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Abstract: ZnO varistor ceramics with a high potential gradient, as well as a high nonlinear coef-
ficient, were reported and analyzed in this paper. With the use of nano-sized ZnO powders, the
average grain size was reduced to about 2.6 µm, which successfully raised the potential gradient
to 1172 V/mm. Moreover, the nonlinear coefficient increased to 48, and the leakage current was
decreased to 8.4 µA/cm2 by doping a moderate amount of MnO (0.9 mol%). This was proven to be
caused by the high Schottky barrier height formed at the grain boundary, where the Mn element
segregated and, consequently, led to the increased density of interface states. Therefore, this could be
considered as a potential method to simultaneously enhance the potential gradient and the nonlinear
coefficient of ZnO varistor ceramics.

Keywords: ZnO; varistor ceramics; high potential gradient; nonlinearity; Schottky barrier

1. Introduction

ZnO varistor ceramics are widely employed to protect electrical power systems and
electronic devices from surges and overvoltage due to their excellent nonlinear current–
voltage characteristics and energy absorption capability [1,2]. High-performance ZnO
varistor ceramics with a high potential gradient, high nonlinear coefficient and low leakage
current are urgently required due to the increasing requirements in the fields of device
miniaturization, ultra-high-voltage power systems, high-speed electrified railways, and
integrated circuits, etc. [3–7]

The potential gradient (E1mA) of ZnO varistor ceramics is proportional to the number
of grain boundaries (GB) per unit length and the breakdown voltage of a single GB, which is
approximately constant at ~3 V [1]. Therefore, the commonly accepted approach to enhance
the potential gradient is to reduce the grain size, which is generally achieved by optimizing
doping [4,8–10], sintering [11–13] and nano-sized raw materials [5,14–19]. Among these
methods, the most effective method is using nano-sized ZnO powders to prepare ZnO
varistor ceramics. It was reported that the high E1mA of 800 V/mm was achieved by using
nano powers with nonlinear coefficients (α) of approximately 20 [5,20]. Similarly, ZnO
varistors, with a high α of 96, were prepared but followed by the high leakage current
density (JL) of 50 µA/cm2 [21]. This is because a small grain size would increase the
number of grain boundaries which would weaken the Schottky barrier and lower its
barrier height, resulting in a low α and high JL. Therefore, it seems hard to co-achieve
a high potential gradient, high nonlinearity and low leakage current for ZnO varistor
ceramics [22–25]. When the high potential gradient is more than 1000 V/mm, it is difficult
for the nonlinear coefficient to reach more than 40, and, at the same time, the leakage
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current density is seldom lower than 10 µA/cm2 [5,20,26–29]. The electrical properties of
ZnO varistor ceramics are expected to largely depend on their composition. The doping
of a transition metal element, e.g., Mn, is acknowledged as a feasible method to improve
electrical nonlinearity and reduce the leakage current of ZnO varistor ceramics. Of course,
there are many studies on the preparation of ZnO varistor ceramics by doping MnO with
micron ZnO powders [20,30–33]. However, the effects of MnO doping (0.3–1.2 mol%) on
the electrical properties of ZnO varistor ceramics prepared by nano sized ZnO powers
are inconclusive.

In this paper, ZnO varistor ceramics with a high potential gradient of 1172 V/mm, high
nonlinear coefficient of 48 and low leakage current of 8.4 µA/cm2, were obtained by doping
MnO with nano-sized ZnO powers. The effects of MnO content on the microstructures,
Schottky barriers and electrical properties of ZnO varistor ceramics were investigated. This
could provide helpful references for preparing high-performance ZnO varistor ceramics.

2. Experiments

A series of ZnO varistor ceramic samples were prepared through the solid-state
reaction method with the following raw materials: (96.2-x) mol% ZnO, 1.3 mol% Bi2O3,
1.5 mol% Sb2O3, 0.6 mol% Co3O4, 0.4 mol% Ni2O3, 0.008 mol% Al(NO3)3·9H2O and x
mol% MnO (x = 0.3, 0.6, 0.9, 1.2). The chemical purity of the raw materials was 99.9%, 99.9%,
99.5%, 99.9%, 99%, 99.9% and 99.5%, respectively. Among these materials, the nano-sized
ZnO powders (30 ± 10 nm) were used. The raw materials were milled in polyethylene
bottles for 12 h. Then, the mixed slurry was dried at 80 ◦C. After dying, a large amount of
3 wt% polyvinyl alcohol (PVA) was added into the powders. Then, the slurry was mixed
and granulated. The powders were pressed into pellets and pre-sintered at 600 ◦C. Then,
the pellets were sintered at 1050 ◦C for 2 h with a heating rate of 3.33 ◦C/min and naturally
cooled to room temperature in the air atmosphere. Finally, ZnO varistor ceramic samples
with a diameter of about 11.5 mm and a thickness of about 2.5 mm were obtained. They
were designated as M1, M2, M3, and M4, with the increasing MnO content.

The surface morphology, element analysis and crystal structure of samples were char-
acterized by scanning electron microscope (SEM, VE-8600S, Keyence, Osaka, Japan), EDS
(JSM6390A, JEOL, Tokyo, Japan) and X-ray diffraction (XRD, D8 Advance, Bruker, Berlin,
Germany), respectively. The densities of the samples were measured by the Archimedes
method. The nonlinear current density-electrical field (J-E) curve was measured at room
temperature by using a Keithley DMM 7510 digital multi-meter and a TD2200 precision lin-
ear high-voltage DC power. The voltage dependence of barrier capacitance was measured
by an impedance analyser (Novocontrol Concept 80, Frankfurt, Germany).

3. Results

Figure 1a shows the XRD patterns of the ZnO varistor ceramics. The ZnO crystal
phase (JCPDS Card No. 89-0510), Bi-rich phase and spinel phase Co(Co4/3Sb2/3)O4 (JCPDS
Card No. 78-0718), and Zn2.33Sb0.67O4 (JCPDS Card No. 15-0687) were identified in all
of the samples. The β-Bi2O3 phase (JCPDS Card No. 27-0050) and spinel phase were the
same in different samples. Those results indicated that the MnO doping content had little
effect on the crystal phase of ZnO varistor ceramics, which was in accordance with other
reports [20]. In order to compare the content of the intergranular phase of different samples,
the Bi2O3 phase and Zn2.33Sb0.67O4 are taken as examples. The ratio of peak height of
the Bi2O3 phase and Zn2.33Sb0.67O4 to that of the ZnO main crystal phase in different
samples was calculated as shown in Figure 1b. With the increase in MnO content, the
relative intensity of Bi2O3 and Zn2.33Sb0.67O4 were both enhanced, which indicated that
MnO content influenced the content of the intergranular phase.
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Figure 1. (a) XRD patterns, (b) relative intensity of Bi2O3 and (c–f) Line-scanning EDS results cover-
ing several grains and grain boundaries of ZnO varistor samples. 
Figure 1. (a) XRD patterns, (b) relative intensity of Bi2O3 and (c–f) Line-scanning EDS results
covering several grains and grain boundaries of ZnO varistor samples.

To further study the effects of MnO doping on the microstructure of ZnO varistor
ceramics, EDS was conducted along the yellow lines in Figure 1c–f. Element distribution
was measured traversing several ZnO grains, grain boundaries and intergranular phases.
It can be observed that Zn was mainly distributed in the grains (shown in black in the
figure), Bi existed in light-colored intergranular phases, while Sb mainly existed in the
spinel phase. With the increase in MnO content, the peak of Mn was gradually close to that
of Sb, which showed that most of the Mn existed in the intergranular phase and a small
portion of it was dissolved in the grain.

Figure 2a–d display the SEM pictures of the samples. The grains, grain boundaries
and intergranular phases were clearly observed. The grain size distribution was relatively
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uniform with a small amount of pores. The relative densities of the samples (ρ) are
measured and listed in Table 1 and show a good densification [13]. Because of the usage
of the nano-sized ZnO powders, the average grain sizes (d) of the samples were about
2.7 µm, which were much smaller than those of traditional ZnO varistor ceramics prepared
from micro powders [34]. With the increase in MnO content, the intergranular phase
inhibited the growth of grains, so that the average grain size shown in Figure 2e presented
a decreasing trend.
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Figure 2. (a–d) SEM pictures, (e) average grain size and (f) normalized probability plots of the ZnO 
varistor ceramics. 
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Figure 2. (a–d) SEM pictures, (e) average grain size and (f) normalized probability plots of the ZnO
varistor ceramics.

Table 1. Parameters of ZnO varistor ceramics.

Samples d
(µm) ε ρ

E1mA
(V/mm) α

JL
(µA/cm2)

φB
(eV)

ND
(1022 m−3)

Ns
(1016 cm−2)

t
(nm)

M1 2.80 0.314 97.1% 1163 15.25 40.1 1.42 7.87 6.28 399
M2 2.77 0.308 97.3% 1151 15.28 30.7 1.43 8.41 6.54 388
M3 2.66 0.316 97.6% 1172 47.86 8.4 1.69 12.59 8.68 345
M4 2.69 0.350 97.4% 1179 35.14 22.4 1.53 6.72 6.03 449
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In addition, the uniformity of grain size distribution (GSD) could not be ignored
while reducing the average grain size. The GSDs of all the samples were statistically
measured, which followed the lognormal distribution, as shown in the insets of Figure 2a–d.
The normalized curves of the probability density function were compared, as shown in
Figure 2f, and the coefficients of nonuniformity of GSD (ε) were calculated according to the
following formula [5]:

E(X) = eµ+σ2/2, (1)

D(X) =
√

eσ2 − 1(eµ+σ2/2), (2)

ε =
D(X)

E(X)
=
√

eσ2 − 1, (3)

where µ is the logarithmic mean, σ is the logarithmic standard deviation, E(X) is the
mean value of the lognormal distribution, D(X) is the standard deviation of the lognormal
distribution, and ε is the coefficients of non-uniformity. The coefficients of nonuniformity
are listed in Table 1. Combined with the half peak width of probability density function
curves and non-uniformity coefficient, it can be seen that the GSD of sample M4 is the most
non-uniform. This indicates that the excessive intergranular phase in sample M4 makes
the grain non-uniform by the pinning effect.

The nonlinear J-E characteristics of the ZnO varistor ceramics are shown in Figure 3a,
from which the potential gradient (E1mA), nonlinear coefficient (α), and the leakage current
density (JL) were calculated [35] and shown in Table 1. It is observed that the breakdown
fields of all the samples were higher than 1000 V/mm due to the rather small grain sizes of
2.7 µm. The nonlinear coefficients of samples M3 were improved to 47.9 and the leakage
current decreased to 8.4 µA/cm2 by doping 0.9 mol% MnO.
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Figure 3. (a) Nonlinear J-E curves and (b) (1/C − 1/(2C0))2~U curves of ZnO varistor ceramics.

Moreover, it is well known that the nonlinear coefficient is relevant to the Schottky bar-
rier height at the grain boundary [1]. Therefore, capacitance–voltage (C-V) characteristics
were used to calculate the parameters of Schottky barrier [36,37]:(

1
C
− 1

2C0

)2
=

2(φB + Ugb)

eε0εr ND
, (4)

where C is the barrier capacitance at bias voltage, C0 is the barrier capacitance with no bias
voltage, φB is the barrier height, ND is the donor density, Ugb is DC bias at the single crystal
interface, and εr and ε0 are the permittivity of ZnO and vacuum, respectively. Consequently,
(1/C − 1/(2C0))2~U curves are plotted in Figure 3b, which shows a good linearity. The
barrier height(φB), density of the donor (ND), density of the interface state (Ns) and width
of the depletion layer(t) were calculated by (1/C−1/(2C0))2~U curve, as shown in Table 1.

It can be observed that the high barrier height of sample M3 was the main reason for its
great nonlinearity. Furthermore, the density of the donor and interface state of sample M3
were both larger than those of other samples. It is well known that the Mn2+ dissolved in
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grains mainly replaced the lattice position of Zn2+ because of the similar radius. Therefore,
it had little influence on the electron carrier concentration [31]. However, most of the Mn
element was found to segregate at the grain boundary, which was reported to increase the
concentration of V′′Zn and V′Zn [38]. The depletion layer should satisfy the following the
principle of electric neutrality [38]:

n + [V′Zn] + 2[V′′Zn] = p + [Zn·i] + 2[Zn··i ] + [V·o] + 2[V··o ], (5)

where n is the electron carrier concentration and p is the hole carrier concentration. In order
to satisfy the principle of electric neutrality, ND increased. ND and Ns satisfy the following
relationship with φB [1]:

φB =
e2N2

S
2ε0εrND

. (6)

The interface state density of sample M3 increased, leading to the growth of the
barrier height and nonlinear coefficient [39]. However, when MnO was over doped in
sample M4, the electrical properties became worse due to the excessive intergranular phase.
Therefore, combined with the microstructure, electrical parameters and barrier height, it
can be concluded that sample M3 has the best performance when doping 0.9 mol% MnO.

4. Conclusions

In this study, ZnO varistor ceramics with a high performance were prepared. The
increased potential gradient of 1172 V/mm was mainly attributed to the usage of nano
powders, with the average grain size reduced to only 2.6 µm. The addition of MnO helped
to increase the nonlinear coefficient to 47.96 and lower the leakage current to 8.4 µA/cm2.
When doping a moderate amount of MnO, most of the Mn element, which segregated
at grain boundary, enhanced the density of interface states, resulting in a high Schottky
barrier height.
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