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Macrophages are innate immune
cells that derive from circulating

monocytes, reside in all tissues, and par-
ticipate in many states of pathology.
Macrophages play a dichotomous role in
cancer, where they promote tumor
growth but also serve as critical immune
effectors of therapeutic antibodies. Mac-
rophages express all classes of Fcg recep-
tors, and they have immense potential to
destroy tumors via the process of anti-
body-dependent phagocytosis. A number
of studies have demonstrated that macro-
phage phagocytosis is a major mechanism
of action of many antibodies approved to
treat cancer. Consequently, a number of
approaches to augment macrophage
responses to therapeutic antibodies are
under investigation, including the explo-
ration of new targets and development of
antibodies with enhanced functions. For
example, the interaction of CD47 with
signal-regulatory protein a (SIRPa)
serves as a myeloid-specific immune
checkpoint that limits the response of
macrophages to antibody therapies, and
CD47-blocking agents overcome this
barrier to augment phagocytosis. The
response of macrophages to antibody
therapies can also be enhanced with engi-
neered Fc variants, bispecific antibodies,
or antibody-drug conjugates. Macro-
phages have demonstrated success as
effectors of cancer immunotherapy, and
further investigation will unlock their
full potential for the benefit of patients.

Macrophages and cancer
immunotherapy

Cancer immunotherapy is emerging as
one of the most promising areas of cancer

research and treatment.1,2 Overall, the
goal of cancer immunotherapy is to stimu-
late a patient’s immune system to recog-
nize cancer cells as foreign and attack
them. A number of recent advances have
sparked an unprecedented interest in the
field. In particular, breakthroughs have
been made using therapies that augment
T cell responses to tumors. These include
chimeric antigen receptor (CAR) T cells
and immune checkpoint inhibitors, such
as antibodies targeting cytotoxic T-lym-
phocyte-associated protein 4 (CTLA-4) or
the programmed death (PD)-1/PD-ligand
1 axis.3,4 Three immune checkpoint
inhibitors (ipilimumab, pembrolizumab,
nivolumab) have recently been approved
for melanoma, and studies applying them
to other cancers are advancing rapidly.

In contrast to efforts targeting the
adaptive immune system, few therapies
have been aimed at stimulating the mye-
loid arm of the immune system to attack
cancer. The myeloid immune lineage con-
sists primarily of granulocytes and mono-
cytes, the latter of which can differentiate
into macrophages or dendritic cells. Mac-
rophages in particular are poised to be tre-
mendous effectors of cancer
immunotherapy. These innate immune
cells reside in tissues throughout the
body,5 and specialized tissue-specific mac-
rophage populations exist, e.g., Kupffer
cells in the liver, microglia in the brain,
osteoclasts in bone, and alveolar macro-
phages in the lungs. Macrophages are
capable of performing phagocytosis, a pro-
cess that involves the engulfment and deg-
radation of material such as debris, dead
cells, or pathogens. They recognize mate-
rial for engulfment by pattern recognition
receptors, scavenger receptors, and anti-
body fragment crystallizable (Fc)

Keywords: ADCP, antibodies, cancer,
CD47, Fc receptor, immune checkpoint,
immunotherapy, macrophages, phagocy-
tosis, SIRPa

Abbreviations: Fc, fragment crystallizable;
FcgR, Fcg receptors; CD, cluster of dif-
ferentiation; SIRPa, signal-regulatory
protein a; ADCC, antibody-dependent
cell-mediated cytotoxicity; ADCP, anti-
body-dependent cellular phagocytosis;
NK, natural killer; M-CSF, macrophage
colony stimulating factor; IgG, immuno-
globulin G; HER2, human epidermal
growth factor receptor 2; EGFR, epider-
mal growth factor receptor; GM-CSF,
granulocyte-macrophage colony stimulat-
ing factor; HSC, haematopoietic stem
cell; AML, acute myelogenous leukemia;
ITIM, immunoreceptor tyrosine-based
inhibitory motif; SHP, Src homology 2
domain-containing phosphatase; ITAM,
immunoreceptor tyrosine-based activation
motif; CLL, chronic lymphocytic leuke-
mia; BTK, Bruton’s tyrosine kinase;
ADC, antibody-drug conjugate

© Kipp Weiskopf and Irving L Weissman
*Correspondence to: Kipp Weiskopf; Email:
kippw@stanford.edu
Submitted: 01/04/2015
Revised: 01/15/2015
Accepted: 01/15/2015

http://dx.doi.org/10.1080/19420862.2015.1011450

This is an Open Access article distributed under the
terms of the Creative Commons Attribution-Non-
Commercial License (http://creativecommons.org/
licenses/by-nc/3.0/), which permits unrestricted
non-commercial use, distribution, and reproduction
in any medium, provided the original work is prop-
erly cited. The moral rights of the named author(s)
have been asserted.

www.tandfonline.com 303mAbs

mAbs 7:2, 303--310; March/April 2015; Published with license by Taylor & Francis Group, LLC
PERSPECTIVE

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/


receptors.6 Macrophages participate in
many states of pathology, including infec-
tion, inflammatory disease, wound heal-
ing, and cancer.7

The complex relationship between
macrophages and tumors obscures the
potential that macrophages have to act as
immune effectors. Macrophages are often
found in high numbers within tumors,
and a number of studies have found the
degree of macrophage infiltration corre-
lates with poor prognosis across many dif-
ferent types of cancer.8-13 At baseline,
macrophages may promote tumor growth
and dissemination by supporting angio-
genesis, performing matrix remodeling,
and secreting growth factors and immuno-
suppressive cytokines.14 These “tumor-
associated macrophages” have been con-
trasted with pro-inflammatory or
“classically activated” macrophages that
attack pathogens.15 As a result, some ther-
apies have been designed to deplete mac-
rophages in tumors.16

Natural killer (NK) cells have classi-
cally been described as the primary

immune effectors of antibodies therapies
due to their involvement in the process of
antibody-dependent cell-mediated cyto-
toxicity (ADCC). However, macrophages
are crucial to the efficacy of many antibod-
ies because they perform antibody-depen-
dent cellular phagocytosis (ADCP)
(Fig. 1A). Macrophages express all classes
of Fcg receptors (FcgR), in contrast to
NK cells which primarily express
FcgRIIIa.17,18 The contribution of macro-
phages has been marginalized in the past
because they are more difficult to study
compared to NK cells or other peripheral
blood leukocytes. Macrophages do not cir-
culate in the bloodstream; hence they can-
not be purified expediently in large
quantities. Instead, macrophages must be
differentiated ex vivo from circulating
monocytes by culturing for a week or lon-
ger in the presence of human serum or
growth factors such as macrophage colony
stimulating factor (M-CSF).19,20 More-
over, macrophage-mediated cytotoxicity
occurs primarily via phagocytosis,21,22

which is technically challenging to assay

and requires microscopic visualization or
flow cytometry to quantify cellular engulf-
ment. Chromium release assays, the gold
standard for measuring ADCC, are insuf-
ficient for evaluating cytotoxicity by mac-
rophages because macrophages retain the
radioactive probe after phagocytosis.21 For
these reasons, macrophages are underap-
preciated as effector cells that can target
cancer.

Evidence supporting macrophages as
effectors of therapeutic antibodies for
cancer

Nonetheless, macrophage phagocytosis
has been found to contribute to the effi-
cacy of monoclonal antibodies for as long
as they have been investigated as therapeu-
tics. In studies published in the early
1980s, monoclonal antibodies against
tumor antigens were found to stimulate
phagocytosis of cancer cells in vitro,
induce macrophage infiltration into
tumors, and elicit macrophage-mediated
destruction of tumors in mice.23-25 More

Figure 1. Augmenting macrophage responses to therapeutic antibodies. (A) Tumor-binding antibodies stimulate macrophage phagocytosis via Fcg
receptors (FcgR), which is a major mechanism of action of many therapeutic antibodies. (B) The CD47-SIRPa interaction inhibits maximal antibody-
dependent phagocytosis. CD47-blocking therapies (blue antibody) prevent inhibitory signaling from SIRPa to augment macrophage activation.
(C) Tumor-binding antibodies with engineered Fc fragments exhibit enhanced binding to Fc receptors and potently stimulate phagocytosis. (D) Bispecific
antibodies that have dual specificity for tumor antigens and receptors on macrophages can augment phagocytosis and direct macrophage responses
against tumors. “Trifunctional” antibodies have intact Fc fragments that can engage additional Fc receptors as depicted. Antibody-drug conjugates with
immunostimulatory properties (not depicted) also deliver activating stimuli to macrophages.
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recent studies have examined phagocytosis
in response to therapeutic antibodies, such
as the anti-CD20 antibody rituximab. In
vitro, macrophage phagocytosis of lym-
phoma and leukemia cells in response to
rituximab has been demonstrated in a
number of studies using human macro-
phages.26-30 Interestingly, macrophages
polarized toward a tumor-associated state
with M-CSF and IL-10 exhibited greater
phagocytosis of rituximab-opsonized lym-
phoma cells than those polarized toward a
pro-inflammatory state.31 Polarization
resulted in upregulation of multiple Fcg
receptors on macrophages, correlating
with their phagocytic response. Further-
more, all subclasses of human immuno-
globulin G (IgG) are able to induce
human macrophage phagocytosis, as dem-
onstrated using a panel of rituximab var-
iants with identical variable regions but
differing heavy chain isotypes.32 Even
human IgG4, which exhibits less
ADCC,33 has the potential to stimulate
macrophage phagocytosis. This is likely
mediated by its ability to engage Fc recep-
tors that are present on macrophages but
not NK cells. This finding suggests the
majority of tumor-binding antibodies
approved for therapy have the ability to
stimulate macrophage phagocytosis. Anti-
body-dependent phagocytosis of solid
tumors has also been demonstrated in
vitro using anti-human epidermal growth
factor receptor (HER) 2 antibodies against
breast cancer and anti-epidermal growth
factor receptor (EGFR) antibodies for
colon cancer.32,34 As described by Over-
dijk et al. in this issue of mAbs, daratumu-
mab, an anti-CD38 antibody, was found
to induce macrophage phagocytosis of
multiple myeloma cells. Phagocytosis in
response to a number of other investiga-
tional antibodies, such as anti-KIT anti-
bodies for gastrointestinal stromal
tumors,35 has also been observed.

In vivo findings have also demon-
strated a crucial role for macrophages as
effectors of antibodies therapies. In studies
using anti-CD20 antibodies, macrophage
depletion with liposomal clodronate abro-
gated the ability of the antibodies to
deplete normal and malignant B cells.36,37

Similarly, CSF-1op mice, which have
defects in macrophage number and devel-
opment, also had impaired responses to

anti-CD20 antibodies.36 In contrast, the
antibodies remained effective in mice defi-
cient in T and B cells or NK cells, suggest-
ing macrophages are the main effectors of
the antibodies in vivo.36 Studies with
transgenic mice expressing human CD20
have demonstrated that depletion of circu-
lating cells opsonized by anti-CD20 anti-
bodies occurs rapidly in the liver.37 New
efforts using intravital imaging have ele-
gantly demonstrated that these effects are
mediated by Kupffer cells, which immobi-
lize and engulf the opsonized cells soon
after administration of the antibodies.38

Similarly, Kupffer cells eliminated circu-
lating tumor cells and prevented liver
metastases when antibodies were used in
models of colon cancer and mela-
noma.22,39 Investigations of anti-CD142
antibodies for breast cancer showed that
although macrophages supported tumor
growth, they were also essential for the
anti-tumor effects of the antibodies.40

Therefore, macrophages are key effectors
to the efficacy of antibodies in vivo, and
the reticuloendothelial system likely plays
a major role in elimination of circulating
tumor cells that are bound by therapeutic
antibodies.

In clinical investigations, macrophages
are commonly found in tumors in high
numbers.8-13 Studies on Fc receptor poly-
morphisms suggest antibodies have Fc-
dependent mechanisms of action in
patients. In particular, lymphoma patients
with polymorphisms in FcgRIIIa that
confer high affinity binding to antibodies
exhibited greater therapeutic responses to
rituximab.41 While this receptor is
expressed on both NK cells and macro-
phages, polymorphisms in FcgRIIa, a
major mediator of phagocytosis,42 also
correlated with the therapeutic efficacy of
rituximab for lymphoma, as well as cetuxi-
mab for colon cancer and trastuzumab for
breast cancer.41,43,44 Moreover, in lym-
phoma patients treated with conventional
therapy, the degree of macrophage infiltra-
tion correlates with poor prognosis;11

however, macrophage infiltration appears
to be a favorable prognostic indicator
when rituximab is added to conventional
therapy.45 These studies further implicate
macrophages as important effectors for
the therapeutic benefit of antibodies in
patients. Other studies have examined

combinations of antibody therapies with
cytokines. Treatment with granulocyte-
macrophage colony stimulating factor
(GM-CSF), which activates macrophages
and other myeloid cells, enhanced the effi-
cacy of rituximab for follicular lymphoma
and anti-GD2 antibodies for neuroblas-
toma.46,47 As further evidence of the anti-
tumor potential of macrophages in
response to antibody therapies, a Phase 1
clinical trial of agonistic anti-CD40 anti-
bodies demonstrated efficacy against pan-
creatic cancer primarily by macrophage
effector functions.48

The CD47- signal-regulatory protein
a axis: The myeloid-specific immune
checkpoint

A key molecule that governs macro-
phage phagocytosis is CD47, a transmem-
brane protein that is widely expressed on
the surface of many cell types throughout
the body. Oldenborg et al. first identified
a role for CD47 in regulating phagocyto-
sis.49 When the authors purified red blood
cells from CD47-/- mice and transfused
them into wild-type mice, they found that
the CD47-/- red blood cells were rapidly
cleared from the circulation.49 The
method of red blood cell removal was
determined to be phagocytosis by macro-
phages in the spleen. This study demon-
strated that CD47 serves as a “marker of
self” to prevent macrophage phagocytosis.
A role for CD47 in cancer was first identi-
fied from studies of haematopoietic stem
cells (HSCs) and leukemia. HSCs occa-
sionally exit their niches in the bone mar-
row and circulate through the peripheral
blood. To avoid phagocytosis by macro-
phages in the spleen, these circulating
HSCs upregulate CD47 on the cell sur-
face.50 Similarly, acute myeloid leukemia
(AML) stem cells also upregulate CD47,
presumably to avoid phagocytosis by
splenic macrophages similar to normal
HSCs.51 CD47 was evaluated as a puta-
tive therapeutic target on AML using anti-
CD47 antibodies that block the interac-
tion between CD47 and signal-regulatory
protein (SIRP) a, an inhibitory receptor
on macrophages. These antibodies were
able to stimulate macrophage phagocytosis
of AML cells in vitro and exhibit thera-
peutic efficacy against AML in mouse
models.51 A broader role for CD47 in
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cancer was appreciated when CD47
expression was examined on solid tumors
such as ovarian cancer, bladder cancer,
breast cancer, and leiomyosarcoma.52,53

Again, CD47 was highly expressed on
these cancers and treatment with anti-
CD47 antibodies induced macrophage
phagocytosis and stimulated anti-tumor
responses in vivo, showing the broad
promise of targeting the CD47/SIRPa
interaction in cancer. Based on these
results, a humanized anti-CD47 antibody
(Hu5F9-G4) was developed at Stanford
University, and it is now undergoing eval-
uation in a Phase 1 clinical study of
patients with solid tumors (www.clinical
trials.gov identifier: NCT02216409).

CD47 inhibits macrophage responses
to therapeutic antibodies

CD47 acts by sending inhibitory signals
through SIRPa, a transmembrane receptor
that is expressed on macrophages and other
myeloid cells.54-56 SIRPa contains immu-
noreceptor tyrosine-based inhibition
motifs (ITIMs) in its cytoplasmic tail.
When CD47 binds to SIRPa, it causes
phosphorylation of the ITIMs that activate
the Src homology 2 domain-containing
phosphatases SHP-1 and SHP-2.57 The
SHP phosphatases in turn cleave phos-
phate groups from proteins containing
immunoreceptor tyrosine-based activation
motifs (ITAMs) and myosin light chains,
thereby inhibiting pro-phagocytic signal-
ing and preventing rearrangements to the
cytoskeleton that are necessary for phago-
cytosis to occur.57-59 Fc receptors are trans-
membrane proteins with extracellular
domains that bind the Fc region of anti-
bodies and cytoplasmic tails that contain
ITAMs.17 Upon binding to target-bound
antibodies, conformational changes induce
phosphorylation of the Fc receptor
ITAMs, thereby initiating a signaling cas-
cade that promotes phagocytosis. Phos-
phorylation of Fc receptor ITAMs is
balanced by inhibitory signaling from the
CD47-SIRPa axis.60,61 The balance is
likely mediated by SHP-1 and SHP-2
phosphatases that cleave phosphate groups
from ITAMs of the Fc receptors as
described above. In this manner, the
CD47-SIRPa axis serves as a barrier to
antibody-dependent phagocytosis. Based
on these findings, CD47-blocking

therapies were hypothesized to synergize
with anticancer antibodies (Fig. 1B).
Indeed, the combination of CD47-block-
ing antibodies with rituximab exhibited
synergy in vitro and in vivo against lym-
phoma.29 Furthermore, engineered SIRPa
variants, 14 kDa proteins that potently
block CD47 but lack the pro-phagocytic
stimulus of an Fc were evaluated against
cancer.32 They synergized with rituximab,
cetuximab, trastuzumab, and alemtuzu-
mab by augmenting macrophage activity.
Therefore, CD47 is a key regulator of mac-
rophage phagocytosis, particularly when
induced by therapeutic antibodies, and
reagents that target the CD47-SIRPa axis
may act as universal adjuvants to anticancer
antibodies.

Conventional therapies and
macrophage effector functions

Antibody therapies are typically used in
unison with chemotherapeutic agents, and
the effects of chemotherapy on macro-
phage effector functions are not fully
understood. Agents that kill cancer cells
with limited specificity may interfere with
the ability of macrophages and other
immune cells to act as therapeutic effec-
tors. For example, vinca alkaloids may
inhibit phagocytosis due to their effects on
cytoskeletal rearrangement.62 Even tar-
geted therapies can have unanticipated
effects on immune cell functions. Ibruti-
nib, a small molecule inhibitor used for
the treatment of chronic lymphocytic leu-
kemia (CLL) and mantle cell lymphoma,
acts by disabling signals from Bruton’s
tyrosine kinase (BTK). While BTK pro-
motes growth of B cell malignancies, it
also transduces signals downstream of Fc
receptors. As a consequence, ibrutinib
inhibits ADCC and phagocytosis.63,64

Although the addition of ibrutinib to rit-
uximab regimens seems promising in clin-
ical trials,65 the inhibition of Fc receptor
signaling suggests additional mechanisms
to increase NK cell or macrophage func-
tions may be beneficial. When combining
these types of therapies with antibodies, it
may be best to optimize the timing of
treatments to avoid unfavorable
interactions.

On the other hand, chemotherapeutic
agents may stimulate inflammatory
responses that enable the immune system

to respond more effectively to anticancer
antibodies. For example, the efficacy of
doxorubicin was reduced when macro-
phages were inhibited, suggesting this
agent acts in part by stimulating macro-
phage effector functions.66 More recently,
one study examined human leukemia xen-
ografts that were refractory to treatment
with alemtuzumab, a humanized anti-
CD52 antibody.67 The authors found
that cyclophosphamide, a nitrogen mus-
tard chemotherapeutic, stimulated secre-
tion of inflammatory cytokines within the
tumor microenvironment and produced
synergy by increasing antibody-dependent
phagocytosis. It will be important to eval-
uate which chemotherapeutic agents aid
or hinder macrophage phagocytosis in
order to tailor treatment regimens to max-
imize efficacy and specificity against
tumors.

Engineering antibodies to engage
macrophages

Based on the importance of macro-
phages as effector cells, additional efforts
to enhance macrophage responses to anti-
bodies are warranted. One approach is to
alter the binding of antibody Fc fragments
to Fc receptors via molecular engineering
(Fig. 1C). Antibodies have been glycoen-
gineered to lack fucosylation, which
results in greater binding to Fcg receptors.
Consequently, these antibodies exhibit
greater ADCC and phagocytosis, as evi-
denced by studies on obinutuzumab, a
glycoengineered anti-CD20 antibody
approved for the treatment of CLL.68

Other protein engineering efforts have
been aimed at developing Fc variants with
enhanced binding to Fc receptors. Lazar
et al. generated variants of human IgG1
with increased affinity for FcgRIIIa.69

They found that these variants improved
ADCC and macrophage phagocytosis in
response to trastuzumab and rituximab.
In another study, an anti-CD19 antibody
with the same modifications improved
ADCC and phagocytosis in vitro and
enhanced efficacy in xenograft models of
B cell malignancies.70,71 This approach
demonstrated safety and efficacy in a
Phase 1 clinical study.72 Additional engi-
neering efforts identified variants of
human IgG1 with increased binding
to FcgRIIa, a major mediator of
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phagocytosis, leading to increased macro-
phage-mediated destruction.42 Another
interesting approach created hybrids of
IgG and IgA Fc chains, termed “cross-iso-
type” antibodies, that engage both FcaR
and Fcg receptors for enhanced myeloid
effector functions including phagocyto-
sis.73 Conversely, when developing thera-
pies for which immune effector functions
are not desired, the response of macro-
phages must also be considered since they
express all classes of Fcg receptors and
respond to all subclasses of human IgG.
Mutant Fc variants that abolish binding
to all Fcg receptors have been
described.74,75

An alternative strategy to engaging
macrophages has focused on engineering
bispecific antibodies that simultaneously
bind antigens on tumor cells and recep-
tors on macrophages (Fig. 1D). In this
sense, they cross-link macrophages to
cancer cells for enhanced efficacy and
anti-tumor specificity. Many of these
agents have targeted FcgRIIIa, expressed
on NK cells as well as macrophages. An
early attempt at this approach tested an
antibody with dual specificity for HER2
and FcgRIIIa in a clinical study of
patients with HER2C adenocarci-
noma.76 Some signs of efficacy were
observed, but the development of cyto-
kine storm reactions with low dose
administration precluded further inves-
tigation. New bispecifics targeting
FcgRIIIa and CD30 are currently under
development for Hodgkin lymphoma.77

Chemically linked bispecific Fab frag-
ments targeting FcgRI and HER2 have
also been evaluated. This type of thera-
peutic was able to induce phagocytosis
by macrophages in vitro and exhibited
mild benefit in clinical trials.34,78 A
similar bispecific antibody targeting
FcgRI and EGFR was also tested in
clinical trials for solid tumors with min-
imal success.79 The limited success in
these studies targeting FcgRI may be
due to the lack of an appropriate Fc to
stimulate macrophages fully. Although
bispecific antibodies targeting macro-
phages and tumors have not yet demon-
strated sufficient efficacy in clinical
trials, this approach holds much prom-
ise. Additional receptors on macro-
phages should be tested to determine

the safest and most effective way to
engage these immune cells for the bene-
fit of patients.

Macrophage responses to antibody-
drug conjugates

Antibody-drug conjugates (ADCs),
which are tumor-binding antibodies con-
jugated to small molecules, are also emerg-
ing as novel anticancer agents. These
therapeutics function by binding to tumor
antigens and delivering a cytotoxic pay-
load upon antigen internalization. How-
ever, since the antibodies can engage
macrophages and other immune cells via
Fc receptors, the collateral effects on
immune cells must also be considered. In
particular, ADCs that result in phagocyto-
sis may in fact deliver their cytoxic pay-
load to macrophages attacking tumors.
The anti-CD30 antibody brentuximab,
when tested as a naked antibody, was
capable of stimulating phagocytosis and
macrophage functions in vivo.37 When
brentuximab is conjugated to the cyto-
toxin vedotin, the resulting ADC could
incapacitate macrophages and limit their
function. Alternatively, ADCs could be
designed to augment macrophage phago-
cytosis. These could include conjugates to
immunostimulatory agents such as Toll-
like receptor agonists or scavenger receptor
ligands. Antibody conjugation to cyto-
kines or chemokines that increase macro-
phage infiltration or activity could also be
conceived. In one example, an anti-HER2
antibody fused with GM-CSF exhibited
greater in vivo efficacy than the unmodi-
fied antibody.80

Conclusions

Macrophages are important mediators
of the efficacy of many therapeutic anti-
bodies for cancer. Macrophages are often
present in high numbers within the tumor
microenvironment, and tumor-associated
macrophages may promote tumor growth
in the absence of therapeutic intervention.
Nonetheless, these macrophages can
mount robust responses against cancer
when given the appropriate antibody stim-
ulus.31,40,48 Macrophages fail to recognize
tumor cells as foreign due at least in part
to the CD47-SIRPa interaction, a

myeloid-specific immune checkpoint.
Studies with CD47-blocking therapies
demonstrate the potential of macrophages
in tumors, particularly in combination
with tumor-binding antibodies. CD47-
blockade lowers the threshold for macro-
phage phagocytosis, while tumor-binding
antibodies direct macrophage attack
against tumors for greater specificity. Fur-
thermore, macrophage phagocytosis in
response to antibodies may lead to antigen
presentation that initiates long-lasting
adaptive immune responses against
tumors.81 Additional approaches to
engage macrophages in tumors include
engineering Fc fragments for greater bind-
ing to Fc receptors, and the use of either
bispecific antibodies that cross link macro-
phages and cancer cells or ADCs conju-
gated with immunostimulatory agents. By
designing therapies that better engage
macrophages, the full potential of the
innate immune system can be realized for
the benefit of patients.
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