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management of RMS and 3 biologically targeted agents 
with novel mechanisms of action, the Wee1 inhibitor 
AZD1775, the tyrosine kinase inhibitor cabozantinib, and 
the proteasome inhibitor bortezomib. All were tested indi-
vidually at clinically achievable concentrations for activity 
in 4 RMS cell lines and then for potential synergy in two-
drug combinations.
Results  We found single-agent activity in five of the agents 
(or their active metabolites) that constitute the standard 
of care in RMS and for AZD1775 with mean IC50 values 
of 207  ng/ml, well below clinically achievable levels. In 
addition, the combination of individual cytotoxic chemo-
therapeutics currently used for RMS demonstrated largely 
synergistic activity with higher, but clinically achievable 
concentrations of AZD1775 in our assays.
Conclusions  Prioritization of chemotherapeutics in RMS is 
possible using an in vitro system that can define novel drug 
combinations worthy of future investigation. AZD1775 
exhibits single-agent activity, as well as synergy with con-
ventional cytotoxic chemotherapy, and is a novel targeted 
agent that warrants further study in RMS.

Keywords  Rhabdomyosarcoma · Combination 
chemotherapy · Clinically achievable concentrations · 
AZD1775 · Cyclophosphamide · Etoposide · Irinotecan

Introduction

Rhabdomyosarcoma (RMS) is the most common soft-
tissue sarcoma (STS) in children and young adults with 
approximately 350 patients diagnosed each year in the 
USA [1]. Treatment is multimodal and includes systemic 
chemotherapy and local control of bulk disease which usu-
ally employs radiation therapy and in certain cases, surgical 
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resection. Outcomes for low- and intermediate-risk RMS 
(typically stratified by stage, surgical resectability, and 
histology) remain favorable with overall survival of 98 
and 79  %, respectively. Patients with high-risk disease, 
as defined by the presence of metastasis, continue to have 
poor outcomes with an overall survival of 56 %, with EFS 
as low as 21 % in certain cases depending on the presence 
of other known poor prognostic indicators [2–9].

Recent strategies to improve outcome for high-risk 
patients have included intensification of systemic chemo-
therapy with interval compression of alkylating agents. 
This approach, evaluated in the Children’s Oncology Group 
Study ARST0431, led to no significant benefit in outcome, 
as compared to prior studies, with a 3-year event-free sur-
vival of 38  % [10]. Novel treatment strategies directed 
against molecular targets are needed in this patient popula-
tion especially as conventional treatment strategies that rely 
on cytotoxic chemotherapeutics are limited [11].

Several agents have been developed which target novel 
and previously unexplored molecular pathways in RMS 
while also demonstrating preclinical activity. Cabozantinib 
(XL184) is a tyrosine kinase inhibitor of the c-MET and 
RET kinase pathway as well as the vascular endothelial 
growth factor receptor 2 (VEGFR2) which impairs tumor 
cell proliferation and angiogenesis [12–16]. In both alve-
olar and embryonal RMS, MET signaling has been found 
to impede myogenic differentiation, promote tumor cell 
proliferation and growth, and increase metastatic potential 
[14, 15]. The proteasome inhibitor, bortezomib, functions 
through inhibition of the 26S proteasome, leading to apop-
tosis, cell cycle arrest, and deregulated NF-KB signaling 
and is currently approved for use in hematologic malignan-
cies [17–20]. In  vitro studies have shown RMS cell lines 
to exhibit increased rates of apoptosis and cell cycle arrest 
when treated with bortezomib both as a single agent as well 
as in combination [19, 20]. AZD1775 is a selective tyros-
ine kinase inhibitor of the Wee1 kinase which regulates the 
cell cycle through phosphorylation and inhibition of cyclin-
dependent kinase 1. The agent has been found to inhibit the 
growth of several sarcoma cell lines of varying histology. 
Furthermore, in osteosarcoma cell lines and patient-derived 
osteosarcoma murine xenografts, the combination of gem-
citabine and AZD1775 was found to demonstrate sig-
nificant synergistic activity. In RMS, the role of the Wee1 
kinase is not yet known [21–26].

We screened 8 drugs as single agents (5 agents known 
to be active in RMS—4HC, an active metabolite of cyclo-
phosphamide, SN-38, the active metabolite of irinotecan, 
etoposide, dactinomycin, and vinorelbine (microtubule 
inhibitor similar to vincristine) and 3 novel agents of inter-
est—cabozantinib, bortezomib, and AZD1775) and in two-
drug combinations using an automated screening method 
developed in our laboratory [27]. The methodology was 

optimized to incorporate clinically achievable drug concen-
trations and lengths of exposure that are possible based on 
human pharmacokinetic data [28]. By using drugs under 
evaluation in active and recently completed pediatric tri-
als and agents with preclinical data documenting activity 
in RMS, we anticipate that we could efficiently develop 
strong preclinical data to help inform additional preclini-
cal work and eventually clinical trials in RMS. The overall 
goal of this study was to identify combinations that exhibit 
in  vitro activity while maintaining synergy and have the 
potential to be studied further in the context of in vivo and 
clinical evaluations.

Materials and methods

Investigational agents

Agents used included both cytotoxic and targeted agents 
(see Supplemental Table S2 for the vendor and catalog 
number). Stock solutions were made for each compound 
in DMSO at 4000× of the highest concentrations used in 
experiments. Chemical structures for all agents are publicly 
available.

Cell culture

We selected two embryonal RMS (ERMS) (RD and SMS-
CTR) and two ARMS cell lines (RH30 and RH41) that are 
well characterized and commonly used in recent studies 
[29]. ERMS cell lines, RD and SMS-CTR, were a gift from 
Dr. Calvin K. Lee at H. Lee Moffitt Cancer Center. ARMS 
lines, RH30 and RH41, were obtained from the Children’s 
Oncology Group Cell Line and Xenograft Repository 
(Texas, USA). Cells were maintained in RPMI with 10 % 
FBS. Cells were grown at 37 °C and 5 % CO2. All cell lines 
tested free of mycoplasma with MycoAlert tests (Lonza 
Rockland, Rockland, ME). Cell line identity was confirmed 
using StemElite ID system (Promega, Madison, WI) using 
the manufacturer’s instructions and the ATCC STR profile 
database.

Single‑agent screening

Human pharmacokinetic data were collected for all agents 
from previously reported phase I studies, using pediatric 
and combination studies when available (Fig.  1a). Sin-
gle-agent activities of a panel of 8 therapeutic candidates 
were characterized with 4 pediatric RMS cell lines (RD, 
SMS-CTR, RH30, and RH41). Dose–response curves 
were obtained for each drug in the panel, and single-agent 
anti-tumor activities were assessed using CellTiter-Glo 
luminescence cell viability assay at 72  h following drug 
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application, a time which was optimized based on cell line 
growth characteristics. The fraction affected (FA) was cal-
culated as FA = 1 − (CT-glo signal with drug treatment)/
(CT-glo signal without drug treatment). This reflects the 
reduction in the cellular metabolism (a correlate of cell via-
bility) due to the drug treatment.

Two‑drug combination screening

A 5 ×  5 checker-board matrix format was used to assess 
all two-drug combinations at five clinically achievable con-
centrations. Notably, these concentrations were selected at 
clinically achievable ranges along a range that allowed for 
less than optimal effect on cells in order to detect synergy. 
A full description of the methods was published previously 
[27]. Briefly, each combination was evaluated at multiple 
drug ratios to identify synergy (Supplemental Table S2). In 
cases where the same dilution factors were used for both 
drugs of the combination, diagonals of the 5 × 5 checker-
board matrix provide the effects of the drug combination 
at constant drug ratio. Full dose–response curves were 
obtained for each individual drug, and the combination 

index (CI) for all combinations was calculated using Cal-
cuSyn 2.0 and custom-designed analysis package based on 
the Chou-Talalay method.

Cell viability assays

The activity levels of single agents and combinations were 
determined by a high-throughput CellTiter-Glo cell via-
bility assay (Promega). Cells (1–2 ×  103) were plated in 
each well of 384-well plates using a Precision XS liquid 
handling station (Bio-Tek Instruments, Winooski, VT) and 
incubated overnight. Drug source plates were prepared in 
96-well Megatiter plates (Neptune Scientific, San Diego, 
CA), and the Precision XS station was used to transfer 
drugs to four replicate wells with an additional four con-
trol wells receiving DMSO vehicle control without drug. 
At the end of the drug incubation period, CellTiter-Glo or 
Caspase-Glo reagent was added to each well at 1:1 ratio 
(v/v) with media. The luminescence of the product of via-
ble cells was measured with a Synergy 4 microplate reader 
(Bio-Tek Instruments). The luminescence data were trans-
ferred to Microsoft Excel to calculate percent viability. 
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Fig. 1   Single-agent activities of 8 therapeutic compounds screened 
against 4 RMS cell lines. a PK and IC50 values of the 8 drug can-
didates for the 4 RMS lines and comparison with clinically derived 
in vivo Cmax values. b Full dose–response curves of the drug candi-

dates demonstrating single-agent cytotoxicity in the 4 RMS cell lines. 
The red lines indicate the in vitro IC50 levels and the black lines indi-
cate the serum Cmax of each drug
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IC50 values were determined using a sigmoidal equilib-
rium model regression and XLfit version 5.2 (ID Business 
Solutions). The IC50 values obtained from single-drug cell 
viability assays were used to design subsequent drug com-
bination experiments. High-throughput two-agent com-
bination screening experiments were performed using a 
5 ×  5 matrix format in 384-well plates to interrogate 25 
individual concentration ratios per combination.

Analysis of additive and synergistic effects 
in combination screening data

For drug combination experiments, the CellTiter-Glo assay 
was used to measure cell viability, with results analyzed for 
synergistic, additive, or antagonistic effects using primarily 
the combination index (CI) method of Chou-Talalay [30] 
with additional supporting analysis from fold of potentia-
tion (FOP). For the CI method, the dose–effect curve for 
each drug was determined based on experimental observa-
tions using the median-effect principle and was compared 
to the effect achieved with the two-drug combination to 
derive a CI value. This method involves plotting dose–
effect curves for each single agent using the median-effect 
equation: fa/fu =  (D/Dm)m, where D =  dose of the drug, 
Dm = dose required for 50 % effect, fa and fu = affected 
and unaffected fractions, respectively (fa =  1 −  fu), and 
m  =  exponent signifying the sigmoidicity of the dose–
effect curve. XLfit computer software was used to cal-
culate Dm and m. CIs used for the analysis of the drug 
combinations were determined by the isobologram equa-
tion for mutually nonexclusive drugs that have different 
modes of action: CI = (D)1/(Dx)1 + (D)2/(Dx)2 + (D)1(D)2/
(Dx)1(Dx)2, where (Dx)1 and (Dx)2 in the denominators 
are the doses (or concentrations) for D1 (Drug1) and D2 
(Drug2) alone that gives x % inhibition, whereas (D)1 and 
(D)2 in the numerators are the doses of Drug1 and Drug2 
in combination that also inhibited x  % (i.e., isoeffective). 
CI calculations were done in custom Microsoft Excel tem-
plates and verified with CalcuSyn 2.0 (Biosoft, Cambridge, 
UK). CI < 1, CI = 1, and CI > 1 indicate synergism, addi-
tive effects, and antagonism, respectively.

Fold-of-potentiation (FOP) analysis was used for com-
bination screening data with non-constant molar ratios 
to demonstrate the enhancement of one drug’s effect by 
another by measuring shift in IC50 [31, 32]. Curve fitting 
for FOP was performed using Prism v6.05 (GraphPad Soft-
ware, La Jolla, CA, www.graphpad.com). Dose–response 
plots for single agents and drug combinations were fitted 
using a four-parameter nonlinear least-squares regression 
model. Curves were extrapolated to relevant maximum and 
minimum response levels.

Cluster analysis

Prior to clustering, the FA and CI data were normalized 
using the Kahen-Yu method: Data are log-transformed 
and converted to a common scale by multiplying the log-
transformed 1-FA by a coefficient of 1/3. Both variables 
were then multiplied by −10. This Kahen-Yu transfor-
mation results in FA and CI values that are suitable for 
concurrent input into the subsequent cluster analysis. 
Cluster analysis was accomplished with the use of Cluster 
3.0 (Stanford University Labs, Stanford, CA). Complete-
linkage unsupervised hierarchical clustering of FA and 
CI values together was performed using uncentered abso-
lute correlation similarity metrics. Java TreeView 1.1.6r4 
(Stanford University Labs) was employed to visualize 
clustered data.

Results

Single‑agent activity against ERMS and ARMS cell 
lines

We first characterized the single-agent activity of a panel 
of 8 therapeutic candidates (Fig. 1a) using 2 ERMS cell 
lines (RD and SMS-CTR) and 2 ARMS cell lines (RH30 
and RH41). Of the 8 drugs in the panel, 5 agents (vinorel-
bine, SN-38, 4HC, etoposide, and actinomycin) were 
included for their known therapeutic activity in RMS 
treatment and 3 agents (cabozantinib, bortezomib, and 
AZD1775) were chosen for evidence of either a rational 
therapeutic target or preclinical activity in sarcomas. We 
generated the dose–response curves for each drug on 
each cell line to assess the sensitivity of the RMS cells 
to the compounds (Fig. 1c, Supplemental Fig. 1). CellTi-
ter-Glo luminescence assay was used to assess the anti-
tumor activities by measuring the ATP levels, an indica-
tor of cellular metabolism, at 72 h post-drug application. 
We calculated the IC50s from the dose–response curves 
and compared them to previously reported serum Cmax 
levels in clinical studies as a preliminary indicator of the 
feasibility of these drugs for RMS in the clinical setting 
(Fig.  1a). Of the 8 drugs we tested, with the exception 
of cabozantinib, all had IC50s well below the reported 
serum Cmax, demonstrating efficacy against RMS cells 
at clinically achievable levels (Fig. 1b). Despite the dif-
ferences in the genetic translocations and clinical pres-
entations that characterize ERMS and ARMS, we did not 
see a significant difference in the sensitivity of the two 
types of RMS cells to the majority of the drugs in our 
panel (Fig. 1b).

http://www.graphpad.com
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Evaluation for active and synergistic combinations

Following characterization of the single-agent anti-tumor 
activities, we used a 5  x  5 checker-board matrix format 
to assess two-drug combinations of the 8 chemotherapy 
agents at 5 clinically achievable concentrations and 9–25 
different drug ratios to evaluate anti-tumor activity and 
identify synergy (Supplemental Table S2). The frac-
tion of cell population sensitive to each drug combina-
tion (FA) was assessed using CellTiter-Glo luminescence 
assay, and the combination index (CI) values for the 28 
two-drug combinations were calculated using CalcuSyn 
2.0 and custom-designed analysis package based on the 
Chou-Talalay method (additional details of the method 
were published in Yu et  al. 2015). We performed clus-
tering analysis on our screening data using the FA and 
CI attributes to highlight drug combinations that could 
potentially be promising for the treatment of pediatric 

RMS (Fig. 2a). The results from our combination screen-
ing indicate that multiple drug combinations involving 
AZD1775 and 4HC produced high FA values and thus 
were very effective in eliminating the RMS cells. How-
ever, while a number of 4HC drug combinations pro-
duced >95  % anti-tumor activities (4HC:bortezomib, 
4HC:cabozantinib, and 4HC:SN-38), they also had CI 
>  1.1, indicating antagonism in the drug pairs. In con-
trast, several AZD1775 drug combinations demonstrated 
both high FA and low CI values, indicating good anti-
tumor activity against the RMS cells and synergy within 
the drug pairs (Fig.  2a). Since each combination was 
assessed at multiple drug levels and drug ratios, we used 
a frequency plot to indicate the percentage of the drug 
pairs that produced good effect levels (at FA > 0.70), as 
well as demonstrated synergy (CI < 0.9) (Fig. 2b) and at 
lower thresholds of activity (FA > 0.5 and CI < 1.1, Sup-
plemental Fig. 2). In addition, FA and CI values of these 

High FALow FA 

Low CI High CI 

Agent Conc 
(ng/ml) RD SMS-CTR RH30 RH41 Average 

Tx1 Tx2 Tx1 Tx2 FA CI FA CI FA CI FA CI FA CI
AZD1775 4HC 500 313 0.86 0.87 0.83 0.64 0.85 0.55 0.98 0.61 0.89 0.60 
AZD1775 Ac�nomycin 500 0.13 0.86 0.88 0.75 0.73 0.82 0.49 0.98 0.50 0.85 0.58 

AZD1775 Bortezomib 500 
1.98 0.87 0.74 0.79 0.71 0.81 0.59 0.99 0.42 0.86 0.57 
2.97 0.87 0.78 0.75 0.85 0.83 0.61 0.99 0.47 0.86 0.64 
4.45 0.87 0.83 0.77 0.87 0.82 0.70 0.99 0.49 0.86 0.69 

AZD1775 Cabozan�nib 500 

125 0.87 0.70 0.72 0.80 0.79 0.57 0.98 0.50 0.83 0.62
250 0.86 0.73 0.78 0.63 0.80 0.57 0.98 0.54 0.85 0.58 
500 0.85 0.81 0.74 0.76 0.81 0.56 0.99 0.45 0.85 0.59 

1000 0.86 0.79 0.77 0.69 0.83 0.54 0.98 0.49 0.86 0.57 

AZD1775 Etoposide 500
19.6 0.88 0.67 0.78 0.65 0.78 0.60 0.99 0.43 0.85 0.56 
78.3 0.88 0.67 0.78 0.63 0.78 0.66 0.99 0.43 0.85 0.57
313 0.88 0.68 0.84 0.46 0.83 0.72 0.99 0.41 0.89 0.53 

AZD1775 SN-38 

250 
1.25 0.82 0.52 0.76 0.38 0.72 0.59 0.90 0.67 0.79 0.55 
2.5 0.84 0.51 0.79 0.35 0.78 0.61 0.91 0.66 0.83 0.54 
5 0.87 0.48 0.84 0.30 0.84 0.68 0.93 0.62 0.87 0.53 

500 

0.31 0.86 0.73 0.84 0.48 0.83 0.50 0.99 0.44 0.88 0.47 
0.63 0.87 0.72 0.87 0.40 0.84 0.51 0.99 0.39 0.90 0.43 
1.25 0.87 0.72 0.89 0.36 0.86 0.50 0.99 0.43 0.91 0.43 
2.5 0.89 0.63 0.91 0.30 0.88 0.51 0.99 0.44 0.93 0.42 
5 0.92 0.55 0.92 0.29 0.94 0.37 0.99 0.38 0.95 0.35 

AZD1775 Vinorelbine 

250 

0.25 0.83 0.53 0.79 0.44 0.74 0.35 0.98 0.27 0.84 0.35 
0.5 0.83 0.61 0.79 0.58 0.73 0.35 0.98 0.30 0.83 0.41 
1 0.84 0.73 0.83 0.68 0.75 0.34 0.98 0.26 0.85 0.42 
2 0.87 0.87 0.88 0.78 0.79 0.29 0.99 0.23 0.88 0.43 

500 
0.25 0.85 0.85 0.83 0.59 0.78 0.60 0.99 0.41 0.87 0.53 
0.5 0.86 0.86 0.86 0.60 0.79 0.56 0.99 0.42 0.88 0.53 
1 0.88 0.88 0.87 0.73 0.80 0.55 0.99 0.36 0.88 0.55 

FA CI 
Strong 

Synergism 
Synergism Antagonism >85% 50% <15% 

c 
0 10 20 30 40 50

Ac�nomycin D & 4HC

AZD1775 & 4HC

AZD1775 & Ac�nomycin D

AZD1775 & Bortezomib

AZD1775 & Cabozan�nib

AZD1775 & Etoposide

AZD1775 & Vinorelbine

Bortezomib & 4HC

Cabozan�nib & 4HC

Etoposide & 4HC

SN-38 & 4HC

Vinorelbine & 4HC

Frequency (%) 

FA>0.70

CI<0.90

Cabozan�nib & SN-38 

AZD1775 & SN-38 

a 

b 

High FA
High Synergy
(AZD1775 Combos;
see Fig2c)

High FA
Low Synergy

(4HC Combos)

RH30
RH41

RD
SMS-CTR

RH30
RH41

RD
SMS-CTR

Fig. 2   Combination screening results. a Clustering results showing 
top combination picks based on FA. b Frequency plot showing the 
combinations that demonstrated good efficacy (FA > 0.75) as well as 

synergy (CI < 0.7) and/or additivity (CI < 1.1). c FA and CI values for 
the top combinations selected using the clustering technique



318	 Cancer Chemother Pharmacol (2016) 78:313–323

1 3

combinations in all 4 RMS cell lines are summarized in 
Fig. 2c (complete screening results are provided in Sup-
plemental Table S1).

Combination of AZD1775 with alkylating agent, 4HC

Combination of 2500  ng/ml 4HC with varying levels of 
AZD1775 (32–500 ng/ml) produced FA values between 90 
and 100 % (Fig. 3a) while demonstrating synergy (CI < 0.9) 
(Fig.  3b). Isobolograms at the ED90 level, the concentra-
tions necessary to reduce the measured viability by 90 % 
in a given cell line at a given drug ratio, of the combination 
at 1:20, 1:10, and 1:5 drug ratios (AZD1775:4HC) confirm 
the synergistic interactions between the two drugs (Fig. 3c). 
This synergy results in a leftward shift in the dose–effect 
curve of the combination and a respective 1.8- and 2.0-fold 
reduction in the IC50s of AZD1775 and 4HC in the combi-
nation compared to that of single agent alone (Fig. 3d). The 
CI–FA plot further demonstrates that synergy is observed at 
higher FA and the robustness of this response in the 4 RMS 
cell lines used (Fig. 3e).

Combination of AZD1775 with topoisomerase 
inhibitors SN‑38 and etoposide

Combinations of AZD1775 with the two topoisomerase 
inhibitors on our panel (etoposide and SN-38, the active 
metabolite of irinotecan) produced similar results in cyto-
toxicity and synergy, potentially pointing to the robustness 
of a combination with these two types of agents against 
RMS cells (Figs.  4, 5). In both instances, the best results 
were achieved when AZD1775, at 250 and 500  ng/ml, 
was combined with varying concentrations of the latter 
(Figs. 4a, 5a). However, the combination of AZD1775 with 
SN-38 demonstrated synergy across a broader range of 
drug ratios and FA values. AZD1775 and SN-38 were cyto-
toxic against 70–95 % of RMS cells with CI values ranging 
from 0.3 to 0.9 and produced a respective 2.4- and 2.3-fold 
reduction in the IC50s of AZD1775 and SN-38 in the com-
bination compared to that of single agent alone (Fig. 4b, d). 
Isobolograms at the ED90 level for 50:1, 100:1, and 200:1 
(AZD1775:SN28) drug ratios confirm the synergistic inter-
actions between the two drugs (Fig. 4c). Furthermore, the 
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CI–FA plot demonstrates that synergy is observed through-
out the range of FA values, with slight increases in synergy 
at the higher FA values (Fig. 4e). Etoposide and AZD1775 
fold-of-potentiation graphs also demonstrated increased 
cytotoxicity in combination (Fig. 5d).

Combination of AZD1775 with microtubule inhibitor, 
vinorelbine

Finally, synergy was also detected when combining 
AZD1775 with vinorelbine, an inhibitor of microtubule 
assembly, where the combination demonstrated strong syn-
ergy (CI < 0.6) and high efficacy against the RMS cells (FA 
range 83–91 %) (Fig. 6a, b). Isobolograms of the combina-
tion at the ED95 level showed synergy for drug ratios at 
125:1, 125:2, and 250:1 (AZD1775:vinorelbine) (Fig. 6c). 
The dose–effect curve for the combination demonstrated 
a 1.2- and 3.0-fold reduction in the IC50s of AZD1775 
and vinorelbine, respectively (Fig.  6d). Interestingly, the 
CI–FA plot for this combination showed a difference in 
the response of the two ARMS lines, where RH30 demon-
strated synergy across a broader range of FA values than 

the other 3 cell lines (Fig. 6e). However, this combination 
was synergistic in all RMS lines at FA > 0.8.

Discussion

Our results confirm that RMS cell lines are sensitive to 
multiple cytotoxic agents commonly used in frontline 
therapy including cyclophosphamide, dactinomycin, etopo-
side, irinotecan, and vinorelbine. We also found that cabo-
zantinib, bortezomib, and AZD1775 exhibit robust activity 
in vitro both alone and in combination similar to conven-
tional agents.

The most robust combinations as defined by producing a 
high FA value while maintaining a synergistic CI included 
the Wee1 kinase inhibitor, AZD1775. Combinations that 
employed a proteasome inhibitor, bortezomib, and a tyros-
ine kinase inhibitor, cabozantinib, also demonstrated activ-
ity by FA measurements, but with CI  >  1.1 indicating 
antagonism with standard agents.

Both the mechanism of AZD1775 and a review of the 
literature support its use as an agent in combination with 
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conventional chemotherapy in RMS, which may explain 
its high cell kill as measured by FA while maintaining 
synergy. The Wee1 kinase maintains cells in G2/M arrest, 
providing time for DNA repair prior to mitosis. When 
the Wee1 kinase is inhibited, CDK1/2 activity proceeds 
unchecked, and cells progress prematurely through G2/M 
leading to mitotic progression, DNA strand breaks, mitotic 
catastrophe, and cell death [21, 22]. In addition to growth 
inhibition of several sarcoma cell lines, AZD1775 in com-
bination with gemcitabine demonstrated synergistic activ-
ity in osteosarcoma cell lines and patient-derived osteosar-
coma murine xenografts. Specifically, the agents led to a 
more significant delay in tumor growth and smaller tumors 
in combination than when either agent was given alone 
[23]. It is postulated that the combination of this agent 
with conventional chemotherapy potentiates the DNA dam-
age exerted by standard cytotoxics by impeding this criti-
cal cell cycle checkpoint [33]. Certainly, our data confirm 
the activity of AZD1775 in combination with alkylating 
agents, topoisomerase inhibitors, and microtubule inhibi-
tors in RMS in vitro. In RMS, the impact of Wee1 kinase 

inhibition is not yet known though the completion of a 
phase I trial demonstrating good tolerance will allow for 
more robust trials with this agent [25, 26].

Based on the promising in  vitro data, there is strong 
interest in further development of AZD1775 in the pediatric 
setting. The Children’s Oncology Group (COG) is currently 
studying the agent in two phase I trials—one that is evalu-
ating the agent in combination with radiation therapy for 
patients with newly diagnosed diffuse intrinsic pontine gli-
oma (NCT01922076) and one that is evaluating the agent 
in combination with irinotecan in patients with refractory 
solid tumors (NCT02095132). There remains high interest 
in this agent for patients with RMS as well. Evaluating the 
addition of AZD1775 to conventional chemotherapy is con-
sistent with the overall strategy of the COG’s Soft Tissue 
Sarcoma Committee to conduct randomized phase II stud-
ies in patients with metastatic rhabdomyosarcoma to iden-
tify agents worthy of larger phase III studies.

Despite the promising results seen in this study with 
AZD1775 especially in combination with 4HC, SN-38, 
and vinorelbine, several limitations exist. We recognize 
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that for some agents, serum levels may over-represent 
agent delivery to tumor cells or in other situations may 
underestimate agent delivery based on either conditions 
in the tumor or the microenvironment. Unfortunately, 
intratumoral concentrations of many agents are not avail-
able. We also recognize that not all agent effects can be 
determined in  vitro with stromal, vascular, and immuno-
logic activities being some examples of activities not rep-
resented with our system. For example, it is possible that 
our observation of low cabozantinib activity is due to the 
inability of the cell culture model to fully recapitulate 
the complex RMS tumor microenvironment in  vivo, and 
thus is not able to fully assess the potency of this drug. 
Importantly, we acknowledge that this system is intended 
to explore a number of agents and combinations that 
could not reasonably be investigated in patients or animal 
models and acknowledge it is yet to be proven that these 
methods of incorporating clinically achievable concentra-
tions will be more informative for clinical translation than 
prior in vitro studies that do not consider human pharma-
cokinetic data. While activity was maintained across both 
ARMS and ERMS cell lines, the results, both alone and 

in combination, should ultimately be confirmed in other 
models including possibly an in  vivo model or a clinical 
trial in patients with RMS.

Despite the limitations of the system, our data provide 
support for further development of AZD1775 in RMS, 
especially in combination with cytotoxic chemotherapy 
going forward and especially for patients with high-risk 
or recurrent disease who have a dismal prognosis that has 
not improved over several decades despite multiple clini-
cal trials. Furthermore, this in vitro system represents an 
efficient method to rapidly screen novel agents in com-
bination and prioritize combinations that should be con-
sidered for additional evaluation in rare diseases such as 
RMS.
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