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Abstract: Carbon nanostructures have recently gained significant interest from scientists due to their
unique physicochemical properties and low toxicity. They can accumulate in the liver, which is the
main expression site of cytochrome P450 (CYP450) enzymes. These enzymes play an important role
in the metabolism of exogenous compounds, such as drugs and xenobiotics. Altered activity or
expression of CYP450 enzymes may lead to adverse drug effects and toxicity. The objective of this
study was to evaluate the influence of three carbon nanostructures on the activity and expression
at the mRNA and protein levels of CYP2C9 isoenzyme from the CYP2C subfamily: Diamond
nanoparticles, graphite nanoparticles, and graphene oxide platelets. The experiments were conducted
using two in vitro models. A microsome model was used to assess the influence of the three-carbon
nanostructures on the activity of the CYP2C9 isoenzyme. The CYP2C9 gene expression at the mRNA
and protein levels was determined using a hepatoma-derived cell line HepG2. The experiments have
shown that all examined nanostructures inhibit the enzymatic activity of the studied isoenzymes.
Moreover, a decrease in the expression at the mRNA and protein levels was also observed. This
indicates that despite low toxicity, the nanostructures can alter the enzymatic function of CYP450
enzymes, and the molecular pathways involved in their expression.
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1. Introduction

Carbon nanostructures have unique physical, chemical, and electrical properties that make them
great candidates for various biomedical applications. Due to their structure, they can be functionalized
not only with different types of chemical compounds, but also with biomolecules [1–3]. Therefore,
in recent years, they have attracted great interest from scientists and are vastly studied in the field
of biomedicine and related biological sciences for applications such as biosensors, drug and gene
delivery systems, as well as tissue engineering and imaging techniques [4–6]. In the case of biomedical
applications, it is crucial to assess the detailed impact of carbon nanostructures on cells and organs.
It was reported that carbon nanostructures administered intraperitoneally can be transferred and
deposited in the liver. When they have accumulated, they do not cause a toxic effect on the liver and
show no effect on overall animal health status [7,8].
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The liver is the main organ involved in biotransformation and the main expression site of enzymes
from the cytochrome P450 family (CYP450). These enzymes constitute a large and multifunctional
protein family, involved in many reactions related to the metabolism of exogenous compounds like
xenobiotics and carcinogens. They also play a crucial role in the inactivation and activation of drugs [9].
CYP450 are monooxygenases, and they catalyze the incorporation of the oxygen atom to the substrate
molecule with the simultaneous formation of a water molecule [10–12]. There are two phases of the
biotransformation of drugs and xenobiotics in the human body. CYP450 enzymes play an important
role in the course of the first-phase reactions. In these reactions, the introduction or unveiling of
the -OH, -COOH, -SH, or -NH2 functional groups occurs, which in turn, leads to an increase in the
hydrophilicity of the drug/xenobiotic and allows second-phase reactions and consequently, expulsion
from the body [13].

One of the most important CYP450 subfamilies is the CYP2C subfamily, which metabolizes
about 20% of all clinically used drugs and several endogenous compounds. Four isoenzymes are
distinguished within this subfamily: 2C8, 2C9, 2C18, and 2C19 [14–16]. Of all the isoenzymes from
the CYP2C subfamily, the CYP2C9 isoform is the most strongly expressed. It represents 50% of the
entire subfamily and metabolizes about 15% of clinically used drugs, for example, non-steroidal
anti-inflammatory drugs and diuretics [17,18]. As CYP enzymes are involved in the metabolism of
exogenous compounds, their dysfunction may lead to slower elimination of drugs or xenobiotics from
the body, thereby leading to toxicity or adverse drug reactions. The CYP2C9 enzyme predominantly
metabolizes drugs such as coumarin anticoagulants, including Warfarin, acenocoumarol and, to a
lesser extent, phenprocoumon [19,20]. These are drugs with narrow therapeutic indices, and therefore,
there is a risk of serious bleeding if plasma drug concentrations are too high due to altered CYP2C9
activity [21].

Until now, the exact mechanisms of interaction between nanostructures and CYP enzymes have
not been thoroughly researched. So far, metallic nanoparticles have been the primary targets of
the investigation. It has been shown that silver nanoparticles can inhibit the most important CYP
isoenzymes (including CYP2C9) in vitro, but not in vivo [22]. Zinc oxide nanoparticles have been
reported to downregulate the expression of CYP1A2 but upregulate CYP2C11 and CYP3A2 isoenzymes
in vivo [23]. Research evaluating the influence of polystyrene nanoparticles showed that with the
reduction of size, the level of inhibition of the investigated CYP450, among them CYP2C9, increased [24].
Current scholarship suggests that nanoparticles can interfere with the activity of CYP enzymes or
regulate their expression at the level of genes and proteins. However, the mechanisms of this activity
are still unclear and require further research that would take into account factors such as the size, shape
or surface charge of the nanoparticles [25].

The objective of this study was to investigate the influence of carbon nanostructures, such
as diamond nanoparticles (DN), graphite nanoparticles (GN), and graphene oxide platelets (GO),
on enzymatic activity and expression at the mRNA and protein levels of CYP2C9. Using a microsome
model, we investigated the influence of these carbon nanostructures on the enzymatic activity of
CYP2C9. Using hepatic-derived cell line HepG2, we have assessed the influence on gene expression at
the mRNA and protein levels.

2. Materials and Methods

2.1. Nanostructures

The DN and GN produced by the explosive method were obtained from Skyspring Nanomaterials
Inc. (Houston, TX, USA). The size of both ranged from 3 to 4 nm, and the purity was >95% for DN
and >93% for GN. Data provided by the manufacturer show the presence of -OH, -CN, -COOH,
-C-O-C, -C=O functional groups on the surface of DN. In the case of GN, manufacturer demonstrated
impurities with 0.5%–1% of hydrogen, 4% oxygen, and 2% nitrogen. FTIR analysis of the used DN and
GN was presented previously by Kurantowicz et al. [26]. Raman spectroscopy of the used GN was



Materials 2019, 12, 4149 3 of 14

presented previously by Wierzbicki et al. [27]. XRD analysis of the used DN was presented previously
by Grodzik et al. [28].

The GO produced by a modified Hummers’ method were obtained from Nanopoz (Poznan,
Poland). The method was previously described by Majchrzycki et al. [29]. A typical flake diameter was
5–30 µm, and the thickness of a single layer was in the range of 0.8–1.2 nm. The GO flakes contained
35% to 49% oxygen. The elemental analysis provided by the manufacturer showed also the presence
of 1%–4% of hydrogen, less than 2% of sulfur and 1% of nitrogen. Stock solutions of DN and GN
at a concentration of 1000 µg/mL were prepared by suspending nanoparticle powder in ultra-pure
water (MilliQ; Merck KGaA, Darmstadt, Germany), followed by dispersion using an ultrasonic bath
at 550 W/m2 for 1 h (Sonorex Super RK 514H; Bandelin Electronic, Berlin, Germany). The GO was
supplied by the manufacturer in the form of a hydrocolloid at a concentration of 4000 µg/mL. The GO
stock solution (1000 µg/mL) was prepared by diluting the 4000 µg/mL hydrocolloid in ultra-pure water.
Before each experiment, all stock solutions were sonicated in an ultrasonic bath for 30 min.

2.2. Visualization and Physicochemical Properties of Nanostructures

Transmission electron microscopy images (TEM) were performed to visualize the morphology
of nanomaterials. Droplets of nanoparticles’ solutions at a concentration of 50 mg/L were placed
onto Formvar-coated copper grids (Agar Scientific, Stansted, UK), and after air-drying, the grids
were inspected by TEM (JEM-2000EX; JEOL, Tokyo, Japan) at 80 keV. The images were captured
with a Morada 11-megapixel camera (Olympus Soft Imaging Solutions GmbH, Münster, Germany).
In order to evaluate the stability of the nanoparticles’ hydrocolloids, zeta potential, and average
hydrodynamic diameter measurements were performed. Measurements were conducted with a
Zetasizer Nano-ZS90 analyzer (Malvern, Worcestershire, UK). Zeta potential was assessed for all
nanostructures’ concentrations used in the experiments (3.13, 6.25, 50, 100 mg/L) after 120 s of
stabilization at 25 ◦C using the micro-electrophoretic technique with the Smoluchowski approximation.
The average hydrodynamic diameter of the nanostructures (using 6.25 mg/L concentration) was
measured using a dynamic light scattering technique after 120 s of stabilization at 25 ◦C. Each
measurement was repeated three times.

2.3. CYP450 Microsomal Model

Baculosomes® is a microsomal model which facilitates the assessment of the liver CYP450 enzymes
for metabolism and inhibition. The Vivid® CYP450 Screening Kit with Baculosomes expressing
CYP2C9 human CYP450 isoenzymes was purchased from Thermo Fisher Scientific (Waltham, MA,
USA). All reagents were handled and prepared according to the manufacturer’s protocol.

Enzymatic activity in the presence of DN, GN, and GO was assessed according to the
manufacturer’s protocol for the kinetic model. Hydrocolloid stock solutions were sonicated for
30 min prior to the experiment. Following the sonication, 2.5× concentrated solutions of the final
concentrations (3.13, 6.25, 50, 100 mg/L) were prepared in a reaction buffer. The 2.5× solution of
sulfaphenazole, a known inhibitor of the CYP2C9 isoenzyme, was also prepared. As recommended
in the manufacturer’s protocol, the final concentration for sulfaphenazole was 30 µM. To avoid the
inhibitory effect of the organic solvent, a 1000× higher concentration was prepared in dimethyl sulfoxide
(DMSO) and diluted in ultra-pure water to obtain a 2.5× concentration. Before the experiment, a
vivid substrate (BOMCC) was reconstituted in anhydrous acetonitrile. The experiment was carried
out on black 96-well plates (Corning, NY, USA). In the first step, 40 µL of tested compounds, the
known inhibitor (positive inhibition control) or 1× reaction buffer (control reaction) were added
in triplicate to each well. In the second step, 50 µL of the Master Pre-Mix solution containing the
CYP2C9 isoenzyme, the NADPH reductase, and regeneration system (glucose-6-phosphate and
glucose-6-phosphate dehydrogenase), was added to each well and incubated for 10 min. Incubation
allows tested compounds to interact with CYP isoenzymes. To start the reaction, a 10 µL mixture of
BOMCC substrate and NADP+ were added to each well. Fluorescence reads were started immediately
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in a kinetic mode at 60-s intervals for 1 h with an excitation wavelength of 405 nm and an emission
wavelength of 460 nm on the Infinite200 PRO microplate reader (Tecan Group Ltd., Männedorf,
Germany). Inhibition of the reaction after 60 min was calculated from the following Equation:

% inhibition =
(
1−

X − B
A− B

)
× 100%

where X is the fluorescence intensity observed in the presence of test compound (DN, GN or GO),
A is the fluorescence intensity observed in the absence of inhibitor and B is the fluorescence intensity
observed in the presence of the inhibitor (sulfaphenazole).

2.4. Cell Culture

For cytotoxicity evaluation and gene expression at the mRNA and protein levels, the hepatocellular
carcinoma HepG2 cell line was used as a model for human CYP450 enzyme expression (American Type
Culture Collection, Rockville, MD, USA).

HepG2 cells were cultured in Dulbecco’s modified Eagle medium (DMEM, Gibco™; Thermo
Fisher Scientific), supplemented with a 10% fetal bovine serum (FBS, Gibco™) and 1% antibiotic mix
(Gibco™) of penicillin (100 U/mL) and streptomycin (100 mg/mL), and the culture was maintained at
37 ◦C in a humidified atmosphere containing 5% CO2.

For all experiments, cells were seeded at a density of 5 × 105 cells/mL. For the cytotoxicity test,
they were seeded on a 96-well microplate (Corning) in 100 µL of medium per well, and for the gene
expression at the mRNA and protein levels, they were seeded on a six-well plate in 2 mL of medium
per well. The following day, the medium was removed and replaced with fresh medium, containing
dilutions of DN, GN, and GO at concentrations of 3.13, 6.25, 50, and 100 mg/L for the cytotoxicity test
and 50 mg/L for the gene expression experiments. In the control group, one-tenth of the medium was
also replaced with the solvent (ultra-pure water).

2.5. Cell Viability

Cell viability was assessed after 24 h of treatment with DN, GN, and GO with MTT assay. This
colorimetric assay is based on a conversion of yellow, soluble tetrazolium salt to purple formazan
crystals. The MTT solution at a concentration of 5 mg/mL was prepared by dissolving MTT powder in
PBS, and 15 µL of the solution was added per each well. After 3 h of incubation at 37 ◦C, solubilization
detergent (10% SDS, 0.01 M HCl) was added (100µL/well). Spectrophotometer readings were performed
the next day at a 570 nm wavelength on an Infinite200 PRO microplate reader (Tecan Group Ltd.,
Männedorf, Switzerland). Cell viability was expressed as the percentage of the control group viability,
which was designated as 100%. Calculations were performed working from the following Equation:

cell viability =
Abstest

Abscontrol
× 100%

where “Abstest” is the absorbance of wells exposed to the treatment and “Abscontrol” is the mean
absorbance of control wells.

2.6. Quantitative Real-Time PCR

2.6.1. RNA Isolation

Total RNA was isolated with the PureLink® RNA Mini Kit (ThermoFisher Scientific). After 24 h
of incubation with DN, GN, and GO at the concentration of 50 mg/L, the medium was removed,
and cells were washed twice with PBS and detached from plates using cell scrapers. Detached cells
were collected in tubes and centrifuged for 5 min at 1200 rpm to obtain pellets, which were further
re-suspended in a freshly prepared lysis buffer. Cells were homogenized using TissueLyser LT (Qiagen,
Germantown, MD, USA), with a pre-frosted adapter at 50 Hz for 5 min. After homogenization, 70%
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ethanol was added, and the tubes were gently mixed by inverting. Further steps were performed
according to the manufacturer’s protocol. The RNA concentration in each sample after isolation was
measured with the NanoDrop 2000 (Thermo Fisher Scientific), and samples were kept at −80 ◦C.

2.6.2. cDNA Synthesis

For reverse transcription, the cDNA high capacity reverse transcription kit (ThermoFisher
Scientific) was used. The RNA levels in all samples were equalized, and the procedure was performed
according to the manufacturer’s protocol with the following cycle conditions: 10 min at 25 ◦C, 120 min
at 37 ◦C, and 5 min at 4 ◦C, using the 2720 Thermal Cycler (Thermo Fisher Scientific). The cDNA
concentration was measured with the NanoDrop 2000 spectrophotometer, and samples were diluted to
10 ng/µL in RNase/DNase-free water. All samples were kept at −20 ◦C.

2.6.3. Gene Expression

Gene expression at the mRNA level was determined using the ∆∆CT relative quantification
real-time PCR method. The expression level of the CYP2C9 gene was assessed in reference to a
housekeeping gene, GAPDH (glyceraldehyde 3-phosphate dehydrogenase). Relative gene expression
(fold change [FC]) was calculated from the formula 2−∆∆CT, where ∆∆CT = ∆CT of a control − ∆CT of
a treated sample and ∆CT = mean CT of GAPDH − CT of a target gene.

The reaction was performed using the Step One™Real-Time PCR System (Thermo Fisher Scientific).
The thermal profile for the reaction was: 95 ◦C for 10 min, followed by 40 cycles of 95 ◦C for 15 s
and 60 ◦C for 60 s. The reaction was set for 15 µL volume using 500 nM primer concentration of the
Power SYBR™ Green PCR Master Mix (Thermo Fisher Scientific) and 50 ng of cDNA template. Details
regarding the primers are shown in Table 1.

Table 1. Sequence of primers used in this study.

Gene Primer Sequence 5′→3′ PCR Product (bp) Reference

CYP2C9 F: CTCTCTTTCCTCTGGGGCATT
R: GGAAACTCTCCGTAATGGAGGTC 124 [30]

GAPDH F: GAGAAGGCTGGGGCTCATTTG
R: CATGGTTCACACCCATGACGA 97 PrimerBlast

2.7. Western Blot

2.7.1. Protein Isolation

After 24 h of incubation with the tested nanostructures, the medium was removed, and cells were
washed 3× with cold PBS and detached from the wells by cell scrapers. Cells suspended in 1 mL
of PBS were transferred to tubes and centrifuged at 2000 rpm for 5 min. The pellets obtained were
re-suspended in a 50 µL cold RIPA buffer, containing proteases and phosphatases inhibitors. Samples
were incubated at 4 ◦C for 30 min and vortexed every 10 min. Following the incubation, samples were
centrifuged at 4 ◦C for 30 min at 12,000 rpm, and supernatants with isolated proteins were transferred
to new tubes. The protein concentration in each sample was assessed with the Pierce™ BCA Protein
Assay Kit (ThermoFisher Scientific). The assay was carried out in accordance with the manufacturer’s
protocol. On the microplates (Corning), 2 µL of samples were diluted in 23 µL ultra-pure water and
then 200 µL of the BCA working solution was added. Plates were incubated at 37 ◦C for 30 min. After
incubation, an absorbance read was performed at 562 nm on an Infinite200 PRO microplate reader
(Tecan Group Ltd.). The protein concentration in each sample was calculated with the formula obtained
from the standard curve for known bovine serum albumin (BSA) concentrations.
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2.7.2. Western Blot Analysis

Samples were equalized to 25 µg/mL by dilution in ultra-pure water and a loading buffer with
β-mercaptoethanol. Samples were denaturated at 95 ◦C for 4 min and separated by SDS-PAGE
electrophoresis (5% stacking gel, 10% running gel). Electrophoretic separation was carried out at
a voltage of 80 V in a stacking gel, and at 120 V in a running gel. Following the electrophoresis,
a semi-dry transfer onto PVDF membrane was performed with the Trans-Blot®Turbo™ Transfer
System (2.5 A, 7 min) (Bio-Rad, CA, USA). Membranes were incubated in 5% blotting-grade blocker
(Bio-Rad) for one hour. After blocking, membranes were coated with monoclonal primary antibodies,
CYP2C9 (ab4236, Abcam, UK) and GAPDH (ThermoFisher Scientific, MA, USA), and incubated at
4 ◦C overnight. The concentrations of antibodies were 1:1000 and 1:4000, respectively. The following
day, the membranes were washed three times in a TBST buffer and incubated for one hour at
room temperature with secondary antibodies: Anti-mouse (ab97020, Abcam, UK) for GAPDH and
anti-rabbit (ab97048, Abcam, UK) for CYP2C9, both at a concentration of 1:5000. Prior to developing,
the membranes were washed again three times in the TBST buffer. Developing was performed with
CDP-Star® Chemiluminescent Substrate (Merck, Germany) and Azure c400 (Azure Biosystems, CA,
USA). The analysis of relative protein expression was performed with the ImageJ Fiji software [31].

2.8. Statistical Analysis

Cell viability data were analyzed using one-factor analysis of variance (ANOVA) with GraphPad
Prism 7 (GraphPad Software, Inc., CA, USA). Differences between groups were tested with Tukey’s
post-hoc test. The gene expression data were analyzed using the t-test. Differences at p < 0.05 were
considered significant.

3. Results

3.1. Physicochemical Properties of DN, GN and GO

All carbon nanostructures examined showed high stability. Both DN and GO had a negative
surface charge, and the value of zeta potential in all tested concentrations was >−24 mV. In comparison,
GN possessed a positive surface charge, and the zeta potential values were lower, ranging from
18 to 24 mV (Table 2). The highest stability was demonstrated by GO, and the lowest stability was
demonstrated by GN. Overall, all nanostructures tested had the lowest stability in the concentration of
3.13 mg/L. TEM images (Figure 1, Figures S1–S3 in the Supplementary Materials) showed that DN and
GN have a tendency to agglomerate, which was confirmed by the average hydrodynamic diameter
(DLS) measurements.

Table 2. Zeta potential and average hydrodynamic diameter of examined nanostructures.

Nanostructure Zeta Potential (mV)
Average

Hydrodynamic
Diameter DLS (nm)

Size TEM
(nm)

Concentration (mg/L) 3.13 6.25 50 100 -
DN −24.27 −32.40 −27.93 −31.0 209.53 3–4
GN 18.23 22.53 21.34 24.40 619.33 4–8
GO −48.8 −49.67 −53.87 −57.20 1747.00 >1000
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Figure 1. Transmission electron microscopy images of nanostructures, diamond nanoparticles (A),
graphite nanoparticles (B), and graphene oxide platelets (C). A: Scale bar = 200 nm, B: Scale bar = 100 nm,
C: Scale bar = 5 µm.

3.2. Catalytic Activity and Inhibition of the CYP2C9 Isoenzyme in the Presence of Increasing Concentrations of
DN, GN and GO

The activity of the CYP2C9 isoenzyme was evaluated with an assay based on a Baculosome
CYP450 model. The data collected are presented as changes in relative fluorescence of the enzymatic
reaction product (Figure 2A), and as a relative inhibition with reference to a known inhibitor and an
undisturbed reaction (Figure 2B).
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Figure 2. (A) Catalytic activity of the CYP2C9 isoenzyme in the presence of the carbon nanostructures
tested, depending on concentration. Activity was measured by the enzymatic reaction product’s
relative fluorescence reads (RFU—relative fluorescence units). The dark blue line depicts the control
without the nanostructures (reaction not disturbed), and the brown line depicts the inhibitor control
(30 µM sulfaphenazole). (B) Inhibition of the CYP2C9 isoenzyme after 60 min of incubation with the
tested concentrations of carbon nanostructures: DN (orange bars), GN (blue bars), GO (pink bars).
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All tested concentrations of carbon nanostructures decreased the enzymatic activity of the
CYP2C9 isoenzyme. In the case of GN and GO, the inhibition rose with increasing concentrations of
nanostructures. The two highest concentrations of GN and GO that were used caused inhibition to be
higher than 40%. Additionally, only in the presence of GO at 50 and 100 mg/L were the disturbances in
the fluorescence reads observed. The poorest inhibitory effect was noticed in the case of DN. The lowest
and highest concentrations of DN used in this study showed inhibition around 15% after 60 min of
the reaction.

3.3. Cell Viability

The cytotoxicity of the tested carbon nanostructures was assessed with MTT assay after 24 h of
treatment. DN and GO did not decrease the viability of the HepG2 cell line. Only in the highest tested
concentration (100 mg/L) was a slight decrease in viability observed (Figure 3). Each of the tested
concentrations of GN caused a significant decrease in HepG2 cell viability to about 50%.

Materials 2019, 12, x FOR PEER REVIEW 8 of 14 

 

(30 µM sulfaphenazole). (B) Inhibition of the CYP2C9 isoenzyme after 60 min of incubation with the 
tested concentrations of carbon nanostructures: DN (orange bars), GN (blue bars), GO (pink bars). 

3.3. Cell Viability 

The cytotoxicity of the tested carbon nanostructures was assessed with MTT assay after 24 h of 
treatment. DN and GO did not decrease the viability of the HepG2 cell line. Only in the highest tested 
concentration (100 mg/L) was a slight decrease in viability observed (Figure 3). Each of the tested 
concentrations of GN caused a significant decrease in HepG2 cell viability to about 50%. 

 

Figure 3. HepG2 cell viability after treatment with the tested carbon nanostructures at concentrations 
of 3.13, 6.25, 50 and 100 mg/L: DN (orange bars), GN (blue bars), GO (pink bars). Cell viability was 
determined by MTT assay. Results are presented as means with SD (n = 3) as a percentage of the 
control (containing only solvent in the same volume as in the nanostructure-treated wells). * p < 0.05 
statistical significance in comparison to control (one-factor ANOVA with Tukey’s post-hoc test). 

3.4. CYP2C9 Gene Expression at the mRNA and Protein Levels 

Real-time PCR analysis showed that both DN and GN reduced the level of mRNA of the CYP2C9 
gene in the HepG2 cell line, whereas GO did not significantly affect its expression. The highest 
downregulation was observed in the group treated with DN: The expression was 33.4% of the control, 
and, in the case of GN, it was 52.5% of the control (Figure 4, Table 3). However, the differences in 
expression between the treated and the control group were not statistically significant (p > 0.05). 

In the Western blot analysis, the presence of the CYP2C9 protein was demonstrated in all tested 
samples: a band at a height of approximately 60 kDa. Intense bands at around 180 kDa were also 
observed. There was a visible change in the intensity of the band at a height of approximately 60 kDa 
in the samples treated with DN, GN, and GO. Based on the analysis performed with ImageJ software, 
it was shown that the relative expression of the protein compared to expression in the control 
(designated as 1) in the case of ND was 0.44 (44% of control) and in the case of GN and GO, was 0.18 
(18% of control). 

Figure 3. HepG2 cell viability after treatment with the tested carbon nanostructures at concentrations
of 3.13, 6.25, 50 and 100 mg/L: DN (orange bars), GN (blue bars), GO (pink bars). Cell viability was
determined by MTT assay. Results are presented as means with SD (n = 3) as a percentage of the control
(containing only solvent in the same volume as in the nanostructure-treated wells). * p < 0.05 statistical
significance in comparison to control (one-factor ANOVA with Tukey’s post-hoc test).

3.4. CYP2C9 Gene Expression at the mRNA and Protein Levels

Real-time PCR analysis showed that both DN and GN reduced the level of mRNA of the CYP2C9
gene in the HepG2 cell line, whereas GO did not significantly affect its expression. The highest
downregulation was observed in the group treated with DN: The expression was 33.4% of the control,
and, in the case of GN, it was 52.5% of the control (Figure 4, Table 3). However, the differences in
expression between the treated and the control group were not statistically significant (p > 0.05).

In the Western blot analysis, the presence of the CYP2C9 protein was demonstrated in all tested
samples: a band at a height of approximately 60 kDa. Intense bands at around 180 kDa were also
observed. There was a visible change in the intensity of the band at a height of approximately
60 kDa in the samples treated with DN, GN, and GO. Based on the analysis performed with ImageJ
software, it was shown that the relative expression of the protein compared to expression in the control
(designated as 1) in the case of ND was 0.44 (44% of control) and in the case of GN and GO, was 0.18
(18% of control).
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Figure 4. Gene expression at the mRNA and protein levels after treatment with the carbon nanostructures
tested at 50 mg/L. (A) Relative gene expression at the mRNA level: DN (orange bars), GN (blue bars), GO
(pink bars). Bars represent means with SD (n = 3, each of the biological replicates run in two technical
replicates). Relative expression was calculated using GAPDH as a housekeeping gene. For easier
interpretation, the results are presented as log2FC, where negative values indicate downregulation and
positive values indicate upregulation in comparison to the gene expression in the control (untreated
cells, CTR), designated as 0. Results were not statistically significant. (B) CYP2C9 isoenzyme expression
at the protein level, control: Untreated cells (containing only solvent in the same volume as in
nanostructure-treated wells), GAPDH was used as a loading control.

Table 3. Detailed changes in the expression of CYP2C9 in HepG2 cells after treatment with
carbon nanostructures.

Nanostructure FC 1 Log2FC

DN 0.334 −1.580
GN 0.525 −0.929
GO 1.073 0.102

1 Data presented as fold change (FC), where control is designated as 1 (upregulation > 1, downregulation < 1).

4. Discussion

Intensive development of nanotechnology, including biomedical applications, leads to increased
exposure to nanostructures and raises safety questions. Therefore, the possibility of adverse effects
requires precise determination of the influence of nanostructures on living organisms and action
mechanisms, prior to their safe application [32].

In this study, we investigated the influence of three types of carbon nanostructures: DN, GN,
and GO, at high (50 and 100 mg/L) and low (3.13 and 6.25 mg/L) concentrations on the activity
and expression of the CYP2C9 isoenzyme, which is one of the four isoenzymes from the subfamily
CYP2C. We have compared the results obtained with the cytotoxic effect caused by the aforementioned
nanostructures. Experiments were conducted using two in vitro models: The Baculosomes model
(microsome model) and the HepG2 cell line model.

With the Baculosomes model, we assessed the CYP2C9 isoenzyme activity in the presence of
DN, GN, and GO. Baculosomes is a model of microsomes obtained using a protein expression system
based on insect cells [33]. This model allows for the evaluation of the direct interactions between the
tested compounds and one specific CYP450 enzyme outside the cellular environment. Our results have
shown that the CYP2C9 isoenzyme activity is inhibited in the presence of all tested nanostructures.
In the case of GN and GO, concentration-dependent inhibition of enzyme activity was observed. Both
GN and GO strongly inhibited the CYP2C9 isoenzyme when introduced in high concentrations of
50 and 100 mg/L. In the presence of GO at 50 and 100 mg/L, we also observed disturbances in the
fluorescence reads. Such disturbances have also been noticed in our previous study investigating
the CYP1A2, CYP2D6, and CYP3A4 isoenzymes [34]. In this case, the presence of GO at 50 and
100 mg/L also caused the disturbances in the fluorescent reads in all isoenzymes examined. Regarding
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the interactions of nanoparticles with enzymes, it is assumed that they can inhibit the enzymes
by changing their conformation, disrupting their structure and/or function or blocking their active
site [22,35,36]. The physicochemical properties of nanostructures, as well as environmental conditions
(pH, temperature), affect their interactions with enzymes, the substrate accessibility, and their binding
orientations [37]. GO platelets are rich in oxygen-containing functional groups, and therefore, they
have a negative surface charge that enables them to create weak hydrogen bonds [38,39]. Zeta potential
measurements confirmed a high negative surface charge of GO used in this study. In addition,
various oxygen groups distributed on the surface of GO platelets provide many more interaction sites
between biomolecules, leading to the formation of covalent and non-covalent bonds [40]. Moreover,
nanoparticles can disrupt the structure of the cell membrane, and thus disturb the function of enzymes
associated with it [41]. Cytochrome P450 enzymes belong to the group of monooxygenases that require
an external electron donor [12]. In the case of microsomal CYP450 isoenzymes, the cytochrome P450
reductase is responsible for generating and transporting electrons. Transfer of the electron causes the
activation of molecular oxygen and the introduction of one of its atoms into the organic substrate, with
a simultaneous reduction of the second atom to the water molecule [42]. The reduced and disrupted
activity of isoenzymes caused by GO may, therefore, result from the disturbance of electron transport
from the cytochrome P450 reductase, which may alter the catalytic cycle of these enzymes.

In the case of DN, inhibition was not strictly correlated with the increase or decrease in
concentration. Additionally, DN was characterized by the lowest ability to inhibit the activity
of CYP2C9 compared to GN and GO. We have also observed that DN most strongly inhibited the
activity of the examined isoenzyme in the lowest and the highest tested concentrations. The same
tendency was also observed in our recent study regarding the influence of carbon nanostructures
on CYP1A2, CYP2D6, and CYP3A4 isoenzymes [34]. This provides more evidence to support the
assumption that with increasing concentrations, the agglomeration of DN occurs, leading to a decrease
of available surface for interactions.

It was previously noticed that DN, in contrast to GN, shows no toxic effect against HepG2 cells [43].
Data collected in this study confirmed these findings. DN and GO caused no toxic effect against HepG2
cells, whereas GN significantly reduced the viability. Nevertheless, despite not causing direct toxic
effects, the carbon nanostructures used in this study did alter the expression of the CYP2C9 isoenzyme
at the mRNA and protein levels. This suggests that they can affect the molecular pathways and activity
of biomolecules. DN and GN slightly downregulated CYP2C9 gene expression, whereas GO did not
show any effect. In our previous study, GO significantly downregulated expression of the CYP1A2,
CYP2D6, and CYP3A4 isoforms, but only in the HepaRG cell line [34]. Moreover, the expression of
transcription mediator genes Ahr, CAR, and PXR have also been downregulated. A significantly greater
reduction in the expression was observed in HepaRG cells than in HepG2. In the case of the HepaRG
cell line, it has been clearly demonstrated that GO had the greatest impact on the downregulation of all
isoforms. Such differences may be a result of a low expression of CYP enzymes in HepG2 compared
to the HepaRG cell line [44]. The data obtained confirm that the HepG2 cell line has a low CYP450
expression and therefore is not the best model for CYP investigation.

The results obtained in this study showed that the protein level was significantly downregulated
in the presence of DN, GN, and GO. Cells exposed to GN and GO had the lowest protein expression.
Its relative expression was decreased by 80% compared to expression in the control. In the case of
DN, the relative expression of the protein was decreased by 60%. The different impacts at the mRNA
and protein levels may result from different expression regulation mechanisms. There are several
mechanisms that regulate the expression of cytochrome P450 enzymes. Apart from the regulation of
gene transcription, mRNA stabilization and post-translational modifications can also occur [45,46].
There is a distinct ‘ethanol-type induction’ where CYP2E1 isoenzyme expression is not altered at
the mRNA level, but the protein level is upregulated through increased translational efficiency and
stabilization of the protein involving ubiquitinylation and proteasomal degradation [47]. In this case,
the opposite trend was observed, which may be connected with nanostructures’ tendency to attach
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various types of biomolecules, including proteins and lipids, which form the so-called ‘bio-corona’ [48].
Several studies reported that GO has an extremely high protein adsorption capacity [49–51]. It was
noticed that the cytotoxic level of GO toward A549 lung carcinoma cells was greatly mitigated in the
10% fetal bovine serum. Another study had revealed that coating GO with BSA decreased cytotoxicity
toward A549 cells by reducing the physical interaction of GO with the cell membrane. On the other
hand, the high affinity of carbon nanostructures to bind proteins and lipids may be the reason for their
disruption and decreased level in the cells [52].

Current knowledge about the influence and interactions of nanostructures with CYP450 enzymes
is still very limited. Until now, only a few studies investigating the effect of carbon nanostructures
on CYP450 have been carried out. It was reported that single-walled carbon nanotubes inhibit the
activity and downregulate the expression of the CYP1A1 and CYP1B1 isoenzymes in HepG2 and
MCF-7 cells. The authors also demonstrated that the gene expression was downregulated by blocking
the binding of the AhR receptor to the enhancer region of their genes [53]. There is a need to conduct
more studies regarding the influence of carbon nanostructures on CYP450 enzymes, as they play an
important role in catalyzing the phase I biotransformation reactions. The reactions of this phase are
a key element in the metabolism of drugs and xenobiotics [54]. Therefore, the decreased expression
or activity of CYP450 enzymes, including CYP2C9, may lead to adverse drug reactions and drug
toxicity [55]. The CYP2C9 isoenzyme is responsible for the metabolism of several clinically used drugs
that have a narrow therapeutic index, among them mostly non-steroidal anti-inflammatory drugs, oral
hypoglycemic agents, and anticoagulants, such as warfarin [56]. Warfarin, from the group of coumarin
anticoagulants, is one of the most commonly prescribed drugs and one of the most important CYP2C9
substrates predominantly metabolized by this enzyme [57]. Compromised metabolism of Warfarin
can result in serious health effects, as it is used to prevent thromboembolism in patients at risk [21].
Therefore, the possible influence on the activity of CYP2C9 needs to be taken into consideration when
designing future biomedical applications of carbon nanostructures.

5. Conclusions

The results of this study have shown that DN, GN, and GO can inhibit the activity of the CYP2C9
isoenzyme and downregulate its expression at the mRNA and protein levels. This suggests that despite
not causing toxic effects, carbon nanostructures can alter the molecular pathways and activities of
biomolecules. This is extremely important in the case of the CYP2C9 enzyme, as it is responsible for the
metabolism of several drugs with a narrow therapeutic index. This should be taken into consideration
when designing biomedical applications of carbon nanostructures.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/12/24/4149/s1,
Figure S1: Transmission electron microscopy image of diamond nanoparticles, Figure S2: Transmission electron
microscopy image of graphite, Figure S3: Transmission electron microscopy image of graphene platelets.
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