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The present paper gives a new computational framework within which radiative transfer in a varying refractive index biological
tissue can be studied. In our previous works, Legendre transform was used as an innovative view to handle the angular derivative
terms in the case of uniform refractive index spherical medium. In biomedical optics, our analysis can be considered as a forward
problem solution in a diffuse optical tomography imaging scheme. We consider a rectangular biological tissue-like domain
with spatially varying refractive index submitted to a near infrared continuous light source. Interaction of radiation with the
biological material into the medium is handled by a radiative transfer model. In the studied situation, the model displays two
angular redistribution terms that are treated with Legendre integral transform. The model is used to study a possible detection
of abnormalities in a general biological tissue. The effect of the embedded nonhomogeneous objects on the transmitted signal is
studied. Particularly, detection of targets of localized heterogeneous inclusions within the tissue is discussed. Results show that
models accounting for variation of refractive index can yield useful predictions about the target and the location of abnormal
inclusions within the tissue.

1. Introduction

A special attention in diffuse optical tomography is focused
on the development of methods for detection of photons
providing the information concerning optical parameters
of the explored medium. This gives the targets of local-
ized nonhomogeneous inclusion arising in tissues due to
various pathologies, like tumor formation, local increase in
blood volume, and other abnormalities [1–4]. In radiative
transfer theory, the most used parameters in modeling laser
radiation interaction with biological tissue are absorption
and scattering [5–7]. However some other studies evoked
a significant variation of refractive index of abnormal bio-
logical tissues especially in the near infrared range. More
precisely, experimental results [8, 9] showed that the tissue
of malignant tumors could manifest an increase of the
refractive index which can attain until 10% of that of a
normal tissue which encircles them. So, medical imaging
by diffuse optical tomography should take advantage from

the emergence of a third contrast parameter which is the
refractive index. This led to the appearance of a big number
of numerical and fundamental works in the field of radiative
transfer in a varying refractive index biological medium.
While the conventional radiative transfer equation (RTE)
has been widely used to study interaction of near infrared
radiation with biological media, there exist a number of
works dealing with a modified radiative transfer equation
in spatially varying refractive index media [10, 11]. Some
of these papers are interested in varying refractive index
biological tissues [12–14]. In the present paper, our first con-
cern is to contribute to the usability of the radiative transfer
theory in a potential optical tomography setting in medical
imaging. At this level, studying the effect of refractive index
on the transmitted light through a biological rectangular
layer should be crucial. This could improve detectability
of heterogeneous objects in a typical tomography scheme.
However, it is important to note that in a varying refractive
index medium, the rays are not straight lines but curves. So
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even in a rectangular geometry, the varying index radiative
transfer equation displays the classical form of the angular
derivative terms commonly appearing when dealing with
spherical and cylindrical geometries with uniform refractive
index [15–17]. This finding gives rise to the use of Legendre
transform as a manner for modeling these terms. Although
this technique was used by Sghaier et al. [17] in a uniform
refractive index spherical domain as an innovative view to
handle these terms, it prevails as useful in this contemporary
problem. This fact is our second concern in this paper.
So, we present a computational RTE-based model suitable
for basic diffuse optical tomography forward problem with
spatially varying refractive index biological medium. We
treat angular derivative terms by using the Legendre integral
transform technique.We investigate cases concerning optical
tomography applications. Results concerning the effect of the
refractive index variation on the detected signal are shown.

2. Mathematical Model

In this work, the radiative transfer equation in a human
biological tissue is described by using a stationary varying
refractive index RTE [18, 19]
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where

(i) Ψ( ⃗𝑟, ⃗Ω) is the directional energetic radiance at the
spatial position vector ⃗𝑟 = (𝑥, 𝑦, 𝑧),

(ii) 𝑛( ⃗𝑟) is the refractive index distribution,

(iii) 𝜇
𝑎
( ⃗𝑟) and 𝜇

𝑠
( ⃗𝑟) are the absorption and scattering

coefficients, respectively,

(iv) 𝑐 = 𝑐vac/𝑛𝑟 is the ratio of speed of light in a vacuum,
𝑐vac, and the refractive index 𝑛

𝑟
,

(v) the source term 𝑆( ⃗𝑟,
⃗
Ω) is an injected radiance at the

medium’s boundary,

(vi) the phase function 𝑃( ⃗Ω, ⃗

Ω


) describes the probability

that, during a scattering event, a photon with direc-
tion ⃗

Ω

 is scattered in the direction ⃗
Ω.

Equation (1) takes into account the fact that the rays are
not straight lines but curves. It involves terms that illustrate
the expansion or the contraction of the cross section of the
tube of light rays in the medium.

For a two-dimensional problem and in Cartesian coordi-
nate system of the 𝑥-𝑦 plane, the terms due to the refractive
index variation can be expressed as
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where cos𝜑 and sin𝜑 are the Cartesian coordinates of the
unit direction vector in the 𝑥-𝑦 plane. In fact we assume that
the radiance of out of plane directions is negligible. By using
notations 𝜉 = cos𝜑 and 𝜂 = sin𝜑, (2) displays the classical
form of the angular redistribution term commonly appearing
when dealing with spherical and cylindrical geometries with
uniform refractive index [20]
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The angular redistribution terms will be noted
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so (3) becomes
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3. Numerical Method

In our numerical implementation, we use a rectangular
domainwhich is divided into a set of 𝐼×𝐽 elementary uniform
volumes Δ𝑉 = Δ𝑥Δ𝑦Δ𝑧 with a uniform unitary depth (Δ𝑧 =
1). The angular discretization is obtained through a discrete
ordinate technique. This yields a set of𝑀 discrete directions,
𝜑
𝑚
, 𝑚 = 1 ⋅ ⋅ ⋅𝑀 giving a set of angular discrete direction
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), 𝑚 = 1 ⋅ ⋅ ⋅𝑀. An orientation depending

on the incident ray direction is adopted for each cell [7].
Calculations are done by using integration of (1) over an
elementary volume Δ𝑉 for each discrete direction.This gives
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where 𝑔 is the anisotropy factor. If the direction cosines are
positive, the directional radiance is known on the faces 𝑊
and 𝑆 and they are unknown on the faces 𝐸 and 𝑁 of the
(𝑖, 𝑗)-cell and also in the centre 𝑃. Therefore, we need two
complementary relations to eliminateΨ
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andΨ
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; this can

be obtained by using interpolation formula
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where 𝛼 is an interpolation parameter. Using these relations,
(6) becomes
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Theoretically, if we know the solution in the (𝑖, 𝑗)-cell, we
can do calculus over the cells (𝑖 + 1, 𝑗) and (𝑖, 𝑗 + 1) using the
boundary conditions and the following relations:
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If the direction cosines are both positive, we get the
following equation:
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3.1. Numerical Treatment of Angular Derivative Terms with
Finite Legendre Transform. As is explained in [17], we con-
sider the following Legendre transforms:
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So discrete derivative terms in the (𝑖, 𝑗)-cell into the medium
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2

𝑖,𝑗
− 𝑛

2

𝑖−1,𝑗
)𝐷
𝑚,𝑥,𝑖,𝑗

+ Δ𝑦 (𝑛

2

𝑖,𝑗
− 𝑛

2

𝑖,𝑗−1
)𝐷
𝑚,𝑥,𝑖,𝑗

]

+Δ𝑥Δ𝑦(𝑆

𝑘+1

𝑚,𝑖,𝑗
+ 𝜇
𝑠,𝑖,𝑗

𝑀

∑

𝑚

=1

𝑤
𝑚
𝑝
𝑚𝑚
Ψ

𝑘

𝑚

,𝑖,𝑗
)]

× [

Δ𝑦𝜉
𝑚

𝛼

+

Δ𝑥𝜂
𝑚

𝛼

+ Δ𝑥Δ𝑦 (𝜇
𝑎,𝑖,𝑗

+ 𝜇
𝑠,𝑖,𝑗
)]

−1

.

(19)

The iteration process is repeated until a convergence
criterion is attempted. To improve convergence speed, we
use a successive overrelaxation method. So the updated value
Ψ

𝑘+1

𝑚,𝑖,𝑗
is a linear combination of the iterated value Ψ𝑘

𝑚,𝑖,𝑗
and

the previously computed value

(Ψ

𝑘+1

𝑚,𝑖,𝑗
)

updated
= 𝜌Ψ

𝑘

𝑚,𝑖,𝑗
+ (1 − 𝜌)Ψ

𝑘+1

𝑚,𝑖,𝑗
, (20)

where 𝜌 is a relaxation parameter whose value is usually
between 1 and 2. The solution is obtained when the relative
discrepancy value

𝜀 =

Ψ

𝑘+1

𝑚,𝑖,𝑗
− Ψ

𝑘

𝑚,𝑖,𝑗

Ψ

𝑘

𝑚,𝑖,𝑗

(21)

is smaller than a tolerance value. In all our calculus, we have
taken 10−8 as a tolerance value. As initial condition, we take
a field of null radiance. Also, all our calculations are done in
the case of interpolation diamond scheme (𝛼 = 0.5).

If the direction cosines are not both positive, the prece-
dent equations are valid provided that the orientationWESN
of cells is done according to the direction of propagation [7].
In all our investigations, the injected power source is assumed
to be equivalent to a forward collimated monochromatic
intensity placed at a source point on themiddle of the bottom
side of the boundary. Results shown below are obtained by
using a continuous wave source with a uniform equivalent
intensity value of 50mW⋅cm−1.

3.2. Boundary Conditions. On the boundary, the radiance is
the sum of the external source contribution and the partly
reflected radiance due to the refractive index mismatch at the
boundary

(i) Ψ( ⃗𝑟, ⃗Ω) = 𝑆( ⃗𝑟
𝑏
,
⃗
Ω) + 𝑅 ⋅ Ψ( ⃗𝑟,

⃗
Ωref);

(ii) �⃗�
𝑏
⋅
⃗
Ω < 0 and �⃗�

𝑏
⋅
⃗
Ωref = −�⃗�𝑏 ⋅ ⃗

Ω,

where ⃗𝑟
𝑏
is a position on the boundary and �⃗�

𝑏
is an outer

normal unit vector. The reflectivity 𝑅 can be calculated for
each direction using Fresnel’s relations.
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To present our results, we use the detected fluence rate
which is given in a (𝑖

𝑑
, 𝑗
𝑑
)-detector point on the boundary as

Φ
𝑑
=

𝑀

∑

𝑚=1

(1 − 𝑅
𝑚,𝑖
𝑑
,𝑗
𝑑

)𝑤
𝑚
Ψ
𝑚,𝑖
𝑑
,𝑗
𝑑

, (22)

with
𝑅
𝑚,𝑖
𝑑
,𝑗
𝑑

=

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

1

if 𝜑
𝑚
> arcsin(

𝑛air
𝑛
𝑖
𝑑
,𝑗
𝑑

)

1

2

[(

𝑛
𝑖
𝑑
,𝑗
𝑑

cos𝜑
𝑚
− 𝑛air cos𝜑𝑡

𝑛
𝑖
𝑑
,𝑗
𝑑

cos𝜑
𝑚
+ 𝑛air cos𝜑𝑡

)

2

+(

𝑛
𝑖
𝑑
,𝑗
𝑑

cos𝜑
𝑡
− 𝑛air cos𝜑𝑚

𝑛
𝑖
𝑑
,𝑗
𝑑

cos𝜑
𝑡
+ 𝑛air cos𝜑𝑚

)

2

] ,

else,

𝜑
𝑡
= arcsin(

𝑛air sin𝜑𝑚
𝑛
𝑖
𝑑
,𝑗
𝑑

) , 𝑛air ≈ 1.

(23)

Also, we make use of a normalized detected fluence rate
defined as

Φ
𝑁
=

Φ
𝑑

(1/𝐷)∑

𝐷

𝑑=1
𝑤



𝑑
Φ
𝑑

, (24)

where 𝐷 is the number of the detector points on one side
of the boundary and 𝑤



𝑑
is a weighting factor from the

generalized trapezoidal integration rule.
In all calculations, we have used 28 detector points

on each side. Also, all calculus is carried out by using 16
uniformly distributed discrete directions and a space grid of
121 × 121 cells.

4. Results and Discussion

4.1. Continuous Varying Refractive Index Medium. In this
investigation, we study near infrared radiation transport in
a rectangular medium exposed to a continuous collimated
source which is placed on the bottom side of the boundary.
Figure 1 shows the considered medium; it is assumed to
be 2 × 2 cm sized with varying refractive index. Within
the medium, we consider a 𝑥-axis linear refractive index
variation with different gradient values. To show the effect
of the refractive index on detected fluence rate, we have
used a weakly absorbing and forward scattering background
medium whose optical parameters are shown in Figure 1.

Figures 2 and 3 represent the response of the medium
through the detected signal on the top and right side of the
boundary in the case of linear variation of refractive index.
We note that the response of the medium varies linearly
according to the gradient of refractive index. The maximum
transmission moves to regions of height index (Figure 2).
Indeed, according to boundary conditions of the medium
(Descartes Laws) the transmission window increases propor-
tionally of refractive index between the medium and outside
medium (air).

Detector points

Top side

Right side

Source

y

x
1 cm

𝜇s = 25 cm−1

𝜇a = 0.5 cm−1

g = 0.8

n = 0.33 + 𝛿 ×
x

L

Figure 1: A test-medium with background properties and detector
points.
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Figure 2: Response of a continuous varying refractive index
medium detected fluence rate on the top side: gradient effect.

On the other hand, the right side (Figure 3) shows the
response of the medium detected on the right side of the
boundary in the case of linear and parabolic variation,
respectively. The detected fluence rate curves presents distin-
guished effect of refractive index gradient in linear case. The
transmission zone on the boundary increases with decreasing
gradient values. Even though most detected transmission
is obtained near the source, a weak gradient can augment
transmitted radiation relatively far from the sourcewhile high
values of gradient can block transmitted radiation within the
medium.

4.2. Effect of Stochastic Varying Refractive Index. In this
investigation, we keep the same medium precedent, but we
will study the stochastic variation refractive index.We control
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Figure 3: Response of a continuous varying refractive index
medium detected fluence rate on the right side: gradient effect.
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Figure 4: Response of stochastic varying refractive index medium
on the top side.

this variation by uniform random fixing of a given interval.
The other optical properties are the same as in the precedent
investigation. In such cases, there is an obvious effect of
the heterogeneity on the detected signal especially when the
refractive index is increased or decreased by 10% in a stochas-
tic way. The detected signal on different sides of the medium
is shown in Figures 4 and 5. There is a significant effect of
this variation on the detected signal on the top side and
right side, because there is strong perturbation in medium.
These findings highlight the potential of refractive index as
a possible detection parameter of a tumor in a surrounding
safe tissue. These findings open prospects for further study
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Figure 5: Response of stochastic varying refractive index medium
on the right side.

of the effect of local refractive variation in domain and
frequency-domain schemes in diffuse optical tomography.

5. Conclusion

This study attempted to develop a computational way helping
in detection of abnormalities in a biological tissue. This
should enable predictions of eventual tumor existence when
using a diffuse optical tomography scheme. The used model
is based on stationary radiative transfer equation including
a possible continuous and stochastic variation of refractive
index. In particular, computational technique of Legendre
transform is extended to handle angular derivative terms
arising by the varying refractive index consideration. The
obtained computational model is implemented to investi-
gate some practical situations in diffuse optical tomography
(DOT) setting. Obtained results showed that variation of
refractive index can yield useful predictions about the target
and the location of abnormal inclusions within the tissue.
These findings open prospects for further study of the effect
of local refractive variation in time-domain and frequency-
domain schemes in diffuse optical tomography.
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