ¼ 1; :::; 12=36

where Tc is the period of the season for cycle C (i.e.

T1�12 and T2�6) and dð1Þ1c and dð1Þ2c are regression

parameters used to describe the amplitude and phase

within a period (45, 46). Separate models were fitted

assuming: (i) a constant seasonal pattern across the

3 years of the study by taking t�1,. . .,12; or (ii) a

continuous time for the entire study period by taking

t�1,. . .,36. The seasonal pattern considering dry/wet

categorization of the data was also assessed.

A zero inflated model formulation was adopted to

take into account the excess zeros in the count data. The

model is defined as a mixture of a degenerate distribu-

tion with mass at zero and a non-degenerate count
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distribution. The log-likelihood is therefore a sum of the

log-likelihood for the non-zero and the zero counts. The

distribution of the data is now defined as:

PðY ¼ 0jp+; hÞ ¼ p+ þ ð1� p+Þpð0jhÞ
PðY ¼ yjp+; hÞ ¼ ð1� p+ÞpðyjhÞ; y > 0

where p* is the probability for a count to arise from the

zero mass and 1�p* is the probability to observe a sample

from a count distribution (i.e. p(yNu)�NB for our case,

and u is the vector of parameters associated with the

distribution). This probability can be assigned a value

between 0 and 1, usually approximates the proportion

of zero counts in the sample or can be a function of

covariates similar or different from those used in the

full model (21, 33, 34, 47). Involving possible sources of

zero inflation (e.g. covariates) reduces bias in parameter

estimation of p* and other sources of uncertainty. In

our case p* is modelled with a logit link as a function

of all climatic predictors X+
i observed at location si, i.e.

logitðp+
i Þ ¼ X+Ta, where a is the corresponding vector of

regression coefficients.

Bayesian model formulation requires the specifica-

tion of prior distributions for all unknown parameters.

For the regression coefficients, b(1), d(1) and a, a standard

non-informative uniform prior is adopted, i.e. b(1)�

Unif(��,�), d(1)�Unif(��,�) and a�Unif(��,�),

respectively. The latent observations U
ð1Þ
i introduced at

each location si are assumed to be derived from a multi-

variate normal distribution with a covariance matrix R
ð1Þ

nxn,

i.e. Uð1Þ�MVNð0;Rð1Þ

nxnÞ. The S(1) is a matrix with elements

Rð1Þij and quantify the covariance Cov(Ui,Uj) between the

pair of locations si and sj, respectively. Its distribution

defines the Gaussian spatial process. Under the assump-

tion of stationarity, the spatial correlation is taken to be

a function of distance between locations. An exponential

correlation structure for the covariance matrix of the

spatial process is adopted, that is Rð1Þij ¼ r2ð1Þ

sp expð�dijq
ð1ÞÞ,

where r2ð1Þ

sp is the spatial variance, dij is the distance between

locations si and sj and r(1) measuring the correlation

decay and also known as the effective range (3/r(1))

and estimates the distance where the spatial correla-

tion is B5%. The decay parameter r(1) assumed to follow

a gamma distribution.

Computation of the Gaussian process requires the

inversion of the covariance matrix, S(1), which for a very

large number of locations is not feasible. To enable model

fit we approximate the spatial process by a subset of

locations, knots, {si*,i�1,. . .,m} (mBBn) with latent

observations U*(1)�(U(s1*),. . .,U(sm*))T. U*(1) is consid-

ered to arise from the same Gaussian process as U(1) and

thus U*(1)�N(0,S*), where S* is the mxm covariance

matrix of the sub-process. These latent observations U of

the original process can be approximated by the ‘predictions’

of the sub-process via the mean of Gaussian conditional dis-

tribution U ð1ÞðsÞjU +ð1Þ�NðQTR+�1U +ð1Þ ; r2 � Q T R+�1Q Þ,
that is Û ¼ Q T R+�1U +ð1Þ, where Q ¼ CovðU +ð1Þ ;U ð1ÞÞ is an

mxn matrix of the covariance functions between the

full and the sub-process (48, 49). Selection of subset of

location was done using the minimax space filling design

implemented in R software (50). The approach optimizes

the selection of the best subset by minimizing the maxi-

mum of the nearest-neighbour distance between the

original survey and the subset locations.

The eð1Þt model temporal correlation via a statio-

nary autoregressive process of order one, i.e. e1�

Normalð0; r2ð1Þ

T =ð1� c2ÞÞ and etje1,. . .t�1� Normal

ðcð1Þet�1; r
2ð1Þ

T Þ; t � 2, where cð1Þ is an autocorrelation para-

meter jcð1ÞjB1 which adopts a bounded uniform distri-

bution, cð1Þ � Unif½�1; 1� and r2ð1Þ

T is the temporal error

(51). The /ð1Þi is assumed to follow a normal distribution

with mean zero and a homoscedastic variance r2ð1Þ

e . Inverse

gamma priors are adopted for the variance parameters r2ð1Þ

sp ,

r2ð1Þ

T and r2ð1Þ

e .

Model for SR

Let Nit and Zit be the number of mosquitoes tested

and number infected, respectively at location si and

calendar month t. Zit is assumed to arise from a binomial

distribution, Zit�Bin(Nit,pit) , where pit measures the

SR at location si and time t. The regression function

links the SR with other terms of the model (as shown

for the density data) and is given as logit

ðpitÞ ¼ XTð2Þbð2Þ þ f ðtÞð2Þ þU
ð2Þ
i þ eð2Þt þ /ð2Þi . A similar

specification described for the density model is followed

in this model.

Data management and environmental lags

To facilitate the assessment of the seasonal pattern, data

were summarized by location and calendar month. That

implies that all repeated surveys from a specific location

within the same month were collapsed (sum of mosquito

density/tested and positive) to a single observation.

To account for the environmental-lag-effect on mos-

quito density or SR, non-spatial (negative) binomial

models (with/without zero inflation) were fitted and

best lags were assessed. Lags refer to a climate/ environ-

ment value at different time intervals prior to the study

date that might influence the amount of mosquitoes

collected or the SR. Lags considered include the current

month (month of collection of mosquitoes); 1/2/3

month(s) prior to the collection; average of current and

one previous month; average of one and two previous

months; and lastly average of current, one and two

previous months. The analysis took into account season-

ality, distance from water bodies and time (annual effect)

which was incorporated as a binary variable indicating

the year of study. Analysis was conducted separately for

each species. Fitted values from models with all possible

combinations of the environmental lags were calculated

and plotted against the observed values (mosquito counts
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or SR). The combination which best fits the data was

used for further analysis. This was implemented in

STATA 10 (Stata Corps).

Model validation and prediction

Models were fitted using a training set (85% of the data)

randomly selected from the entire data. Validation of the

model performance was done on the test locations (the

remaining 15% of the data) The predictive ability of

the model was assessed by specifically calculate different

credible intervals with different probability coverage of

the posterior predictive distribution and compare the

percentage of test locations correctly predicted within

these credible intervals (52). The best predictive ability of

the model is observed when higher the number of test

locations falls within the narrowest credible interval. The

predicted power of the model at 95% credible interval is

reported.

Using the estimates obtained from the models, SR and

mosquito density were predicted for the whole Rufiji site.

The prediction was done at the 250 m resolution.

Calculation of EIR
The EIR can be estimated as a product of the SR and

human-biting rate. Depending on the mosquito collec-

tion method used (human landing, light trap, etc.), the

human-biting rate can be correctly approximated either

by the number of blood meals taken on humans/mosquito/

day or by the mosquito density. Established correla-

tion between number of mosquitoes captured by light

traps and human landing catches is usually used to

adjust light trap collection to equivalence of biting catches

and avoid collection bias (53). For this study, EIR was

calculated as a product of SR and mosquito density

and then adjusted using a correction factor of 1.605 to

calibrate estimates obtained from light trap collection

(28, 53, 54).

At a specific pixel j and month t the predicted values

of SR, p̂jt and mosquito density, l̂jt were obtained for A.

funestus and A. gambiae species. EIR estimates represent-

ing the infectious bite/person/day were calculated as:

EÎRjt ¼ 1:605 � p̂jtaf
� l̂jtaf

� �
þ p̂jtag

� l̂jtag

� �� �

where 1.605 is the correction factor.

The EÎRjt was then multiplied by 30.5 and 365 to

obtain monthly and annual estimates, respectively.

Monthly and annual maps were produced to show

seasonal and temporal trends of the transmission.

Geostatistical model implementation

The final model was implemented in OpenBUGS and

parameters were estimated using the Gibbs sampler

MCMC algorithm. The spatial variance parameter was

sampled directly from its inverse gamma full conditional

distributions using Gibbs sampling (39). The remaining

parameters were simulated using Metropolis algorithm

with a normal proposal distribution. The mean of

the proposal distribution was the parameter estimated

from the previous iteration with a fixed variance (55, 56).

Two separate chains were run in parallel with a total

of 150,000 iterations each. A burn-in of 20,000 iterations

was done and the last 5,000 and 1,000 samples were used

for posterior inference and prediction, respectively. The

Gelman-Rubin model diagnostic tool (57) was used

to assess convergence of chains before summarizing the

results. The package ‘fields’ in R was used for selection of

knots. For practical implementation of the geostatistical

model 281 knots (2,479 unique locations) were selected

for the density data (both species), 177 (415 unique

locations) for SR analysis of A. funestus and 219 (639

unique locations) for SR of A. gambiae. Predictions and

calculations of EIR were done in Fortran 95 (Compaq

Visual Fortran Professional 6.6.0).
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Fig. 1. Seasonal variations of (A) rainfall, temperature and (B) mosquitoes densities of A. gambiae and A. funestus in the Rufiji

DSS October 2001�September 2004.
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Results

Data description

In total of 2,479 unique locations were visited for

the collection of the mosquitoes. A total of 15,983 A.

funestus (from 18% of the surveyed locations, n�447)

and 17,885 A. gambiae (from 27.3% of the surveyed

locations, n�678) mosquitoes were captured. About

83 and 74.3% of the visits for mosquito collection for

A. funestus and A. gambiae received zero counts. The

crude annual SRs were 3.3, 2.8 and 3.2% for Year 1

(October 01�September 02), Year 2 (October 02�Septem-

ber 03) and Year 3 (October 03�September 04), respec-

tively. The crude EIR were 507, 72.8 and 146 infectious

bites/person/year for 3 years respectively. In Fig. 1, the

relation between rainfall, temperature and mosquito

density is shown (data collapsed in a period of one

calendar year).

Most A. gambiae mosquitoes were captured during the

months of April and May while most A. funestus were

Table 1. Results of association of environment/climate variables on sporozoite rate and mosquito density and spatio-temporal

parameters

Sporozoite rate Density

Model: binomial Model: zero inflated negative binomial

Parameter AF AG AF AG

Seasonality Median (95% CIa) Median (95% CIa)

Constant 0.04 (0.01, 0.23) 0.07 (0.02, 0.56) 1.03 (0.33, 2.4) 2.4 (0.53, 4.03)

Cos 12 0.99 (0.41, 2.41) 0.72 (0.29, 1.66) 1.1 (0.54, 2.3) 0.39 (0.2, 0.86)

Sin 12 0.84 (0.31, 2.53) 0.54 (0.19, 1.32) 0.75 (0.4, 1.55) 0.6 (0.32, 0.96)

Cos 6 1.27 (0.66, 2.47) 0.81 (0.44, 1.53) 0.75 (0.43, 1.39) 0.76 (0.41, 1.13)

Sin 6 0.65 (0.34, 1.25) 0.87 (0.45, 1.68) 1.13 (0.58, 2.08) 0.99 (0.53, 2.43)

Environment and climate

NDVI 1.03 (0.85, 1.25) 0.93 (0.79, 1.1) 1.15 (0.87, 1.6) 1.11 (0.92, 1.35)

RAIN 0.96 (0.73, 1.26) 0.53 (0.36, 0.79) 1.33 (1.06, 1.68) 1.26 (0.97, 1.79)

LSTD 2.31 (1.06, 6.97) 0.92 (0.7, 1.22) 1.23 (0.81, 1.69) 0.77 (0.64, 0.89)

LSTN 1.04 (0.52, 3.51) 0.96 (0.73, 1.27) 1.47 (1.02, 2.02) 0.84 (0.69, 1.03)

Distance to the water bodies 0.93 (0.76, 1.11) 0.97 (0.85, 1.1) 0.96 (0.65, 1.22) 0.94 (0.79, 1.11)

Annual trend

Year 2 1.01 (0.61, 1.67) 0.48 (0.31, 0.75) 0.13 (0.08, 0.24) 0.17 (0.11, 0.25)

Year 3 0.41 (0.2, 0.79) 0.37 (0.24, 0.57) 0.34 (0.2, 0.61) 1.6 (1.04, 2.53)

Spatial process

Rangeb (in km)c 35.52 (11.1, 78.81) 49.95 (15.54, 81.03) 21.1 (12.2, 56.6) 15.5 (8.9, 32.19)

Variance r2
sp 0.9 (0.37, 2.36) 0.45 (0.2, 1.18) 11.35 (6.58, 29.2) 5.04 (3.1, 10.33)

Temporal process

Correlation g 0.5 (�0.52, 0.96) 0.5 (�0.51, 0.96) �0.15 (�0.79, 0.67) 0.08 (�0.77, 0.83)

Variance r2
T 0.34 (0.14, 1.11) 0.33 (0.14, 0.94) 0.61 (0.22, 2.59) 0.51 (0.2, 2.55)

Other parameters

Non-spatial variance r2
e 0.31 (0.16, 0.61) 0.34 (0.19, 0.59) 2.88 (1.81, 4.4) 2.59 (1.89, 3.2)

Over-dispersion r � � 2.64 (1.7, 3.67) 1.16 (0.77, 1.61)

Covariates on the mixing probability

Constant � � 0.07 (0.02, 0.21) 0.13 (0.06, 0.25)

NDVI � � 0.3 (0.17, 0.54) 0.93 (0.7, 1.29)

RAIN � � 1.3 (0.84, 5.37) 0.65 (0.36, 1.85)

LSTD � � 0.07 (0.01, 0.64) 0.05 (0.02, 0.18)

LSTN � � 0.53 (0.27, 1.14) 0.71 (0.28, 3.64)

aCredible Intervals (or posterior intervals).
bBased on spatial decay parameter, the Range is calculated as 3/r (�111 km).
cThe spatial correlation is significant (�5%) within this distance.

Bold terms indicate significant variables in the model.
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Fig. 2. Selected EIR maps showing the spatial distribution and the seasonal pattern, for the period of Oct 2001�Sept 2004. (A)

Dry months followed by the period of short rains, (B) Months immediately after the onset of heavy rains during the first year

(very wet), (C) Months immediately after the onset of heavy rains during the second year (dry) and (D) Months immediately

after the onset of heavy rain season during the third year (normal rains).
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collected in the period of July�September. The number

of A. gambiae collected was higher during the heavy

rains while short rains with high temperature favour the

population of A. funestus (Fig. 1).

Geostatistical model results

Table 1 summarizes the results of parameter estimations

from a multivariate geostatistical models on SRs and

mosquito density.

The effect of environmental variables differs signifi-

cantly between species. Rain and temperature are the most

influencing factors for density and sporozoite with higher

effect on the A. funestus species. No significant effect of

distance to the water bodies was obtained. highly pro-

nounced with a significant decrease of mosquito popula-

tion in Year 2 as compared to Year 1 and later an increase

in the Year 3 as compared to Year 2. Spatial ranges are

quite high especially for the SRs. The estimate of the over-

dispersion parameter of A. funestus is twice as large as that

of A. gambiae which could be influenced by the amount of

zero counts in the data. However, the estimate of r is larger

than 1 indicating that the data are not highly overdispersed

(58). Day temperature significantly reduces the probability

of observing zero mosquito counts. Spatial variability

accounts more for the total variability in the data as

compared to the non-spatial and temporal variability.

For a total of 63, 99, 368 and 368 test locations

selected for validation of SR-AF, SR-AG, Density-AF

and Density-AG models respectively, 68.3, 63.6, 84.1 and

89.9% of the locations were correctly predicted within

95% credible interval. Gelman-Rubin diagnostics indi-

cated good convergence of all model parameters.

Mapping of EIR

Figure 2 presents selected EIR maps for the Rufiji DSS

site for the A. funestus and A. gambiae.

The southern part of the DSS showed high transmis-

sion throughout the years. High transmission was ob-

served immediately at the onset of rains, especially during

the heavy rain period. At the end of the rainy season

(May�June), the transmission spread throughout the

region (Fig. 2).

In Fig. 3, monthly time series (median) predicted EIR

are plotted for the entire study period. Attributes of each

species are also indicated.

The transmission starts peaking in the month of April

(just after rains) and gradually drops in July (first year of

the study). There was a reduction in the second year

of the study and EIR increased again during the last year.

A similar monthly trend is observed across years, which

emphasizes seasonality. A. funestus are more prominent

during the dry months while A. gambiae are more

prominent during the rainy periods. The spatial temporal

distribution of year-by-year EIR is shown in Fig. 4 with

maps of prediction error. The prediction error for the

EIR estimates was obtained my multiplying the predic-

tion errors obtained from SR and density models.

Patterns in Fig. 4 show that few surveyed house-

holds are located in areas with EIRB1; however, a large

proportion of household presented high transmission

intensity. Higher prediction errors are seen in areas with

few surveyed locations. The errors also capture the effect

of heterogeneity arising from unmeasured factors.

Population-adjusted EIR

The annual and species-specific population-adjusted EIR

were calculated by averaging predicted inoculation rates

at all households (N�14,516) within the RDSS (Fig. 5)

excluding all of the other pixels. Results are presented in

Table 2.
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Fig. 3. Predicted monthly EIR median and attribute of each species in Rufiji DSS.
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Fig. 4. Spatial temporal distribution of annual EIR with prediction error maps.

Fig. 5. Distribution of households in the Rufiji DSS area (Source: TEHIP, 2002).
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Overall transmission intensity reduced significantly

during Year 2 and 3 as compared to Year 1 of the study.

A. funestus was the main responsible vector for transmis-

sion in the first (68%) and second (78%) year, while the

last year transmission was mainly driven by A. gambiae

(63%).

In addition, we assessed the spatial shift (distribution)

of transmission intensity over time, as illustrated in Table

3. EIR were categorized into five transmission intensities

which were: no transmission (EIR�0), very low (EIR]

0.0�1), low (EIR]1�10), average (EIR]10�100), and

high (EIR]100). The change in the percentage of house-

holds exposed to a specific level of transmission was then

studied.

The proportion of households predicted with very

low transmission intensity increased between the first

year and the third year of the study, from 4.0 to 7.2%.

A significant reduction (over 68%) of locations with high

transmission is seen during the last year of the study (i.e.

12.6% in the first year to 4% in the third year).

Discussion
In this study, we assessed spatial�temporal variation and

heterogeneity of malaria transmission in the Rufiji DSS

site using a large geo-referenced biweekly entomological

dataset collected over 3 years, and rigorous Bayesian

geostatistical models. Our work is amongst the few to

address spatial modelling of Entomology inoculation rate

(EIR) based on sparse data by applying current Bayesian

methodologies approximating spatial processes for large

data. The INDEPTH-MTIMBA data, which was used in

our application, is the most comprehensive entomological

database in Africa. Bayesian spatio-temporal binomial

and zero inflated negative binomial regression models

were developed to produce monthly maps of EIR taking

into account the malaria�climate relation and seasonality

in transmission (35, 36, 59�61).

Geostatistical models have been widely used in malaria

mapping in recent years (3, 38, 52, 62�64). Most of these

analysis involved standard geostatistical models which

are relevant for a moderate number of locations. Com-

putation involved in these models is not feasible for data

collected over a large number of survey locations. In this

study, we used methods proposed by Barnejee et al.

(40) and Finley et al. (42) to approximate the spatial

process using a subset of survey locations selected via

space filling design implemented in R software. Addi-

tive temporal correlations with autoregressive structure

were also incorporated in all models. The predictive

power of the model suggests good performance of the

spatial correlation approximated from a subset of ob-

served location. That might indicate that the subset

selected was significantly appropriate. This work adds

to the few in literature that indirect evaluates perfor-

mance of using subsets to approximate the spatial process

in real-life field data.

Changes in climate conditions, natural inhabitants and

other human activities, which depend on the environ-

ment, alter the intensity of malaria transmission (21, 65).

Our results depict temporal and seasonal variation in

EIR along the study period and study area. Transmission

was higher during the rainy periods with high tempera-

tures and very low during the dry season or year. Two

species A. funestus and A. gambiae are mainly responsible

for malaria transmission in this region. Differences on

the effect of environmental factors on the mosquito

abundance and SRs of the species were observed. The

population of A. gambiae increases at the onset of heavy

rains while that of A. funestus peaks during the short

rains season. Similar results have been reported in the

Kilombero valley and other areas with similar climate in

Africa and are associated with the preferential conditions

of breeding sites of these species (13, 16, 66�70). A study,

which assessed spatio-temporal variation of EIR in

Navrongo DSS, showed similar patterns of seasonality

Table 2. Overall predicted EIR with the percent attribute of

each species

Period

A. funestus

�A. gambiae A. funestus A. gambiae

Year 1 853.6 582.9 (68%) 270.7 (32%)

Year 2 113.7 88.8 (78%) 24.9 (22%)

Year 3 286.1 107.2 (37%) 178.9 (63%)

Table 3. Distribution of predicted EIR over the RDSS area by Year, N* (%)

Category EIR range Year 1, Na (%) Year 2, N (%) Year 3, N (%)

No 0 4,896 (27.5) 13,124 (73.8) 4,225 (23.8)

Very low �0.0�1 704 (4.0) 1,320 (7.4) 1,286 (7.2)

Low �1�10 4,568 (25.7) 2,081 (11.7) 6,779 (38.1)

Average �10�100 5,377 (30.2) 1,068 (6.0) 4,781 (26.9)

High �100 2,238 (12.6) 190 (1.1) 712 (4.0)

aThe number of households within a specific transmission intensities category.
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that differed by species (28). Highly significant effects

of temperature on the SR and density of A. funestus were

observed. Contrary to A. gambiae which has relatively

exophilic behaviour, this species is strictly endophilic,

which could facilitate choice of conducive a resting

environment favouring the gonotrophic cycle resulting

in higher survival and hence longer infectivity (71�73).

Knowledge of these characteristics can be important for

understanding disease dynamics and for efficient imple-

mentation of interventions (5, 6, 66, 74).

There was considerable variation over short distances

in the intensity of transmission. Small-scale variations in

malaria transmission are common in sub-Saharan Africa

and create complexity in implementing strategies to

combat malaria (8, 28, 59, 75�77). The spatial correla-

tion was still present over a substantial distance and the

spatial variation comprised of about 90% of the total

data variance. The spatial correlation arises partly due to

spatial pattern in environmental drivers of transmission,

partly due to effects of limited mosquito dispersion, and

is also affected by human factors such as migration and

human population densities (41, 42). We had an abun-

dance of data on both mosquito and human populations;

however, due to the relative small DSS area, it is difficult

to separate the contributions of these different factors

to the spatial correlation, which explains the higher

spatial range. Such heterogeneity arising from unmea-

sured factors is captured by the prediction errors.

The methodology described in this study allows esti-

mation of EIR while adjusting for both, temporal and

small area spatial variations in a systematic and thorough

manner. It acknowledges key characteristic of the data,

considers computation difficulties and correlation among

potential drivers of malaria transmission. It could be seen

that the crude EIR were underestimated as compared

to model-based estimations by over 55%. This underlines

the importance of utilizing efficient methodologies while

estimating epidemiological parameters to allow for proper

decisions.

Our formulation allows further expansion and easy

incorporation of other covariates in the main structure

of the model either as specific covariates or their interac-

tion. The complex component of our proposal is how to

separately model SR and density data, incorporate sea-

sonality, choosing environment lags and lastly approxi-

mate the spatial correlation when the large number of

location has been observed. All these have been worked on.

Moreover, DSS sites including Rufiji, collected compre-

hensive records of all-cause and disease mortality in the

human population at the time of this entomological

surveillance. The exposure surfaces estimated using this

approach can be linked to mortality data to assess the

malaria-specific mortality burden. Through that, much

more accurate estimates of the benefits to be gained by

reducing malaria transmission can be estimated than if

it would have been possible from analyses that aggregate

EIR over large areas and time periods or those fitted

assuming normally distributed EIR.
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