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A B S T R A C T

Increasing evidence indicates that RNA modifications are misregulated in human cancers, which 
might be optimal targets of cancer therapy. However, important RNA regulators in kidney cancer 
still need further exploration. In this study, we collected regulators representing different types of 
RNA modification and identified the prognosis-related RNA regulators in kidney cancer patients. 
We further constructed a 4-gene RNA regulators signature and index called prognosis-related RNA 
regulators index (PRRI) by the Lasso-Cox regression algorithm. We found that PRRI could pre-
cisely predict prognosis of patients in the KIRC training (AUC at 3-/5-/7-years = 0.7132/0.7220/ 
0.7283) and testing cohorts (AUC at 3-/5-/7-years = 0.7141/0.7403/0.7305) and two indepen-
dent RCC cohorts - E-MTAB-1980 (AUC at 3-/5-/7-years = 0.7036/0.7385/0.7143) and KIRP 
(AUC at 3-/5-/7-years = 0.6203/0.6365/0.6941). Moreover, the high PRRI group showed a worse 
clinical outcome than the low PRRI group. PRRI demonstrated strong robustness and was related 
to histological grade and pathologic stage, which was also found to be an independent prognosis 
factor when other clinical variables adjusted it. We further found several immune-related path-
ways differentially enriched in the high or low PRRI group. The regulation of T cell migration, 
which has been proven to be an immunosuppressive cell, shows a high enrichment in the high 
PRRI group. Further analysis reveals that PRRI also shows a highly positive correlation with the 
activity of Tregs. TIDE analysis and two independent immune therapy cohorts revealed that the 
high PRRI group might resist immune therapy, while the low PRRI group might benefit from the 
treatment, indicating that PRRI could be a marker for predicting immune therapeutic response. 
All in all, we determined 4 potentially essential RNA regulators and illustrated their mechanisms 
concretely. Furthermore, we constructed a 4-gene index called PRRI to predict patients’ outcomes 
and immunotherapy response.

1. Introduction

Various types of RNA have been found to exist in the human transcriptome, and each of them plays its own vital role in guaran-
teeing the physical function of cells [1–3]. RNA could be modified to participate in the post-transcriptional regulation of gene 
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expression. So far, over 170 types of RNA modifications have been found to regulate not only RNA but non-coding RNA as well [4,5]. 
RNA modifications generally influence RNA stability, localization, RNA-RNA interaction, RNA-protein interaction, and RNA splicing, 
etc. Specific regulators could regulate different types of RNA modification. The abnormalities and alterations of these regulators in 
modulating RNA modification patterns are related to the emergence of various diseases, such as cancer [6].

Previous studies have reported that RNA modification abnormalities could affect biological behaviors of multiple cancers, such as 
cell proliferation, differentiation, stemness, metabolism, migration, and therapeutic resistance [7–11]. Among these, 
N6-methyladenosine (m6A), 5-methylcytidine (m5C), and N7-methylguanosine (m7G) modification are found to be closely correlated 
with tumorigenesis and progression of cancer [12]. m6A is the most prevalent RNA modification on eukaryotic mRNA. The alteration 
of m6A levels participates in cancer pathogenesis and development via regulating several genes’ expression, such as BRD4, MYC, 
SOCS2, and EGFR, which have been proven to play an important role in cancer [9]. m5C is a crucial post-transcriptional modification 
on mammalian mRNA, which has been reported to be involved in the development of cancer and correlated with multiple 
cancer-related pathways [13,14]. m1A in tRNA is dramatically elevated and correlated with cancer stemness and patients’ poor 
prognosis in liver cancer [15]. Though many studies show the essential roles of RNA modification in cancers, the effects of them on 
many aspects of malignant behavior remain unknown. For example, little attention has been paid to inspecting the relation and 
mechanisms of m5C modification in tumor drug resistance [10]. In kidney cancer, m6A-modified TRAF1 regulated by METTL13, a m6A 
writer, could promote sunitinib resistance by influencing apoptosis and angiogenesis [16]. FTO, a m6A eraser (demethylase), whose 
aberrant activation could render HIF2αlow/- clear cell renal cell carcinoma sensitive to BRD9 inhibitors [17]. m6A reader, YTHDC1, also 
has been found to be regulated by the YY1/HDAC2 complex, modulating the progression and chemosensitivity of kidney cancer [18].

Some research has revealed the potential role of m6A regulators in kidney cancer. However, the functions of other types of RNA 
modification, as well as their own regulators on regulating kidney cancer, still remain unclear. For example, m5C modification, which 
had been reported to play an important role in bladder cancer, represents no studies about the concrete mechanisms in kidney cancer, 
even though there are some studies reveal the potential functions of m5C regulators in kidney cancer by bioinformatics methods [19,
20]. Cumulative evidence has revealed the role of RNA modification in cancer, and more and more research has been carried out 
exploring the mechanisms, so it is necessary to exploit the potential important RNA modification regulators for further pre-clinical 
research in kidney cancer.

In our study, we obtained RNA regulators and determined prognosis-related RNA regulators in the KIRC cohort. We explicitly 
illustrate the expression alteration and mechanisms of these genes by multiple bioinformatics methods. Based on the machine learning 
algorithm, we constructed a four-gene index called PRRI to predict clinical outcomes and immune therapeutic responses of cancer 
patients. These findings might provide a theoretical foundation for further pre-clinical and clinical research.

2. Material and methods

2.1. Collection of data

The RNA regulators were obtained from the summarized table list of previous research, all commonly known RNA regulators 
representing different RNA modification methods (including ac4C, I, M1A, M5C, M6A, M7G, ψ, cm5U, mcm5 s2 U/cm5U) from 
previous research were included in this study [21] (Table S1). Then, we collected the transcriptome of KIRC and KIRP (FPKM units) 
(version: 07-19-2019) from the public website UCSC Xena (http://xena.ucsc.edu/) [22]. The KIRC dataset contains 535 tumors and 
72 normal samples, and the KIRP dataset contains 285 tumor samples. We transformed the expression format of KIRC and KIRP cohorts 
into TPM units according to the public method (https://haroldpimentel.wordpress.com/2014/05/08/what-the-fpkm-a-review- 
rna-seq-expression-units/) so that we could analyze them. In addition, we downloaded the processed normalized expression data of 
the E-MTAB-1980 (Release Date: October 16, 2013) from the Array Express database (https://www.ebi.ac.uk/arrayexpress), whose 
corresponding clinical data was obtained from the published literature [23]. E-MTAB-1980 mRNA dataset contains 101 RCC tumor 
tissue. The clinical data of KIRC, KIRP, and E-MTAB-1980 were also downloaded from their corresponding website; the samples that 
have corresponding mRNA expression data were included in this study. Furthermore, we acquired the immune therapy-related 
datasets, including the Alexandra cohort and GSE78220 from the previous study [24] and the GEO database (https://www.ncbi. 
nlm.nih.gov/gds) [25], respectively.

2.2. Differential expression genes (DEGs) screening

We first conducted the differential expression analysis in the KIRC dataset on the basis of the “limma” R package (version: 3.52.1). 
The Benjamini-Hochberg method was used to adjust the P-value. Then, we abstracted the log2(fold change) (also named logFC) and 
adjusted the p-value of RNA regulators from the results. We referred to the regulators with absolute logFC >0.5 and adjusted p-value 
<0.05 as differential expression RNA regulators in KIRC.

2.3. Identification of prognosis-related RNA regulators

We matched the mRNA expression of RNA regulators (PRR) and clincal survival outcomes based on their own unique patient ID. 
Then, the univariate Cox regression analysis was performed to determine the prognosis-related RNA regulators (PRR) based on the 
“coxph” R function from the “survival” R package. The univariate Cox regression model is a proportional hazards model, which as-
sumes that each factor does not vary according to the change of time. Then, the function generates two important results, including 
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hazard ratio (HR) and p-value, which could used to determine whether a regulator is risky or protective. In general, the regulators with 
p-value <0.05 and hazard ratio (HR) > 1 were regarded as risky regulators, while those with p-value <0.05 and HR < 1 were regarded 
as protective regulators. Then, based on the ideal cut-off value determined by the “surv_cutpiont” function from the “survminer” 
package (version: 0.4.9) per gene, the data was separated into high and low-expression groups. The “surv_cutpoint” function could 
determine the optimal cutpoint for one or multiple continuous variables at once, using the maximally selected rank statistics from the 
’maxstat’ R package. This is an outcome-oriented methods providing a value of a cutpoint that correspond to the most significant 
relation with outcome. The Kaplain-Meier survival curve was further depicted, and the log-rank test was performed to estimate the 
significance between high and low-expression groups.

2.4. Cross-talk between RNA regulators

The prognosis-related RNA regulators (PRR) were submitted to the string websites (https://string-db.org/) (Version: 12.0). 
STRING is a Core Data Resource as designated by Global Biodata Coalition and ELIXIR, which could be utilized to analyze the 
functional protein association networks. By selecting the “Multiple proteins” channel and “homo sapien” organism, the protein-protein 
interaction (PPI) of PRR could be analyzed and a network diagram could be depicted through the website. Then, the mRNA expression 
of PRR in TCGA KIRC tumor tissues was extracted to conduct the co-expression analysis based on the “rcorr” R function from the 
“Hmisc” R package. The co-expression analysis used the Pearson method, and Pearson correlation coefficients (PCC) were calculated to 
show the correlation between two RNA regulators. Absolute PCC >0.3 and P-value <0.05 were referred to as a mediate correlation 
between two variables, while absolute PCC >0.6 and P-value <0.05 were referred to as a strong correlation between two variables.

2.5. Construction of prognosis-related RNA regulators index (PRRI)

The KIRC dataset was split into a training cohort and a testing cohort based on the ratio of 7:3. Then, the lasso-cox regression 
analysis was performed to screen variables further and generate a regression coefficient per gene. The lasso regression is a compression 
estimation, which could refine the model by constructing a penalty function that compresses some coefficients and sets some co-
efficients of variables to zero. Based on the rationale, four regulators were further determined, while other regulators were expelled 
due to their coefficients being zero. Then, the prognosis-related RNA regulators index (PRRI) was established by calculating a sum of 
coefficient per gene multiply the expression of these genes. The function is as follows: 

PRRI= sum(Coefi*Expressioni)

Among these, Coef represents the lasso-cox coefficient of the regulator, Expression represents the mRNA expression of the regu-
lator, and i indicate each one of the determined regulators. We further used the PRRI to predict the overall survival of KIRC patients. 
We applied the Kaplian-Meier survival curve to show the difference between the high PRRI and low PRRI groups, the time-dependent 
ROC curve to estimate the predictive accuracy of PRRI on 3-/5-/7 prognosis, and heatmap to demonstrate the expression situation of 
four RNA regulators. All these analyses were conducted in KIRC training, KIRC testing, KIRP, and E-MTAB-1980 cohorts so that we 
could verify the practicality of PRRI.

2.6. Evaluation of PRRI

We further proceed to evaluate the PRRI by utilizing other clinical indexes, such as stage, grade, age, and gender. By observing the 
PRRI alteration among different clinical variables through a t-test, we could identify the correlation between PRRI and clinical var-
iables. Furthermore, we separated the clinical data into different clinical subgroups. Then, the sample was split into high and low PRRI 
groups per subgroup; survival curves were depicted to show the prognostic differences. Finally, the PRRI and other clinical variables 
were merged to carry out multivariate Cox regression to determine the independent prognostic factors.

2.7. Nomogram model construction and evaluation

The prognosis-related variables (including PRRI, age, gender, histological grade, and pathological stage) were determined by 
univariate Cox regression analysis; these variables were submitted to multivariate Cox regression analysis based on the “survival” R 
package. Then, the model of multivariate Cox regression was submitted to the “step” R function to perform a stepwise regression 
analysis to screen variables deeply based on the minimum Akaike information criterion (AIC). Then, the variables selected by stepwise 
regression were used to erect the nomogram model. We applied the calibration to evaluate the accuracy of the nomogram model. The 
time-dependent ROC model was also performed to estimate the predictive efficacy of the nomogram model compared with other 
clinical variables in the 3-/5-/7-year prognosis of the patients based on the “survivalROC” R package (version: 1.0.3.1). Decision curve 
analysis was conducted, and the diagrams were depicted to show the net benefit of PRRI and other variables in predicting a 3-/5-/7- 
year prognosis. Finally, we constructed the risk score in the light of the nomogram and depicted a survival curve to show the prognostic 
difference between high and low-risk groups.
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Fig. 1. The identification of prognosis-related RNA regulators (PRR). (A) The volcano plot shows the expression alteration of RNA regulators in 
KIRC; the red dot represents the up-regulated genes, and the blue dot represents the down-regulated genes. (B) The heat map shows the mRNA 
expression situation of regulators in tumor and normal tissues; the red represents high expression, and the blue represents low expression. (C) The 
two-dimensional density map depicted based on the T-SNE methods shows the distribution of tumor and normal samples in the light of the 
expression of regulators. (D) The forest plot shows the prognosis-related RNA regulators (PRR) of KIRC; the red shows the risky regulators, while the 
blue shows the protective regulators. (E) The network diagram shows the protein-protein interaction of PRR. (F) The heat map shows the co- 
expression relationship among the PRR. The asterisk represents a significant relation between the two PRRs.
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2.8. Mechanism exploration

The co-expression genes of RNA regulators were submitted to The Database for Annotation, Visualization and Integrated Discovery 
(DAVID) website (https://david.ncifcrf.gov/) so that function enrichment could be analyzed. By uploading the gene list, including 
co-expression genes, and selecting the official gene symbol identifier and homo sapien species, multiple functional enrichment results 
would bring out on the website. The interesting items (such as GO and KEGG pathways) could be downloaded to depict diagrams to 
show the enrichment situations. Then, we downloaded the gene sets including 50 hallmark pathways, from the MsigDB database 
(https://www.gsea-msigdb.org/gsea/msigdb). Then, the 50 hallmark pathway activity score per sample could be calculated by gene 
set variation analysis (GSVA) by sending in gene sets and mRNA expression profile of the KIRC dataset to the “GSVA” R package 
(version: 1.44.5). The correlation between PRRI and pathway activity was computed, and the bubble plot was portrayed to show the 
correlation. While exploring the mechanisms of the high PRRI and low PRRI groups, we first analyzed the differential expression genes 
(DEGs) between these two groups, and then the DEGs ranked by logFC were submitted to the “clusterProfiler” R package (version: 
4.4.4) so that molecular function and biological progression could be analyzed. In addition, the samples of KIRC mRNA expression data 
were ranked through PRRI; the samples with high PRRI were put before the samples with low PRRI. Then, the ranked mRNA expression 
data was submitted to Gene Set Enrichment Analysis (GSEA) software (Version: GSEA-4.0.3) to analyze differentially enriched 
pathways; the parameter - 1000 permutation, no collapse, and phenotype were selected during this performance.

2.9. Evaluation of tumor immune infiltration and immune therapy

For the calculation of tumor immune infiltration levels, we used two methods - the “xCell” R package (version: 1.1.0) and the single- 
sample gene set enrichment (ssGSEA) method based on the “GSVA” R package. We submitted the mRNA expression profile of KIRC to 
the function “xCellAnalysis” R function from the “xCell” R package, and then the immune cell infiltration level per sample will be 
computed. Then, we obtained the gene sets representing twenty-four types of immune cells from the published research [26]. The gene 
sets and expression profiles were submitted to the “GSVA” R package to count the infiltration levels of immune cells based on the 
ssGSEA method. Then, the immune infiltration levels were normalized by function as follows: 

Immune infiltration level=
x − min(x)

max(x) − min(x)

Among these, x indicates the mRNA expression profile of TCGA KIRC. Furthermore, we used the “CIBERSORT” to evaluate the 
fraction of 22 types of immune cells. For immune therapy prediction, we used a public website - Tumor Immune Dysfunction and 
Exclusion (TIDE), to predict the potential relation between PRRI and immune therapy response [27]. Then, we used the immune 
therapy datasets for further validation.

2.10. Statistic analysis

All analysis are carried out with R software (version: 4.2.2). The Kaplain-Meier curve was portrayed to show the survival prob-
ability of two groups; the statistical significance was estimated by the log-rank test. The Pearson correlation coefficient (PCC) based on 
the Pearson method was used to estimate the correlation between the two variables. The T-test was utilized to analyze the difference 
between two continuous variables, and the chi-square test was used to assess the distribution distinction of contingency table data.

3. Results

3.1. Identification of prognosis-related RNA regulators (PRRs)

The specific workflow of this study is shown in Flow chart. We first performed differential expression analysis to screen the dif-
ferential expression RNA regulators by comparing the whole genome expression of 535 tumors and 72 normal samples in the TCGA 
KIRC dataset. Twelve differential expression genes (DEGs) were finally determined (Fig. 1A). NOP2, PUS1, FBL, RBMX, and PUS7 show 
upregulation in tumor tissues. IGF2BP2, NSUN7, TRUB2, TRMT6, LRPPRC, TRUB1, and G3BP2 down-regulate in tumor tissues 
(Fig. 1B). T-SNE analysis reveals that the expression characteristics of these RNA regulators are different in normal and tumor tissues 
(Fig. 1C). To screen the prognosis-related RNA regulators (PRRs), we conducted the univariate Cox regression analysis. The results 
reveal that RBMX, IGF2BP2, TRUB1, NSUN7, TRUB2, G3BP2, LRPPRC, NOP2, and PUS1 are correlated with prognosis of KIRC patients 
(Fig. 1D). Among these, IGF2BP2, NOP2, and PUS1 show a risky factor (HR > 1 & P-value <0.05), and the patients with high expression 
of these genes show a worse outcome (Figure S1). While others prove to be protective factors (HR < 1 & P-value <0.05), the patients 
with high expression of these genes show better clinical outcomes. By analyzing the protein-protein interaction between these nine 
PRRs, we found that they possess a complex relationship (Fig. 1E). In addition, TRUB1, LRPPRC, G3BP2, RBMX, and NSUN7 show a 
positive correlation with each other. PUS1 shows a negative correlation with NSUN7, TRUB1, LRPPRC, G3BP2. NOP2 is positively 
related to IGF2BP2, RBMX, and PUS1 but negatively related to NSUN7 (Fig. 1F).
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3.2. Potential function and mechanisms of PRRs

To explore the function of PRRs, we performed the Pearson correlation analysis. The concrete progression is shown in Fig. 2A. 
Specifically speaking, we first analyzed the correlation between the mRNA expression of PRRs and the whole genome using the Pearson 
method. The p-value was adjusted by false discovery rate (FDR). The absolute Pearson correlation coefficient >0.6 and adjusted p- 
value <0.05 are utilized as a threshold to identify the genes that are highly co-expressed with PRRs. Finally, the identified genes were 
submitted to the functional enrichment website - DAVID. The results revealed that this gene might be associated with some biological 
functions, such as regulation of transcription DNA-templated; ubiquitin-dependent protein catabolic process; regulation of tran-
scription from RNA polymerase II promoter; protein transport; protein ubiquitination, etc.; molecular functions, such as protein 
binding, RNA binding, metal binding, ubiquitin-protein transferase activity, ATP binding, etc.; cell components, such as nucleoplasm, 
nucleus, cytosol, cytoplasm, mitochondrion, etc.; KEGG pathways, nucleocytoplasmic transport, ubiquitin-mediated proteolysis, 
autophagy animal, mRNA surveillance pathway, etc (Fig. 2B–E). We further calculated the correlation of these PRRs and the activity of 
cancer-related pathways and found that these PRRs play different functions in KIRC. For instance, NOP2 positively correlates with G2M 
checkpoint, E2F targets, and MYC target V1/V2, indicating that NOP2 might function in tumors by regulating these cell cycle-related 
pathways (Fig. 2F).

3.3. PRRs risk model construction

We then matched the RNA regulators’ expression profile and clinical data, and then the samples were separated into the training 
cohort and testing cohort. Based on the lasso-cox regression analysis, the RNA regulators index model was further established in the 
training cohort (Fig. 3A). The results revealed that when the number of PRRs was four, the partial likelihood of deviance was minimal 
(Fig. 3B). Based on the lasso coefficients of these four genes, the risk model was finally constructed according to the equation as 
follows: 

PRRI (PRRs index)=0.2202288*IFG2BP2 − 0.4756218*TRUB2 − 0.2745814*LRPPRC + 0.5061372*NOP2 

In the training cohort, the patients were separated into high-PRRI and low-PRRI groups based on the optimal cut-off value. The 
Kaplain-Meier survival curve reveals that high PRRI patients show a lower survival probability than low PRRI patients (Fig. 3C). The 
predicted accuracy of PRRI on KIRC prognosis is over 70 % in 3-/5-/7-year survival (AUC at 3 years = 0.7132, AUC at 5 years = 0.7220, 
AUC at 7 years = 0.7283). Among these, TRUB2 and LRPPRC are highly expressed in the high PRRI patients, while IGF2BP2 and NOP2 
are highly expressed in the low PRRI patients. We then conducted the same analysis in the KIRC testing cohort, E-MTAB-1980, and 
KIRP cohort. The results are consistent with the findings analyzed by the KIRC training cohort. The predicted accuracy is relatively 
high in these three cohorts (For testing cohort: AUC at 3 years = 0.7141, AUC at 5 years = 0.7403, AUC at 7 years = 0.7305; For E- 
MTAB-1980 cohort: AUC at 3 years = 0.7038, AUC at 5 years = 0.7385, AUC at 7 years = 0.7143; For KIRP cohort: AUC at 3 years =
0.6203, AUC at 5 years = 0.6365, AUC at 7 years = 0.6941) (Fig. 3D–F).

3.4. Association of PRRI and clinic

We further analyzed the relationship between PRRI and clinic in the KIRC dataset, and we found the advanced pathological stage 
and histological grade mainly harboured in high PRRI groups, while the age and gender show no significant differences between high 
and low PRRI groups (Fig. 4A and B). In E-MTAB-1980 datasets, male patients, higher grade and stage harbored in high PRRI groups, 
while age still shows no correlation with PRRI (Figs. S2A–B). By dividing the clinical samples into high and low PRRI groups based on 
the ideal cut-off value in different clinical sub-groups (i.e., age was separated into two sub-groups: age >60 and age ≤60, and then, the 
different clinical sub-groups were separated into high and low PRRI groups). We found that no matter what the sub-groups were, 
patients with high PRRI invariably showed a lower survival probability than patients with low PRRI (Fig. 4C, Figure S2 C). These 
results revealed that PRRI might be practical for predicting the prognosis of patients who are harbored in different clinical subgroups.

3.5. Establishment of nomogram model

We then utilized the PRRI as well as other clinical variables, including pathologic stage, grade, gender, and age, to conduct a 
multivariate Cox regression analysis. We found that PRRI, pathologic stage, grade, and age are independent prognostic factors for KIRC 
patients (Fig. 5A). Based on the multivariate Cox regression model, a nomogram was established by applying histological grade, 
pathologic stage, age, and PRRI (Fig. 5B). Based on the patient’s characteristics, total points could be calculated by integrating each 
point per variable; different total points represent different 3-/5-/7-year survival probabilities for the patient. The calibration curve 
reveals that the nomogram model could predict the prognosis of the patients well (Fig. 5C). In addition, nomogram model shows a 
highest predictive accuracy (i.e., For 3 years, AUC of nomogram = 0.8146, AUC of age = 0.5704, AUC of gender = 0.4828, AUC of 
grade = 0.7033, and AUC of stage = 0.7808; For 5 years, AUC of nomogram = 0.7736, AUC of age = 0.5834, AUC of gender = 0.4806, 
AUC of grade = 0.6713, and AUC of stage = 0.7089; For 7 years, AUC of nomogram = 0.7522, AUC of age = 0.6064, AUC of gender =
0.4952, AUC of grade = 0.6592, and AUC of stage = 0.6756) (Fig. 5D). Decision curve analysis (DCA) analysis reveals that the 
nomogram model could reach the highest clinical benefit compared with other clinical variables (Fig. 5E). In terms of nomogram, a risk 
score was constructed, and the patients were separated into high and low-risk groups according to the cut-off value. The Kaplain-Meier 
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survival curve shows a dramatically significant survival difference between the high and low-risk groups, revealing that the nomogram 
could discriminate the patients with different clinical outcomes (Fig. 5F).

3.6. The function enrichment analyses between high PRRI and low PRRI

To understand the potential mechanisms between high PRRI and low PRRI, we conducted the differential expression analysis 
between high and low PRRI groups. The differential different genes were subjected to biological progression (BP) and molecular 
function (MF) analysis based on the “clusterprofiler” R package. For BP, regulation of systemic arterial blood pressure by renin- 
angiotensin, acyl-CoA metabolic process, thioester metabolic process, and regulation of systemic arterial blood pressure shows a 
low enrichment in high PRRI group, while regulation of T cell migration, regulation of lymphocyte migration, antibacterial humoral 
response, negative regulation of leukocyte apoptotic process, antimicrobial humoral response highly enriched in high PRRI group 
(Fig. S3A). For MF, solute: sodium symporter activity, phosphoric diester hydrolase activity, monocarboxylic acid transmembrane 
transporter activity, sodium ion transmembrane transporter activity, organic hydroxy compound transmembrane transporter activity 
show a low enrichment in the high PRRI group, while immunoglobulin receptor binding, antigen binding, chemokine activity, che-
mokine receptor binding, serine-type endopeptidase inhibitor activity highly enriched in high PRRI group (Fig. S3B). We further 
submitted the mRNA expression profile of KIRC and cancer hallmark pathway gene sets in gene set enrichment analysis (GSEA) 
software (Version: GSEA-4.0.3) and found several hallmark pathways, such as xenobiotic metabolism, androgen response, peroxisome, 
fatty acid metabolism, P13K_AKT_MTOR signaling, adipogenesis, protein secretion, bile acid metabolism, oxidative phosphorylation, 
and heme metabolism show a low enrichment in high PRRI group (Fig. S4).

3.7. Immune therapeutic prediction of PRRI

We further analyzed the mutation characteristics of high PRRI and low PRRI groups. The results show that missense mutation and 
SNP are the most prevalent variation types (Fig. S5A). However, the mutation burden between high and low PRRI groups shows no 
significant difference, with 85.23 % alteration in the low-risk group and 85.71 % alteration in the high-risk group (Fig. 6A and 
Fig. S5A). Intriguingly, when we analyzed the alteration of clinically actionable genes in the high and low PRRI groups, we found more 
mutations of clinically actionable genes (84.76 %) in the high PRRI group than in the low PRRI group (Fig. S5B). For example, we 
observed that BAP1 and MTOR show a higher mutation rate in the high PRRI group than in the low PRRI group. From the results of the 
mechanism enrichment analysis above, we found several immune-related pathways highly enriched in the high PRRI group, such as 
regulation of T cell migration. We reflected that the immune system might play an important part in causing the prognostic difference 
between the high PRRI and the low PRRI group, so we further observed the correlation between the immune system and PRRI. We first 
observed the mRNA expression of several immune-related genes in high and low PRRI groups (Fig. 6B). Apart from CD274, we found 
that PDCD1, CTLA4, CD27, TIGIT, and LAG3 showed a higher expression in the high PRRI group than in the low PRRI group. The high 
PRRI group showed a higher immune score and microenvironment score and a lower stroma score (Fig. 6C). In addition, pro-tumor 
immune cell - fibroblasts and anti-tumor immune cells CD8+ T-cells and NKT cells show significant activation in the high PRRI 
group. We further observed the activity score of 24 immune cells and a fraction of 22 immune cells in high and low PRRI groups 
(Fig. 6D and E). The results show that lots of immune cells are differentially altered in these two groups. Interestingly, Tregs activity 
and fraction are higher in the high PRRI group than in the low PRRI group, which is consistent with the results of function mechanism 
analyses. We further analyzed the correlation between PRRI and immune cell activity/fraction and found that PRRI highly correlated 
with Tregs’ activity and fraction compared to anything else (For Tregs’ activity, PCC = 0.3931, P-value < 2e-16; for Tregs’ fraction, 
PCC = 0.4056, P-value < 2e-16) (Figs. S6A–D). These results indicate that high PRRI might promote Tregs’ enrichment and infiltration. 
Considering that Tregs could inhibit immune response so that an immune therapeutic resistance could be caused, we presumed that the 
patients in the high PRRI group might not be sensitive to immune therapy. This was indeed the case; through the TIDE analysis, we 
found that most of the non-responders harbored in the high PRRI group, while most of the responders harbored in the low PRRI group 
(Fig. 6F). What is more, the patients who turned out to be the no responders showed a higher PRRI than the responders (Fig. 6G). In two 
anti-PD1 datasets, we also observed that the patients in the high PRRI group showed worse clinical outcomes. However, due to the 
small number of samples of these two datasets, the difference between high and low PRRI groups does not show statistical significance 
(Figs. S7A and B). Nevertheless, we observed that most of the patients in the high PRRI group harbored in the SD/PD (SD, stable 
disease; PD, progression disease) group, while most of the patients in the low PRRI group located in CR/PR (CR, compete for response; 
PR, partial response) group (Figs. S7C and D), indicating that patients with high PRRI might predict resistance of immune therapy to 
some degree.

4. Discussion

Renal cell carcinoma (RCC) is one of the most routinely diagnosed urological cancers, which causes large sums of patients to come 

Fig. 2. Function enrichment and mechanism exploration. (A) The schematic diagram shows the progression of function enrichment analysis. 
(B–E) Barplots show the biological progression, molecular function, cell component, and KEGG pathways of co-expression genes of PRR. (F) The 
heat map shows the correlation between PRR and activity score of 50 cancer-related hallmark pathways in the KIRC dataset. The red represents a 
positive correlation, while the blue represents a negative correlation. The size of the dot represents the significance.
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to death per year [28,29]. Though there are various therapeutic methods, such as surgery, chemotherapy, radiotherapy, and immu-
notherapy, kidney cancer is still faced with many challenges [30]. Approximately 40 % of patients with advanced cancer ultimately 
develop metastasis and cause poor clinical outcomes [31]. So, it is essential to determine the biomarkers that are suitable to predict the 
prognosis of patients and develop new clinical potential targets. Recent research has shed attractive light on RNA modification, which 
might play an essential role in cancer and could be referred to as potential drug targets [12]. Several RNA-modifying proteins are 
misregulated in human cancer and are implicated in the responses of tumor cells to oxidative stress, DNA damage and drug exposure 
occurring (such as chemotherapy and radiotherapy) [32]. RNA modification mainly depends on specific RNA enzymes, also known as 
regulators. Unlike other cancer drivers, these regulators are not commonly altered in cancer, but cancer cells often use these enzymes 
to maintain the growth and development of tumors. Therefore, they are considered potential targets, which is a reasonable strategy 
against cancers. Though research revealed that some RNA regulators could affect biological behavior and function, for example, the 
expression of the m6A-dependent gene (METTL3/METTL14) is controlled by Von Hippel Lindau (VHL) tumor suppressor in renal 
tumorigenesis [33], the concrete role of other RNA modifications that had once been identified to be associated with tumors had not 
found its way into this type of tumour. Therefore, exploring the alteration and function of multiple types of RNA regulators in kidney 
cancer could provide a theoretical foundation for tumor target therapy based on RNA regulators. What is more, though many gene 
models are constructed to predict outcomes of kidney cancer patients [21,34,35], the model based on RNA modification regulators has 
not been determined for prognosis and therapy prediction.

To screen potentially important RNA regulators, we first conducted differential expression and uni-variate Cox regression analysis 
based on 82 identified RNA regulators in the TCGA KIRC dataset. We identified 9 RNA modification regulators, which are not only 
differentially expressed in KIRC but also turn out to be correlated with the prognosis of the patients. Several genes have been found to 
play an essential role in kidney cancer. For example, Circ-TNPO3 could bind to IGF2BP2 protein to inhibit the progression of clear cell 
renal cell carcinoma (ccRCC) [36]. ZNF677 acts as a tumor suppressor and is frequently silenced by m6A modification in RCC; the 
m6A-modified coding sequence (CDS) of ZNF677 could influence its stability by combining with IGF2BP2 [37]. The upregulation of 
PUS1 also causes increasing migration and invasion of RCC cells, while its downregulation can result in the opposite effects [38]. These 
results suggest that our screened progression is reasonable, even though other genes have not found their concrete functions and effects 
in kidney cancer. We further conducted the function enrichment analysis. After submitting the co-expressed genes of these 9 regulators 
to a public website, we found that these genes mainly enriched in multiple RNA regulation-related pathways, which is consistent with 
the feature of RNA regulators [12]. Intriguingly, we found that these nine RNA regulators appear to have a positive or negative 
correlation with different cancer-related hallmark pathways, which provide a foundation and potential routine for exploring concrete 
mechanisms of these regulators for future researchers. Through the machine learning algorithm - lasso-cox regression, we further 
determined 4 core regulators, including TRUB2, LRPPRC, IGF2BP2, and NOP2, and constructed the risk model called PRRI to predict 
the clinical outcome of RCC patients. We found that high PRRI patients show poorer outcomes than low PRRI patients in three datasets 
and different clinical subgroups, indicating that PRRI is practical for patients with RCC. When a patient was determined to have RCC, 
we could inspect the expression of these genes and calculate his PRRI; then, we could deduce his potential prognosis. Notably, IGF2BP2 
and NOP2, which have been proven to regulate m6A and m5C modification, respectively, show high expression in high PRRI groups. 
Apart from kidney cancer, IGF2BP2 has been proven to act as a pro-tumor factor in many types of cancer, for it not only could stabilize 
other genes to promote cancer metastasis but also can degrade RNA transcript of the gene to promote cancer progression [39–41]. 
NOP2/NSUN1 is overexpressed in a wide variety of cancers, and its expression is closely related to progression, poor prognosis, and 
therapy resistance, revealing that it might be a promising tumor therapeutic target [42–46]. It seems that targeting these two regu-
lators for patients who have been determined in high PRRI groups might be a selective therapeutic strategy against kidney cancer. 
However, such speculation still needs to be validated in future pre-clinical research. Previous research used multivariate Cox 
regression analysis to determine potential independent prognostic factors [47–49]. In our analysis, we used the clinical variables as 
covariates to explore the importance of PRRI; the results reveal that PRRI is still a significant prognostic factor and is not affected by 
other clinical variables, verifying its independence.

Considering that the immune-related pathways are differentially enriched in high and low PRRI patients, we further explore the 
relationship between PRRI and immune systems in kidney cancer. Intriguingly, we found that most immune-related genes are highly 
expressed in the high PRRI group, indicating that patients with high PRRI are liable to undergo immune escape. Furthermore, we found 
Tregs highly enriched in the high PRRI group, and PRRI shows a highly positive correlation with the activity score of Tregs. In multiple 
types of cancer, increased numbers of Tregs are correlated with worse prognosis [50–53]. In addition, Tregs have been proven to be a 
pro-tumor immune cell. For they could not only inhibit the activity of the anti-tumor cell but also promote immune escape [54–56]. 
Tregs’ deletion could promote available anti-tumor immunity, especially if Treg cells are depleted systemically [57,58]. The PRRI is 
positively correlated with Tregs’ activity, indicating indirectly that high PRRI patients might suffer from the activation of high Tregs’ 
infringement and cause poor prognosis and therapy effects. In other immune therapeutic datasets, most of the patients in the high PRRI 
group turned out to be non-responders. So, based on these results, we speculate that patients with high PRRI might not benefit from 
immune therapy. For these patients, precaution is necessary. During their immune therapy, another therapeutic strategy should be 

Fig. 3. PRR index (PRRI) construction and risk model evaluation. (A) The schematic diagram shows the progression of the construction of 
PRRI. (B) These two diagrams show the progression of lasso-cox regression. (C–F) The Kaplain-Meier survival curves show the survival probability 
of high and low PRRI groups in the training cohort, testing cohort, E-MTAB-1980 cohort, and KIRP cohort. The time-dependent ROC curves show the 
predictive accuracy of PRRI on 3, 5, and 7 years of overall survival. The heatmaps show the expression differences of PRR that were used to 
construct the PRRI in high and low PRRI groups; the red represents high expression, and the green represents the low expression.
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Fig. 4. The relationship between PRRI and clinic in the KIRC dataset. (A) The heatmap shows the expression comparison of PRR, which was 
used to construct the PRRI in high PRRI and low PRRI groups, and the distribution of other clinical variables (such as stage, grade, gender, and age) 
in high and low PRRI groups. The asterisk shows the statistical significance analyzed by the chi-square test. (B) Boxplots show the value of PRRI in 
different groups of age, gender, grade, and stage. (C) In different clinical subgroups, age >60 and age ≤60, stage I/II and stage III/IV, male/female, 
grade I/II and grade III/IV, the samples were separated into high and low PRRI groups, then the survival curves show the survival rate between the 
two groups. *, P < 0.05; **, P < 0.01; ****, P < 0.0001; ns, no significance.
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Fig. 5. Nomogram construction and model evaluation. (A) The forest plot shows the consequence of multivariate Cox regression analysis. (B) 
The nomogram plot shows the points per variable, and the total points correspond to survival rates of 3, 5, and 7 years. (C) The calibration curve 
shows the accuracy of the nomogram model. (D) The time-dependent ROC curve was depicted to compare the predictive efficacy of the nomogram 
model as well as other clinical variables at 3, 5, and 7-year survival. (E) The decision curve was depicted to analyze the net benefit of the nomogram 
model as well as other clinical variables. (F) The Kaplain-Meier survival curve was depicted to show the survival difference between high and low- 
risk groups that had been constructed and determined by the nomogram model.
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allowed.
Several limitation should be mentioned in this study, even though our PRRI could predict prognosis and immune therapeutic 

response to some extent. This is retrospective studies and PRRI was constructed based on existing datasets, which lack of support of 
prospective data. Furthermore, though we systematically excavated the function and mechanisms of RNA regulators, which still lack of 
experiment validation to clarify these predictions.

In summary, we analyzed the expression and function of RNA modification regulators identified in kidney cancer and finally 
determined some essential genes used to construct the risk model to predict prognosis and immune response. More and more re-
searchers have commenced studying the role of RNA modification, and we hope our predicted data might supply some information and 
foundations for further pre-clinical and clinical research.
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Fig. 6. Relationship between PRRI and tumor immune. (A) Tumor mutation burden in high and low PRRI groups. (B) Immune-relate gene 
expression in high and low PRRI groups. (C) Immune score, stroma score, microenvironment score, and activity of tumor microenvironment cells 
(including Macrophage M2, fibroblasts, Tregs, CD4+T cells, CD8+T cells, NKT cells) in high and low PRRI groups. (D) Activity differences of 24 
immune cells in high and low PRRI groups. (E) Fraction of 22 immune cells in high and low PRRI groups. (F) The distribution of responder and no 
responder in high and low PRRI groups. (G) Boxplot shows the difference between PRRI in responders and non-responders. *, P < 0.05; **, P < 0.01; 
***, P < 0.001; ****, P < 0.0001; ns, no significance.
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[46] D. Trerè, M. Migaldi, L. Montanaro, A. Pession, M. Derenzini, p120 expression provides a reliable indication of the rapidity of cell duplication in cancer cells 
independently of tumour origin, J. Pathol. 192 (2) (2000) 216–220.

[47] J. Li, Z. Kong, Y. Qi, et al., Single-cell and bulk RNA-sequence identified fibroblasts signature and CD8 + T-cell - fibroblast subtype predicting prognosis and 
immune therapeutic response of bladder cancer, based on machine learning: bioinformatics multi-omics study, Int. J. Surg. 110 (8) (2024) 4911–4931.

[48] J. Shi, T. Liu, C. Liu, et al., Remnant cholesterol is an effective biomarker for predicting survival in patients with breast cancer, Nutr. J. 23 (1) (2024) 45.
[49] L. Yao, Y. Shi, J. Fu, et al., Risk factors for invasive pulmonary aspergillosis in patients with severe fever with thrombocytopenia syndrome: a multicenter 

retrospective study, J. Med. Virol. 96 (5) (2024) e29647.
[50] J. Stenström, I. Hedenfalk, C. Hagerling, Regulatory T lymphocyte infiltration in metastatic breast cancer-an independent prognostic factor that changes with 

tumor progression, Breast Cancer Res. 23 (1) (2021) 27.
[51] H. Tao, Y. Mimura, K. Aoe, S. Kobayashi, H. Yamamoto, E. Matsuda, et al., Prognostic potential of FOXP3 expression in non-small cell lung cancer cells 

combined with tumor-infiltrating regulatory T cells, Lung cancer 75 (1) (2012) 95–101.
[52] T. Curiel, G. Coukos, L. Zou, X. Alvarez, P. Cheng, P. Mottram, et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege 

and predicts reduced survival, Nat Med 10 (9) (2004) 942–949.
[53] A. Sasaki, F. Tanaka, K. Mimori, H. Inoue, S. Kai, K. Shibata, et al., Prognostic value of tumor-infiltrating FOXP3+ regulatory T cells in patients with 

hepatocellular carcinoma, Eur. J. Surg. Oncol. 34 (2) (2008) 173–179.
[54] Y. Wang, H. Ge, M. Hu, C. Pan, M. Ye, D. Yadav, et al., Histological tumor micronecrosis in resected specimens after R0 hepatectomy for hepatocellular 

carcinomas is a factor in determining adjuvant TACE: a retrospective propensity score-matched study, Int. J. Surg. 105 (2022) 106852.
[55] H. Zhang, J. Chen, J. Bai, J. Zhang, S. Huang, L. Zeng, et al., Single dual-specific anti-PD-L1/TGF-β antibody synergizes with chemotherapy as neoadjuvant 

treatment for pancreatic ductal adenocarcinoma: a preclinical experimental study, Int. J. Surg. 110 (5) (2024) 2679–2691.
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