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Abstract: Studies of the effects produced by the solubilization of hydrophobic substances by micellar
aggregates in water medium are quite important for applications of viscoelastic surfactant solutions
for enhanced oil recovery (EOR), especially in hydraulic fracturing technology. The present paper
aims at the investigation of the structural transformations produced by the absorption of an aliphatic
hydrocarbon (n-decane) by mixed wormlike micelles of cationic (n-octyltrimethylammonium bromide,
C8TAB) and anionic (potassium oleate) surfactants enriched by C8TAB. As a result of contact with
a small amount (0.5 wt%) of oil, a highly viscoelastic fluid is transformed to a water-like liquid.
By small-angle neutron scattering (SANS) combined with cryo-TEM, it was shown that this is due to
the transition of long wormlike micelles with elliptical cross-sections to ellipsoidal microemulsion
droplets. The non-spherical shape was attributed to partial segregation of longer- and shorter-tail
surfactant molecules inside the surfactant monolayer, providing an optimum curvature for both
of them. As a result, the long-chain surfactant could preferably be located in the flatter part of
the aggregates and the short-chain surfactant—at the ellipsoid edges with higher curvature. It is
proven that the transition proceeds via a co-existence of microemulsion droplets and wormlike
micelles, and upon the increase of hydrocarbon content, the size and volume fraction of ellipsoidal
microemulsion droplets increase. The internal structure of the droplets was revealed by contrast
variation SANS, and it was shown that, despite the excess of the cationic surfactant, the radius of
surfactant shell is controlled by the anionic surfactant with longer tail. These findings open a way
for optimizing the performance of viscoelastic surfactant fluids by regulating both the mechanical
properties of the fluids and their clean-up from the fracture induced by contact with hydrocarbons.

Keywords: viscoelastic surfactant solutions; wormlike surfactant micelles; microemulsion; enhanced
oil recovery; hydraulic fracturing

1. Introduction

Many ionic surfactants are able to form very long semi-flexible cylindrical aggregates,
called wormlike micelles (WLMs) [1–3]. Usually, it occurs upon addition of low-molecular weight
salt [4–9] or an oppositely charged surfactant [10–21], which screen the electrostatic repulsion between
charged surfactant head groups. The screening favors closer packing of surfactant ions and decreases the
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energy of cylindrical fragments of micelles as compared to their semi-spherical end-caps, which results
in the growth of micelles in length.

Wormlike surfactant micelles have attracted considerable attention over recent years, which is due
to their remarkable rheological properties [1–3,12]. It was shown that micellar chains can entangle and
form a network, imparting high viscoelasticity to water solutions. Since the WLMs are formed by weak
non-covalent interactions, their viscoelastic properties are very sensitive to various external triggers [1].
Of particular interest is the responsiveness of WLMs to added non-polar substances, for instance,
hydrocarbons. It was demonstrated that hydrocarbons absorbed in the micellar core induce the
transition of WLMs into microemulsion droplets, which is accompanied by a sharp drop of viscosity
by several orders of magnitude and a complete disappearance of viscoelastic properties [22–26].
This behavior inherent to WLMs is of primary importance for oil industry [27–35], since it permits
to clean up the formations from the residuals of surfactants that are left after the treatment of the
well (drilling, fracturing, etc.). As a result of high responsiveness of viscoelastic surfactant fluids to
hydrocarbons, they usually do not require addition of internal breakers [36] (contrary to polymer-based
fluids), since their viscosity is sufficiently decreased upon contact with formation hydrocarbons.
This minimizes contamination of the proppant pack by residues left after incomplete breaking of
the fluid.

The mechanism of single-surfactant ionic WLMs transformation upon absorption of non-polar
substances was studied both experimentally [23,24,31,33,37,38] and theoretically [24]. On an example
of aliphatic hydrocarbons, it was shown that for linear WLMs the solubilization occurs preferentially
in the energetically unfavorable end-caps of the micelles stabilizing them. This induces the shortening
of the micelles and finally the formation of microemulsion droplets [24].

In most of the studies, the resulting microemulsion droplets are always of spherical shape [23,24,39]
because of the domination of the surface tension over all other forces affecting the shape. However,
recently for the first time the formation of non-spherical (ellipsoidal) microemulsion droplets upon
solubilization of oil by WLMs was demonstrated [25]. It occurred when a mixture of cationic
(n-octyltrimethylammonium bromide (C8TAB)) and anionic (potassium oleate) surfactants strongly
differing in the hydrophobic tail lengths was used under conditions, when the longer-chain anionic
surfactant was in excess. It was suggested that in that system the microemulsion droplets of ellipsoidal
shape were formed, because they provided an optimum curvature of the surfactant monolayer both
for long-chain surfactants (in the flatter part of the droplet) and for short-chain surfactants (at the
edges with higher curvature). The formation of non-spherical microemulsion particles may affect the
hydraulic fracturing process. For instance, non-spherical particles can pack more densely and behave
differently, e.g., under the shear flow [40], which occurs during the outflow of the broken fluid upon
the fracture clean-up.

Up to now, in most of the works, the effect of oils on wormlike micelles formed by a single ionic
surfactant (anionic or cationic) have been studied. At the same time, mixed ionic WLMs are now
starting to attract significant attention as fracturing fluids [41–43], especially for use in low-salinity
and high-temperature reservoirs [44], because of their low critical micelle concentrations leading to
lower consumption of surfactants, ultralow interfacial tension, and high oil solubilization. However,
the effect of oils on such mixed micelles has been little studied.

In this article, we investigate the transformation of WLMs to microemulsion droplets for a mixture
of cationic (C8TAB) and anionic (potassium oleate) surfactants strongly differing in the hydrophobic
tail lengths under conditions, when the shorter-chain cationic surfactant is in excess. We show that such
WLMs demonstrate an interesting rheological behavior, combining high viscoelasticity with a very
short relaxation time. We demonstrate that this system forms spontaneously ellipsoidal microemulsion
upon addition of hydrocarbon. In addition, by using small-angle neutron scattering (SANS) with
contrast variation, for the first time we reveal the internal structure of the ellipsoidal droplets.
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2. Materials and Methods

2.1. Materials

Potassium oleate (>98%) from TCI (Tokyo, Japan), n-octyltrimethylammonium bromide C8TAB
(>98%) from ABCR (Karlsruhe, Germany), n-decane (>99%) from Sigma Aldrich (St. Louis, MO, USA)
and potassium hydroxide (>98%) from Acros (Geel, Belgium) were used as received. Solutions were
prepared using distilled deionized water purified by a Milli-Q system (Millipore, Burlington, MA, USA).
D2O from AstraChem (Saint-Petersburg, Russia, 99.9% isotopic purity) and d-decane (Sigma Aldrich,
99% isotopic purity) were used for the preparation of the samples for SANS studies.

2.2. Samples Preparation

First, stock solutions of C8TAB and potassium oleate in water were prepared. The pH of the
solutions was adjusted to 11.0 ± 0.1 by adding potassium hydroxide solution. Then the stock solutions
were mixed in appropriate quantities with 10−3 M KOH (pH 11.0) to get the required final concentration
of the solution and left to equilibrate at room temperature for several days. To investigate the effect of
hydrocarbon, a required quantity of n-decane was added to the surfactant solution, and the resulting
system was mixed by a magnetic stirrer overnight and left to equilibrate for few days.

2.3. Rheometry

The rheological measurements were carried out on a stress-controlled rotational rheometer Physica
MCR 301 (Anton Paar, Gra, Austria) as described elsewhere [45]. For viscous samples with zero-shear
viscosity η0 > 0.1 Pa·s a cone-plate geometry (diameter 40 mm, cone angle 2◦) was used, whereas
for samples with lower viscosity the measurements were performed in double gap coaxial cylinders
(mean diameter 26.4 mm, height 40 mm, gap 0.42 mm). In both cases, a special cover was used
to prevent solvent evaporation during the experiments. Temperature was set at 20.00 ± 0.05 ◦C by
Peltier elements.

In steady shear (static) experiments, the shear stress was varied in the range of 0.005–10 Pa.
The zero-shear viscosity was determined as the value of viscosity on the plateau at low stress.
Oscillatory shear (dynamic) measurements were taken over the angular frequency ω range of
0.4–300 rad/s in the linear viscoelastic regime so that the storage and loss moduli were independent of
deformation amplitude.

2.4. Small-Angle Neutron Scattering (SANS)

SANS experiments were performed at the IBR-2 pulsed reactor, Frank Laboratory of Neutron
Physics, Joint Institute for Nuclear Research (Dubna, Russia) on the YuMO spectrometer with two
ring detectors covering the scattering vectors q dynamical range of 0.005–0.55 Å−1 at 20.0 ± 0.50 ◦C.
The intensity was determined in absolute units (cm−1) employing a vanadium standard. For the
measurements, the solutions were put in Hellma quartz cells. For experiments with D2O and H2O as
solvents, beam paths of 2 and 1 mm were used, respectively.

Primary treatment of the SANS data included corrections for the sample transmission, sample
thickness and electronic noise by SAS program [46–48]. Incoherent (background) scattering was
subtracted from the data by using blank solvents. Fitting of the scattering curves was performed by
the program SasView (http://www.sasview.org/).

Scattering curves in the absence and at small n-decane concentration (21 mM) were fitted by a model
of an elliptical cylinder. Two fitting parameters (equatorial and polar radii of cross-section) were used.
Scattering curves at high-decane concentrations (90 and 210 mM) were fitted by a model of a charged
core-shell ellipsoid (form-factor of a core-shell ellipsoid combined with Hayter–Penfold (Rescaled
Mean Spherical Approximation, RMSA) structure factor). The fitting was performed in the following
way: first, scattering curves at intermediate and high-scattering vectors (q > 0.05 Å−1) were fitted by a
form-factor of a core-shell ellipsoid without structure factor. Four fitting parameters (equatorial and
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polar radii of core, thickness of shell at the equator and at the pole) were used. Then, the geometrical
parameters of the microemulsion droplet were fixed, and fitting by a combination of form-factor and
structure factor was employed. Scattering curves at intermediate n-decane concentrations (35 and
70 mM) were fitted by a mixture of elliptical cylinders and core-shell ellipsoids. No structure factor
was used in this case. Four fitting parameters (equatorial and polar radii of cylinder cross-section,
fraction of cylinders in the mixture, and equatorial radius of ellipsoid core) were used. The ratio of
polar to equatorial radius and shell thickness of ellipsoid were fixed according to the data obtained
from fits at higher n-decane concentrations.

2.5. Cryogenic Transmission Electron Microscopy (Cryo-TEM)

Cryo-TEM experiments were performed in the bright field mode at Titan Krios 60–300 TEM/STEM
instrument (FEI) operated at 300 kV. A spherical aberration corrector (image corrector), a direct
detection camera Falcon II (FEI), and post-column energy filter (Gatan) were used for image acquisition.
An underfocus of the ob jective lens of 2–10 nm was used to achieve phase contrast. For acquisition of
some images, Volta phase plates were additionally used to enhance the contrast. Micrographs were
obtained in low dose mode with a total electron dose of less than 15 e/Å2. Digital Micrograph (Gatan)
and TIA (FEI) software were used for the image processing. For preparation of the cryo-TEM samples
the solution was deposited via the side port of the Vitrobot (FEI) onto the Lacey carbon-coated side
of the 300-mesh copper TEM grid, blotted, plunged into liquid ethane and then transferred to the
microscope for investigation.

3. Results and Discussion

In this article, we study the effect of hydrocarbon—n-decane—on mixed WLMs formed by a
short-chain (C8) cationic surfactant C8TAB and a long-chain (C18) anionic surfactant potassium
oleate. The concentrations of C8TAB and potassium oleate were fixed at 117 and 78 mM,
respectively, which corresponds to the total surfactant concentration of 5.5 wt% and the molar
ratio of C8TAB/potassium oleate equal to 1.5, meaning that cationic surfactant is in excess. Therefore,
the mixed WLMs under study are positively charged.

3.1. Before the Addition of n-Decane

In the absence of hydrocarbon, a network of long entangled mixed C8TAB/potassium oleate WLMs
is formed. This is confirmed by the frequency dependences of the storage (G’) and loss (G”) moduli
(Figure 1a), which represent the viscoelastic behavior typical of wormlike micellar networks [49]:
a high-frequency entanglement plateau is seen at the G’(ω) curve, and a cross-over point between the
curves G’(ω) and G”(ω) is observed. The solution is characterized by rather high zero-shear viscosity
(3 Pa·s) and shear-thinning behavior (Figure 1b) reminiscent of WLMs.

Local cylindrical form of micelles is confirmed by SANS data (Figure 2). The scattering curve in the
absence of n-decane is well-fitted by a form-factor of a rigid elliptical cylinder with radii R1 = 17 Å and
R2 = 26.3 Å (Table 1). The minor radius R1 is comparable to the length of a fully extended potassium
oleate alkyl tail, which is approximately 19 Å, and is 2 times larger than the length of C8TAB tail
(9 Å). Similar situation was observed in negatively charged C8TAB/potassium oleate micelles at molar
ratios of cationic to anionic surfactant lower than unity [12,25]. In the present paper, we demonstrate
that even at the high excess of the short-chain cationic surfactant the cross-section radius of WLMs is
controlled by the length of the longer surfactant tail. The elliptical cross-section of the micelles may
be explained by the tendency of surfactant molecules to maintain optimal curvature in all parts of
the surface of the micelles that leads to a non-uniform distribution and partial segregation of cationic
and anionic surfactants within the cross-section. One can suggest that potassium oleate molecules are
preferentially located at the minor ellipsoid axis, where the curvature is lower and is more favorable
for them. At the same time, C8TAB molecules may be concentrated at the edges of the major axis,
where the curvature is higher.
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at 20 ◦C.
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Figure 2. Scattering curves for 117 mM C8TAB and 78 mM potassium oleate solutions in D2O containing
different amounts of added n-decane indicated in the figure (in mM), at 20 ◦C. Solid lines represent
fits of the scattering curves by models of an elliptical cylinder (0 and 21 mM n-decane), a mixture of
elliptical cylinders and core-shell ellipsoids (35 and 70 mM n-decane) and charged core-shell ellipsoid
(90 and 210 mM n-decane). Parameters of fits are presented in Table 1.
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Table 1. Parameters of aggregates formed in 117 mM C8TAB and 78 mM potassium oleate aqueous
solutions in the presence of different n-decane concentrations obtained from SANS data.

N-Decane, mM Elliptical Cylinder Ellipsoidal Microemulsion Droplet

Fraction in the
Mixture, %

Equatorial
Radius Req, Å

Polar Radius
Rpol, Å

Fraction in the
Mixture, %

Equatorial
Radius of

Core Req, Å

Polar Radius of
Core Rpol, Å

Thickness
of Shell, Å

0 100 17 26.3 - - - -
21 100 19 28.5 - - - -
35 70 20 30 30 14 42 18
70 30 20 29 70 17 51 18
90 - - - 100 21 63 18

210 - - - 100 33 76 18

Micelles with elliptical cross-section were previously observed only in a few surfactant systems,
including cationic/anionic surfactant mixtures (CTAB/sodium octyl sulfate [16], 1-dodecylpyridinium
chloride (C12Pyr)/potassium oleate [50]) and cholesterol-based surfactants with added oils [37].

It should be noted that a deviation of the scattering curves from the rigid elliptical cylinder model
is seen at low scattering vectors q < 0.025 Å−1 (Figure 2), which is most probably due to the intermicellar
interactions, as well as to the micellar flexibility. These effects may be taken into account by the use of
Pedersen–Schurtenberger model for micellar scattering [6], however, due to a limited range of low-q
data and to the fact that C8TAB/potassium oleate micelles are charged and electrostatic interactions
between them are not screened, it is hard to separate the effects of micellar flexibility and intermicellar
interactions. At the same time, information about the elliptical cross-section of the micelles is contained
in the high-q part of the scattering curves, which is not affected by the abovementioned factors, and is
well-fitted by the rigid elliptical cylinder model.

C8TAB/potassium oleate WLMs under study are branched, since, according to the literature
data, the concentration of C8TAB corresponds to the decreasing branch of viscosity curve [12,25].
A similar effect is usually observed for ionic surfactants in the presence of high concentrations of
low-molecular weight salt, also corresponding to the regime where viscosity decreases upon addition
of salt [51]. The presence of branching points is also confirmed by a very short characteristic relaxation
time τ = 0.09 s (determined as τ = 1/ω0, where ω0 is a frequency at which G’ and G” intercept),
since branching points can easily slide along the cylindrical body of the micelles allowing fast stress
relaxation [52]. Branched micelles were previously observed in the mixtures of a similar cationic
surfactant with longer C16 tail (cetyltrimethylammonium bromide, CTAB) and sodium oleate at the
excess of the cationic surfactant [53].

Thus, before the addition of hydrocarbon the C8TAB/potassium oleate solution contains branched
long WLMs that are entangled with each other.

3.2. After the Addition of n-Decane

The effect of different concentrations of hydrocarbon (Ch) on the rheological properties and
structure of C8TAB/potassium oleate micellar network is investigated. As seen from the viscosity
curves (Figure 1b), the viscosity of the solutions continuously decreases upon addition of n-decane,
and at 70 mM of hydrocarbon becomes equal to 0.0013 Pa·s, which is close to the viscosity of water. As a
result, viscoelastic micellar network is transformed into a water-like liquid, and a total drop of viscosity
exceeds 3 orders of magnitude. According to the literature data [24], this can be explained by breaking
of WLMs due to solubilization of hydrocarbon in their micellar cores, and their transformation into
microemulsion droplets. Though this effect is well-known for various wormlike surfactant micellar
systems [22–26], there are almost no studies devoted to hydrocarbon-induced transitions of cationic
WLMs or mixed cationic/anionic WLMs at the excess of a cationic surfactant. As shown above, the latter
case corresponds to specific packing conditions for surfactant molecules, leading to the formation
of worms with elliptical cross-section. Therefore, hydrocarbon-induced transitions and resultant
microemulsion droplets are specific in such systems, as shown below.



Nanomaterials 2020, 10, 2353 7 of 15

Figure 3 presents the dependence of rheological properties of C8TAB/potassium oleate solutions on
the concentration of added hydrocarbon Ch. The dependence of zero-shear viscosity η0 on Ch (Figure 3a)
can be divided into three regions, where the solutions have different properties: (I) “oil-swollen micellar
network”, where the viscosity is rather high (η0 > 1 Pa·s), (II) “breakage of the micellar network”,
where the viscosity drops drastically, (III) “ellipsoidal microemulsion”, where the viscosity is close to
the value of water. Below we will consider all these three regimes in detail.
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Figure 3. Dependences of zero-shear viscosity η0 (a), plateau storage modulus G0 (b), and terminal
relaxation time τ (c) on n-decane concentration for 117 mM C8TAB and 78 mM potassium oleate
aqueous solutions at 20 ◦C. In the case of absence of a well-defined plateau in the second range of
hydrocarbon concentrations, the value of G’ atω = 60 rad/s is used as G0.
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3.2.1. Oil-Swollen Micellar Network

In the first region (at small hydrocarbon concentrations Ch ≤ 21 mM), the viscosity is 3 orders
of magnitude higher than the viscosity of water (Figure 4a), and the solutions possess viscoelastic
properties (Figure 1a) and shear-thinning behavior (Figure 1b). It indicates to the presence of an
entangled micellar network. In this region, the dependences of the rheological parameters on n-decane
concentration are characteristic of branched micelles [25]. First (at Ch < 4 mM), they stay constant,
which is explained by preferential solubilization of hydrocarbon inside the branching points, which are
the most unfavorable points within the micelle in terms of surfactant molecular packing. This increases
the radius of the branching points, making them less energetically unfavorable, but does not change
the scission energy and the length of the micelles, and, consequently, the rheological properties of
the networks [25]. Then (at 4 mM < Ch < 21 mM), zero-shear viscosity (η0), plateau storage modulus
(G0) and relaxation time (τ) start to decrease (Figure 3). This is due to solubilization of hydrocarbon
in the other parts of the micelles, probably, mostly in the micellar end-caps [24], which leads to the
shortening of the micelles and reduction of the rheological properties.
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According to SANS data (Figure 2), in this regime, the oil-swollen cylindrical micelles retain
the elliptical cross-section: at Ch = 21 mM the scattering curve is well-fitted by a model of an
elliptical cylinder with the ratio of polar to equatorial radii close to the value found in the absence of
hydrocarbon (Table 1).

Therefore, in the first region observed at small hydrocarbon concentrations an entangled network
of oil-swollen WLMs with elliptical cross-section persists in the solutions. Addition of hydrocarbon
induces a slight decrease of the rheological properties of the networks.

3.2.2. Breakage of the Micellar Network

In the second region (at intermediate hydrocarbon concentrations: 21 mM < Ch ≤ 70 mM), the effect
of n-decane drastically differs from that observed in the first region. The viscosity drops by 3 orders of
magnitude down to the values close to the viscosity of water (Figure 3a). This is accompanied by a
pronounced decrease of G0 and τ (Figure 3b,c) and further disappearance of viscoelastic properties
and of shear-thinning (Figure 1). Therefore, the network of long interlaced micelles is broken due to
solubilization of hydrocarbon in their cores.

In this region, the scattering curves are no longer fitted by a model of an elliptical cylinder, but are
well approximated by a mixture of elliptical cylinders and ellipsoids (Figure 2). Upon increase of
n-decane concentration, the fraction of ellipsoids in the mixture and their size (both equatorial and polar
radii) increase, while the radii of elliptical cylinders do not change (Table 1). It indicates that cylindrical
micelles are progressively broken into ellipsoidal microemulsion droplets upon addition of hydrocarbon.
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A similar effect has been recently observed by SANS in anionic potassium oleate WLMs [24], but in
that case WLMs with circular cross-section were transformed into spherical microemulsion droplets.

Cryo-TEM micrograph of the solution corresponding to the end of this region (Ch = 70 mM)
confirms the co-existence of cylindrical micelles and small microemulsion droplets (Figure 4a).
For cylinders, multiple branching points are seen, indicating that WLMs remain branched in the course
of the transition to microemulsion. From the cryo-TEM images, the size of microemulsion droplets
may be estimated to be approximately 60 ± 10 Å, which qualitatively coincides with the SANS data
(Table 1). However, this estimation is only qualitative due to the small droplets size and to the use of
underfocus for image acquisition, which affects the visible size of the droplets.

It should be noted that this is the first direct confirmation by cryo-TEM that hydrocarbon-induced
breaking of ionic wormlike micellar network proceeds via co-existence of cylindrical aggregates
and microemulsion droplets. Previously, such a co-existence was observed by cryo-TEM only for a
non-ionic surfactant pentaethylene glycol monododecyl ether (C12E5) in the presence of n-octane,
but the transformation from WLMs to microemulsion droplets was detected upon decreasing both
n-octane content and temperature [54].

Therefore, in the second region, mixed cationic/anionic WLMs continuously transform into
elliptical microemulsion droplets, and upon increase of n-decane content, the fraction of droplets
becomes higher, whereas the fraction of worms diminishes.

3.2.3. Ellipsoidal Microemulsion

In the third region (at high hydrocarbon concentrations Ch > 70 mM), the viscosity of the solutions
is nearly constant (0.0013 Pa·s) being close to the viscosity of water (Figure 3a). According to cryo-TEM
data, all WLMs are disrupted, and only small microemulsion droplets are observed (Figure 4b). The size
of the droplets is estimated to be approximately 80 ± 15 Å.

SANS curves in this range are well-fitted by a form-factor of a core-shell ellipsoid, combined with
a structure factor which accounts for electrostatic repulsion between the droplets that are positively
charged due to the excess of cationic surfactant content over the anionic one. Upon the increase
of n-decane content, the size of microemulsion droplets increases due to solubilization of more
hydrocarbon in their cores (Table 1). This coincides with the increase of the droplets size observed at
the cryo-TEM images.

In contrast to larger emulsion droplets, which require more complicated preparation techniques
and coalesce with time [55,56], the ellipsoidal microemulsion droplets obtained in this work form
spontaneously and are thermodynamically stable [57], which is due to very low interfacial tension at
the oil-water interface [58,59]. Ellipsoidal microemulsion droplets are usually observed for water-in-oil
(W/O) microemulsions [60,61], but there are only several examples of oil in water (O/W) ellipsoidal
microemulsion droplets discovered experimentally up to date [62,63]. Recently, ellipsoidal O/W
droplets have been treated theoretically [64], and their existence in some systems has been predicted
by molecular dynamics simulations [65].

In the present paper, the internal structure of ellipsoidal microemulsion droplets was for the
first time investigated in detail by contrast variation SANS (Figure 5). For this, solutions were
prepared with H2O or D2O as a solvent, and hydrogenated or deuterated n-decane as a hydrocarbon.
The surfactants were always hydrogenated. In all cases, a model of a charged core-shell ellipsoid
was implied, and scattering-length densities (SLDs) of the core, shell and surrounding solvent were
varied accordingly. In the case of D2O and d-decane, the scattering curve is well approximated by
scattering from an elliptical shell (Figure 5) with minor corrections due to the differences in SLDs of
d-decane and D2O. For D2O and h-decane, the scattering is reminiscent of an ellipsoid, being the whole
microemulsion droplet, with minor corrections due to its core-shell structure arising from different
SLDs of h-decane and surfactants. For H2O and d-decane, the scattering is of a smaller ellipsoid,
which represents the deuterated hydrocarbon droplet, slightly corrected by a core-shell structure due
to different SLDs of surfactants and H2O.
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Table 2. Geometrical parameters of elliptical microemulsion droplets formed in 117 mM C8TAB, 78 mM
potassium oleate, and 210 mM of n-decane aqueous solutions obtained from SANS data.

Solvent Hydrocarbon Equatorial Radius
of Core Req, Å

Polar Radius of
Core Rpol, Å

Thickness of
Shell, Å

H2O d-decane 35 77 18
D2O h-decane 33 76 18
D2O d-decane 29 73 20
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For all three contrasts used, consistent geometrical parameters of the ellipsoids were obtained
(Table 2), meaning that similar microemulsion droplets are formed when hydrogenated or deuterated
compounds are used. The thickness of the shell is equal at the equator and at the pole (18–20 Å),
and is close to the length of fully extended potassium oleate alkyl tail (19 Å). The core is a prolate
ellipsoid with the ratio of polar to equatorial radii Rpol/Req ≈ 2.5. These data suggest the following
structure of the ellipsoidal microemulsion droplet (Figure 6): the core is an ellipsoidal droplet of
hydrocarbon, which is surrounded by a mixed surfactant monolayer with constant thickness. In order
for the non-spherical form of the droplet to be stabilized, a non-uniform distribution of cationic and
anionic surfactants inside the layer should be realized. Since the thickness of the layer is uniform and is
determined by longer oleate alkyl tails, one should expect that potassium oleate molecules are located
both at the equator and at the poles. However, the curvature of surfactant layer is higher at the poles,
which, from the point of view of surfactant packing, is more preferential for C8TAB molecules having
shorter tail and bulkier polar head group. At the same time, the curvature is lower at the equator,
which is favorable for oleate molecules characterized by longer tail and smaller head group. Therefore,
C8TAB molecules may be preferentially concentrated at the poles stabilizing them, and more oleate
molecules reside at the equator. From the volume of the core, the number of n-decane molecules
solubilized in one microemulsion droplet is estimated to be at least 880, which is nearly 10-fold higher,
than for n-dodecane/oleate microemulsion in the presence of KCl instead of C8TAB [24]. Thus, due to a
rather large volume of the core, which is a result of the droplet being anisotropic and elongated in one
direction, such microemulsions stabilized by mixed cationic/anionic surfactants have an advantage of
higher payloads of hydrophobes.
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Thus, in cationic/anionic surfactant mixtures, non-spherical forms of microemulsion droplets can
be stabilized, because different surfactant species can easily re-distribute along the microemulsion
surface and adapt to different curvatures at various points of non-spherical particle. This differs
spontaneously formed microemulsions from larger emulsions, since the former are characterized by
rather low interfacial tension of the surfactant monolayer, and, thus, smaller penalty for stabilizing the
droplets of non-spherical shape, which have higher surface to volume ratio as compared to spherical
droplets [66].

4. Conclusions

This paper demonstrates that in the mixture of two oppositely charged surfactants, strongly
differing in the length of hydrophobic tails, a network of entangled wormlike micelles is formed at the
excess of the short-chain cationic surfactant. As a result, the solutions possess unusual rheological
behavior: high viscosity and pronounced viscoelastic properties combined with a very short relaxation
time. Structural studies show that the cross-section of cylindrical micelles is not circular, but elliptical.
Moreover, the shape of the microemulsion droplets that are formed as a result of the solubilization
of a hydrocarbon in the micellar core is not spherical, but ellipsoidal. This unusual shape provides
an optimum curvature of the surfactant monolayer both for long-chain surfactants (in the flatter
part of the aggregate) and for short-chain surfactants (at the edges with higher curvature). At the
same time, the opposite charge of the surfactants heads inhibits total segregation of both types of
surfactants, which is evident from the constant thickness of the surfactant monolayer surrounding the
hydrocarbon droplet.

The shape and size of the microemulsion droplets are of primary importance for many applications
of surfactants in oil recovery. In dilute systems, most often the microemulsion droplets have a
spherical shape because of surface tension, which dominates over all other forces at this size scale.
Here, we demonstrate that in the mixture of two oppositely charged surfactants, strongly different
in the length of hydrophobic tails, non-spherical (namely, ellipsoidal) thermodynamically stable
microemulsion droplets are formed spontaneously. The stability of the droplets is important during
the outflow of the broken fluid from the fracture, in order to prevent phase transformations which may
occur under flow [67] and affect the clean-up process.
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Moreover, usually, special methods like microfluidics, arrested coalescence, asymmetric polymer
solidification, and evaporation-driven clustering [68] are used to get non-spherical emulsion droplets.
Here, we demonstrate that simple mixing of surfactants strongly differing in the hydrophobic tail
lengths provides an easy way to obtain spontaneously formed ellipsoidal droplets.

Such stable non-spherical droplets can be used a template for the synthesis of non-spherical
nanoparticles, which may be further added to WLM solutions in order to increase their
viscoelasticity [69,70]. Ellipsoidal nanoparticles have an advantage over spherical ones due to their
high surface area, and, therefore, stronger interaction with WLMs. Therefore, the results of this study
are quite promising for optimizing the application of mixed cationic/anionic WLMs in various fields,
including oil recovery and template-assisted synthesis of non-spherical nanoparticles.
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