Published online 12 November 2007

Nucleic Acids Research, 2007, Vol. 35, No. 21 el44
doi:10.1093/nar|gkm984

A ligation assay for multiplex analysis of CpG
methylation using bisulfite-treated DNA

Christina Dahl and Per Guldberg*

Department of Genomics and Danish Centre for Translational Breast Cancer Research, Institute of
Cancer Biology, Danish Cancer Society, Copenhagen, Denmark

Received July 11, 2007; Revised September 28, 2007; Accepted October 20, 2007

ABSTRACT

Aberrant methylation of promoter CpG islands
is causally linked with a number of inherited
syndromes and most sporadic cancers, and may
provide valuable diagnostic and prognostic biomar-
kers. In this report, we describe an approach to
simultaneous analysis of multiple CpG islands,
where methylation-specific oligonucleotide probes
are joined by ligation and subsequently amplified by
polymerase chain reaction (PCR) when hybridized in
juxtaposition on bisulfite-treated DNA. Specificity of
the ligation reaction is achieved by (i) using probes
containing CpGpCpG (for methylated sequences) or
CpApCpA (for unmethylated sequences) at the 3’
ends, (ii) including three or more probes for each
target, and (iii) using a thermostable DNA ligase. The
external probes carry universal tails to allow ampli-
fication of multiple ligation products using a
common primer pair. As proof-of-principle applica-
tions, we established duplex assays to examine the
FMR1 promoter in individuals with fragile-X syn-
drome and the SNRPN promoter in individuals with
Prader-Willi syndrome or Angelman syndrome, and
a multiplex assay to simultaneously detect hyper-
methylation of seven genes (ID4, APC, RASSF1A,
CDH1, ESR1, HIN1 and TWIST1) in breast cancer cell
lines and tissues. These data show that ligation of
oligonucleotide probes hybridized to bisulfite-trea-
ted DNA is a simple and cost-effective approach to
analysis of CpG methylation.

INTRODUCTION

Cytosine methylation is a modification of DNA that
is important for epigenetic regulation of endogenous
genes, silencing of transposons and control of genome
stability (1,2). In humans, DNA methylation occurs
almost exclusively at cytosines within the context of
CpG dinucleotides. A large proportion of human gene

promoters contain CpG clusters, so-called CpG islands,
which may be either unmethylated or hypermethylated.
Promoter hypermethylation is often associated with
transcriptional inactivation and has been shown to be
responsible for the stable monoallelic silencing of
imprinted genes and genes on the X chromosome during
human development (3,4).

Aberrant methylation of promoter CpG islands has
been implicated in a number of inherited disorders,
including the fragile X syndrome, Beckwith-Wiedemann
syndrome, Prader-Willi syndrome (PWS) and Angelman
syndrome (AS) (4,5). Although the genomic abnormali-
ties responsible for these syndromes include deletions,
uniparental disomy, imprinting mutations and trinucleo-
tide repeat expansions, the resulting changes in DNA
methylation may serve as valuable diagnostic markers.
Changes in DNA methylation have also been associated
with neoplastic initiation and progression (6,7). The
best characterized epigenetic change in tumor cells is
transcriptional silencing of tumor suppressor genes
caused by increases in promoter methylation. The patterns
of aberrant promoter methylation are non-random and
tumor-type specific (8§—10), and methylation events that
frequently occur in one or more tumor types are being
developed as biomarkers for risk assessment, early
detection and response to therapy (11-13).

The gold standard for high-resolution mapping of
DNA methylation is bisulfite genomic sequencing (14).
The basis of this method is treatment of genomic DNA
with bisulfite, which effectively deaminates unmethylated
cytosine residues to uracil, while 5-methylcytosines are
resistant to this treatment and remain unchanged (15).
Bisulfite-treated DNA can be used as template in a
standard PCR, in which uracils (formerly unmethylated
cytosines) will be amplified as thymine and only 5-methyl-
cytosines will be amplified as cytosine, to generate a
template that is amenable to direct or cloned sequence
analysis. Despite the power of sequence analysis to
distinguish between cytosine and S5-methylcytosine, this
approach may still be impracticable in many research
and diagnostic laboratories and may not always be the
most rational approach to detect aberrant DNA
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methylation. A wealth of PCR-based methods have been
developed to analyze bisulfite-treated DNA, including
methylation-specific PCR (16), methylation-sensitive
single-nucleotide primer extension (Ms-SnuPE) (17),
MethyLight (18), HeavyMethyl (19), combined bisulfite
restriction analysis (COBRA) (20) and methylation-
specific melting curve analysis (MS-MCA) (21). For
comprehensive reviews of methods for analysis of DNA
methylation, see references (22,23).

The different techniques provide information on DNA
methylation at different levels and have their own
advantages and limitations. Notably, none of the above
methods provides a simple means to simultaneously
analyze multiple genes in a single reaction. Here, we
describe an approach to multiplex analysis of CpG
islands, which utilizes oligonucleotide probes that can
hybridize to bisulfite-treated DNA and then be ligated
into an amplifiable product when perfectly matched to
the target sequence. We describe a probe design that, in
combination with the use of a thermostable DNA
ligase, proved sufficiently robust to discriminate between
methylated and unmethylated sequences. As proof-
of-principle applications, duplex assays were used to
examine the SNRPN and FMRI promoters in individuals
with inherited disorders, and a multiplex assay was used
to simultaneously detect aberrant promoter hypermethy-
lation of ID4, APC, RASSFIA, CDHI, ESRI, HINI and
TWISTI in breast cancer cell lines and tissues.

MATERIALS AND METHODS
Cell lines, tumor biopsies and DNA

MCF7, CAMA-1, BT-20, HBL-100, HCC1937,
HCC1569, MDA-MD-157 and ZR-75-1 breast cancer
cell lines were grown in RPMI 1640 medium with
Glutamax-1 (GIBCO) and 10% fetal bovine serum
(GIBCO). Tissue biopsies from 17 high-risk breast
cancer patients (15 ductal invasive carcinomas and two
lobular lesions) were obtained and processed as previously
described (24). For 10 of these patients, tissue was also
available from axillary nodal metastases.

DNA and sodium bisulfite treatment

DNA from cell lines and biopsies was extracted using
the NucleoSpin Tissue kit (Macherey-Nagel). Peripheral
blood lymphocyte (PBL) DNA from healthy donors and
from persons with AS, PWS or fragile X syndrome
was previously analyzed using MS-MCA (21,25). Two
micrograms of genomic DNA were treated with sodium
bisulfite according to standard procedures (15). The
bisulfite-modified DNA was resuspended in 20pul of
TE buffer (10mM Tris—=HCI and 1 mM EDTA, pH 8.5)
and used immediately or stored at —80°C until use.
Bisulfite-treated DNA gave no detectable signal in a
TagMan® assay with primers for a normal, non-converted
ACTB sequence (18), which confirms that the bisulfite
conversion was complete.
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Probes

The sequences of oligonucleotide probes (Sigma-Genosys)
used for ligation-based DNA methylation analysis are
shown in Table 1. Promoter sequences were obtained
from the UCSC Genome Browser, using the accession
numbers listed in Table 1. All probes carrying a
5" phosphate group were ordered purified by polyacryla-
mide gel electrophoresis.

Hybridization, ligation and PCR

Hybridization was performed in a Peltier thermal
cycler (PTC-200; MJ Research) in total volumes of 8 ul
containing bisulfite-treated DNA (5pul), 1.5 ul of SALSA
MLPA buffer (MRC-Holland) and 1.5ul of a mix
containing 0.5-10fmol of each probe diluted in TE
buffer. The samples were heated to 95°C for 1 min and
then incubated at 60°C for 16 h. Ligation of the hybridized
oligonucleotides was achieved by addition of 32pul of a
ligase mix containing 3 pul of Ligase buffer A (MRC-
Holland), 3 ul of Ligase buffer B (MRC-Holland) and 1 U
of Tag DNA ligase (New England Biolabs) and incuba-
tion at 54°C for 15min. After inactivation of the ligase
at 98°C for 5min, 6 pl of the ligation reaction was included
in a total volume of 25pl, containing 7.5 pmol of each
primer (5-TATGTAAAACGACGGCCAGT-3' and
S-TATTATAGGGCGAATTGGGT-3’), 1 x Multiplex
PCR Master Mix (Qiagen) and 1 x Q-solution (Qiagen).
PCR conditions were: 95°C for 15min to activate the
enzyme, followed by 40 cycles at 95°C for 30s, 52°C for
1.5min and 72°C for 1.5min, and a final incubation
at 72°C for 10min. The PCR products were resolved by
electrophoresis in 4% NuSieve GTG agarose gels
(Cambrex) and visualized by ethidium bromide staining.

Methylation-specific PCR and MS-MCA

Methylation-specific PCR (16) was performed using
the HotStarTaq Kit (Qiagen) and methylation-specific
primers, designed according to previously described
principles (23). MS-MCA (21) was carried out using the
LightCycler 1.1 instrument (Roche) and the FastStart
DNA Master SYBR Green I Kit (Roche). Primer
sequences and PCR conditions are available upon request.

RESULTS
Outline of the assay

The principle of the assay is shown in Figure 1. For
each target, oligonucleotide probes specific for either
methylated or unmethylated DNA are allowed to hybri-
dize immediately adjacent to each other on bisulfite-
treated DNA and then ligated using a DNA ligase.
The probes carry universal tails, which serve as primer
binding sites for PCR amplification of the ligation
products. Previous work has shown that DNA ligases
are sensitive to mispairs present on the 3’ side of the ligase
junction (26-28). Therefore, to discriminate between
methylated and unmethylated DNA on the basis of the
ligation reaction, methylation-specific bases are included
at the 3’ end of the probes. When the target sequence
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Table 1. Oligonucleotide probes for ligation-based detection of CpG methylation

Number of GenBank
probes accession no.

Probes sequences (5'-3')

Product length (bp)

SNRPN U 3 L32702

P-TCAAACATCTCCAACAACCACTCCACT-[X] 122

P-TCACTAACCACTCCTCAAACAAATACA
[Y]-CACAACTAACCTTACCCACTCCATCACA

SNRPN M 3 L32702

P-TCAAACATCTCCGACGACCGCT-[X] 109

P-TCACTAACCGCTCCTCAAACAAATACG

[Y]FACCTTACCCGCTCCATCGCG
P-CATACACACTACTAAAAACCAACCAAAATACCAAATCAAA-[X] 138

FMRI'U 3 X61378

P-CCCTCTCTCTTCAAATAACCTAAAAACACACA
[Y]-CCCACAAACTCAACCCCTCAACCCCA

FMRIM 3 X61378

P-CATACGCGCTACTAAAAACCGACCGAAATAC-[X] 125

P-CCCTCTCTCTTCAAATAACCTAAAAACGCGCG
[Y]-CGAACTCAACCCCTCGACCCCG

ID4 3

NM_001546 P-AACGAAACCCGCTAAACGCGC-[X] 104

P-AACCGAATCGCAACGCGAACCG
[Y]-CGAAAACGAAACCAACGCGCG

APC 3

NM_000038 P-AACTCCCGACGAAAATAAAAAACGC-[X] 115

P-TACGCCCACACCCAACCAATCGACG
[Y]-CCAATACAACCACATATCGATCACG

RASSFIA 3

NM_007182 P-CCCAACGAATACCAACTCCCGCAACTCAATA-[X] 126

P-CTCCAACCGAATACGACCCTTCCCAACGCG
[YI-GCGCGATACGCAACGCGTTAACACG

CHDI 3

NM_004360 P-CCCACCCGACCTCGCATAAACGCGATAACCC-[X] 140

P-AACCCCTCCCCAAAACGAAACTAACGACCCG
[YIITAAAAATTCACCTACCGACCACAACCAATCAACAACGCG

ESRI 3

NM_000125 P-ATAAAACCGAACGACCCGACGAAAACAAATACAATCCC-[X] 154

P-AACTCTAACCCCGACCCTACCCCGAAAACCTACGAATCCG
[YI-TCAAAAACGACGCAACGCATATCCCGCCGACACGCG

PAH 4

NM_000277 P-ATCAATATTCCCTACTACATCCCATAAACC-[X] 175

P-CCCCAAATAAAAAATTATTATCACTATTAAATCAAA
P-AAAAAAAACTTTAACTTCTCTAATAAACAATACTATAAA
[YI-TTTTAAATAACTATCTTCTCCAACTCCAAA

HINI 4

NM_052863 P-CCGACCTCGCCCGCGCTCCTAAAAAAACCC-[X] 193

P-AACAAAACCACGAAACTTCTTATACCCGATCCTCGCCCCTCCAACG
P-AAAACTCGAAACGCGCGAAAAACCTACGACTACCCG
[YIFACCACGCAAAACCCCAAAAAAACGACGAACTTCATAACGCG

TWISTI 5

NM_000474 P-CGATAACAACCCCATCCGAAATAACTATAACAACAACAATAACAACAA-[X] 213

P-AACCCTAACGCAACCCAAAAAACGATCGAAAAAAACTATCCTAACCG
P-CCGAAACGTACGAACAACGCCCCCG
P-ACGAACGCGAAACGATTTCCTTCCCCG
[Y]-CCTTCCCTCCCCGTCGCCTTCCTCCG

[X

] = 5-ACCCAATTCGCCCTATAATA-3
[Y]

S-TATGTAAAACGACGGCCAGT-3'

contains one or more CpGpCpG sites, the 5 probe is
designed to contain CpGpCpG (for the methylated
sequence) or CpApCpA (for the corresponding unmethy-
lated sequence) at the 3’ end, which will introduce a
non-ligatable mismatch at the ligation junction when
hybridized to sequences that do not match the methylation
status. If the promoter contains no CpGpCpG sites, a
single CpG site is used as ligation junction.

In principle, two probes would be sufficient to
discriminate between methylated and unmethylated
sequences of a specific target. However, some of our
assays based on two probes gave unspecific results,
particularly when DNA from tumor specimens was used
as template, probably because some probes could
hybridize unspecifically to other sites and lead to the
generation of an amplifiable ligation product. To increase
the specificity, another strategy was adopted, which
involves three or more adjacent probes for each target
sequence. In this setting, generation of an amplifiable
ligation product depends on at least two independent

ligation reactions. At the same time, it provides a
simple means for adjusting the length of the ligation
products to allow electrophoretic separation after PCR
amplification.

Analysis of the SNRPN CpG island in individuals
with PWS and AS

As the first proof-of-principle application, we established
an assay to examine SNRPN on chromosome 15q11.2 in
individuals with PWS or AS. In healthy individuals,
SNRPN is subject to genomic imprinting, with one
unmethylated allele of paternal origin and one methylated
allele of maternal origin (29). The majority of PWS cases
have a deletion of the SNRPN locus on the paternal-origin
chromosome 15 or maternal uniparental disomy, and
hence carry only the methylated maternal allele. In AS,
~70% of the cases harbor a deletion of the maternal
methylated allele and hence carry only the unmethylated

copy (29).
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Figure 1. Schematic of ligation-based detection of CpG methylation. In
this example, two oligonucleotide probes, specific for the methylated
target sequence, hybridize to bisulfite-treated DNA. The 5" probe contains
a CpGpCpG at its 3’ end, and both probes carry non-hybridizing tails,
which contain binding sites for amplification primers. (A) The probes may
hybridize to the unmethylated template despite mismatches, but cannot be
ligated due to the mismatch at the ligation junction. (B) On the methylated
template, the probes will hybridize in juxtaposition and can be joined by
ligation and subsequently amplified by PCR.

Two sets of three probes were designed, which are
specific for either methylated or unmethylated SNRPN.
The probes were hybridized to bisulfite-treated PBL DNA
from persons with PWS and AS as well as from healthy
individuals. Subsequently, the reactions were subjected
to ligation and PCR, and the reaction products were
resolved on agarose gels. As shown in Figure 2A, healthy
individuals showed two bands corresponding to the
unmethylated and methylated SNRPN alleles, whereas
DNA from individuals with PWS showed only the
methylated band, and DNA from individuals with AS
showed only the unmethylated band. These experiments
showed that ligation-based analysis of bisulfite-treated
DNA is sufficiently robust to discriminate between
methylated and unmethylated sequences, and can be
used to correctly identify individuals with PWS and AS.

Analysis of the FMR1 promoter CpG island
in individuals with fragile X syndrome

As another proof of principle, we designed an assay to
examine the methylation status of FMRI in individuals
with fragile X syndrome. This syndrome is associated with
the expansion of a naturally occurring CGG trinucleotide
tandem repeat in the 5 UTR of FMRI at Xq27.3 (30).
While most healthy individuals have <55 CGG repeats
and an unmethylated, transcriptionally active FMRI
promoter, individuals with fragile X syndrome have
>200 repeats (full mutation), which is associated with
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Figure 2. Ligation-based detection of aberrant methylation of the
SNRPN and FMRI CpG islands. (A) Bisulfite-treated DNA from a
healthy individual, two individuals with AS and two individuals with
PWS were incubated in mixtures containing two sets of three probes
each, which are specific for methylated and unmethylated SNRPN,
respectively. After hybridization, the probes were ligated and amplified
using a primer pair that recognizes both probe sets. (B) Ligation-based
methylation analysis of the FMRI CpG island in two healthy males,
one healthy female and two males with fragile X syndrome (FRAXA
#1 and #2). IVM, in vitro-methylated DNA; M, 20-bp ladder.

promoter hypermethylation and transcriptional silencing
(30). Because FMRI is located on the X chromosome,
healthy females have both methylated and unmethylated
FMRI due to X-chromosome inactivation, whereas
healthy males have only unmethylated FMRI.

Ligation-based analysis of bisulfite-treated DNA
from healthy individuals and fragile X males correctly
determined the methylation status of the FM R/ promoter.
Healthy females showed two bands corresponding to
the unmethylated and methylated FMRI alleles, healthy
males showed only the unmethylated band, and fragile X
males showed a band corresponding to hypermethylated
FMRI (Figure 2B).

Multiplex analysis of seven breast cancer genes

To establish an assay to test for hypermethylation
events in breast cancer specimens, we designed a total of
seven sets of 3-5 probes specific for the methylated
sequences of ID4, APC, RASSFIA, CHDI, ESRI, HINI
and TWISTI. The promoter CpG islands of these genes
have been shown to be frequently hypermethylated in
breast carcinomas (31,32). At least one of the probes in
each set contained CpGpCpG at the 3’ end, except for
the probes for APC and TWISTI, which contained single
CpG sites. We also designed an additional set of four
probes, which hybridize to a CpG-free region of the
phenylalanine hydroxylase gene (PAH). This probe
set will generate an amplifiable ligation product on
bisulfite-treated DNA in a methylation-independent
manner and therefore will serve as a control for DNA
integrity as well as for all steps in the procedure, including
hybridization, ligation and PCR. The number and
length of the probes in the individual sets were chosen
to provide ~10% length increments between the amplifi-
cation products (from 104 to 213 bp), which would allow
resolution by agarose gel electrophoresis.

First, the specificity of the eight probe sets (including
the PAH control) was tested by hybridizing them
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Figure 3. Multiplex ligation-based methylation analysis. Eight probe
sets (consisting of 3-5 probes and generating ligation products of
104-213 bp in length) were hybridized to in vitro-methylated DNA in
singleplex and multiplex configurations. Multiplex analysis of DNA
from peripheral blood lymphocytes (PBL) gave rise to only one band
corresponding to the control gene (PAH). M, 20-bp ladder.

individually to bisulfite-treated, in vitro-methylated DNA,
followed by ligation and amplification. All probe sets gave
rise to a single band of the expected size (Figure 3). Next, a
mix of all 28 probes representing the eight targets was used
to analyze in vitro-methylated DNA and PBL DNA. As
shown in Figure 3, in vitro-methylated DNA gave rise to a
ladder containing all eight bands, whereas PBL DNA
showed only one band corresponding to the control gene
(PAH). These data show that ligation of probes hybri-
dized to bisulfite-treated DNA can be applied to multiplex
analysis of CpG methylation.

To test the applicability of the multiplex assay to the
analysis of breast cancer specimens, we first analyzed
DNA from eight breast cancer cell lines. All cell lines
gave rise to positive signals for the control gene and
at least two of the promoter targets (Figure 4A). MCF7,
BT-20 and ZR-75-1 showed similar profiles with hyper-
methylation of ID4, APC, RASSFIA, HINI and
TWISTI, whereas the remaining cell lines showed
unique profiles (Figure 4A; Supplementary Table 1).
The methylation status of the same seven gene
promoters was also examined using methylation-specific
PCR or MS-MCA, with consistent results (data not
shown).

The multiplex assay was then applied to the analysis of
28 tissue biopsies from 17 breast cancer patients
(Figure 4B; Supplementary Table 1). Three of the
tumors were scored as not informative because all bands
were weak, including that for the control gene, which
may be ascribed to DNA degradation (see ‘Discussion’).
For many of the tumors, the methylation-specific signals
were weak compared with the signal from the control
gene, which probably reflects tumor heterogeneity and/or
contamination of the sample with normal stromal cells.
While both tumor cells and normal cells contribute to
the control-gene band, only the tumor cells contribute to
the methylation-specific bands. The profile of hypermethy-
lated genes showed a high degree of variation among
tumors, whereas paired tumors from individual patients
showed identical patterns (Figure 4B; Supplementary
Table 1). For the 16 independent cases analyzed, the
frequencies of promoter hypermethylation were 69% for
ID4, 63% for APC, 75% for RASSFI1A, 0% for CHDI,
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Figure 4. Multiplex ligation-based analysis of breast cancer specimens.
(A) Cell lines. (B) Tumor biopsies. PBL, peripheral blood lymphocytes;
IVM, in vitro-methylated DNA; M, 20-bp ladder.
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Figure 5. Assay sensitivity. (A) Bisulfite-treated DNA from breast
cancer cell lines was serially diluted and analyzed using relevant probe
sets. (B) Various amounts of DNA from breast cancer cell lines and
tissues were mixed with 500 ng of plasmid, treated with sodium bisulfite
and analyzed using the multiplex assay. The PAH control was
excluded from these analyses. IVM, in vitro-methylated DNA;
M, 20-bp ladder.

0% for ESRI, 50% for HINI and 13% for TWISTI
(Supplementary Table 1). The lack of ESRI hypermethy-
lation in this series of breast tumors was confirmed using
both MS-MCA and a previously validated methylation-
specific PCR assay (33). Routine immunohistochemical
analysis showed that 22/25 (88%) of these tumors were
estrogen receptor positive [(24) and unpublished data].

Assay sensitivity

To estimate the limit of detection of the ligation assay,
we serially diluted DNA from breast cancer cell lines and
analyzed it with relevant probe sets. As shown in
Figure 5A, methylated sequences could be detected
down to the 1% level. When the same serial dilutions
of methylated DNA were mixed with a constant amount
of unmethylated DNA, methylated sequences could
be detected in the presence of a 100-fold excess of
unmethylated DNA, showing that the limit of detection
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was not influenced by the presence of unmethylated DNA
(data not shown).

In the standard protocol for multiplex analysis, each
hybridization cocktail contained bisulfite-treated template
corresponding to 500ng of human chromosomal DNA.
As the amount of DNA from clinical samples is often
limited, we next estimated the amount of starting
template needed to obtain reproducible results. DNA
from breast cancer cell lines and tissues was mixed with
500ng of plasmid as carrier prior to bisulfite treatment
and then subjected to multiplex analysis. In these
experiments, the probe set for the PAH control was
excluded to prevent preferential amplification of this
target in samples from tumors with a high content of
normal tissue. As shown in Figures 4 and 5B, the results
were not influenced by the amount of input DNA
within the range of 50-500ng, whereas some of the
methylation-specific signals were lost for samples
containing <50ng DNA. None of the samples gave rise
to false-positive signals.

DISCUSSION

The recognition that changes in CpG methylation
have broad implications for human health has created a
strong need for techniques to reliably detect DNA
methylation in research and diagnostic settings. We
describe a simple assay to simultaneously analyze the
methylation status of multiple genes, using bisulfite-
treated DNA as template and gene-specific oligonucleo-
tide probes, which bind to either methylated or
unmethylated sequences and can be ligated only if
perfectly matched in juxtaposition on the target sequence.
Although the hybridization step may confer some
specificity due to base differences between the methylated
and the corresponding unmethylated sequences
(Figure 1), the prime source of specificity is the ligation
reaction. Wherever possible, CpGpCpG sites were chosen
as the ligation junction to create the largest possible
mismatch, but discrimination was also possible with
a single CpG site, consistent with previous work showing
that probe ligation can be used to distinguish between
single-base substitutions in genomic DNA (34,35).
An additional level of specificity was achieved by
including at least three probes for each target, which
makes the generation of an amplifiable ligation product
dependent on at least two ligation reactions.

The strongest features of this assay are that it is
simple to establish, is highly flexible and, in the setting
described in this report, requires only inexpensive
reagents, a standard block thermal cycler and equipment
for agarose gel electrophoresis. It may be adapted to
any set of genes in a user-defined configuration, and
the lengths of the ligation products can be easily
adjusted to suit the preferred separation technique.
Furthermore, the addition of a probe set or replacement
of one probe set with another in a multiplex assay
will require no or only very few adjustments of the
assay. In our hands, very little optimization of the assays
was needed; all 12 probe sets tested in this study
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functioned under the same assay conditions despite
a large variation in length and 7, of the individual
probes, despite extensive multiplexing, and despite the
fact that some of the targets required ligation of up to
five adjacent probes. It should be emphasized that the
assay in its present configuration was not designed
for sensitive, quantitative methylation analysis and
therefore should not be considered an alternative to
Ms-SnuPE (17), MethyLight (18), HeavyMethyl (19) or
COBRA (20,36).

One potential limitation of PCR-based methylation
analysis using bisulfite-treated DNA as template is PCR
bias, which 1is explained by different amplification
efficiencies for the methylated and unmethylated mole-
cules (37). In this respect, ligation-based analysis of
bisulfite-treated DNA may be advantageous because of
the non-competitive hybridization and ligation reactions.
The fact that only the synthetic ligation products are
amplified, together with the use of single primer pair
common to all targets, will minimize the differences in
amplification efficiency among the targets (38).

Another important limitation inherent with the use
of bisulfite-treated DNA as template is that most
bisulfite protocols involve prolonged heating under
acidic conditions, which leads to DNA degradation due
to oxidative damage and depurination (39,40). Because
hybridization and ligation of probes in juxtaposition
require intact template molecules, the extent of DNA
degradation will influence the maximum length of
the ligation products as well as the limit of detection.
Using DNA from breast cancer cell lines and tissues
modified by bisulfite under standard conditions, ligation
products up to 213bp were successfully generated and
amplified, methylated sequences could be detected
down to the 1% level, and reproducible results were
obtained using as little as 50ng of DNA as starting
template. Even lower detection levels may be obtained by
using high-recovery procedures for bisulfite conversion,
which cause less extensive degradation of DNA (41,42).
However, analysis of long ligation products may be
problematic in samples characterized by a high degree of
DNA degradation, such as formalin-fixed, paraffin-
embedded tissue and tumors exhibiting high levels of
necrosis or apoptosis. A more accurate multiplex analysis
of low-quality DNA may require the use of only three
short probes for each target, to generate products of
<100bp in length, in combination with a system for
higher resolution of length differences.

Recently, Nygren et al. (43) described an assay for
multiplex analysis of CpG methylation, called methyla-
tion-specific multiplex ligation-dependent probe amplifi-
cation (MS-MLPA), where plasmid-generated probes
are hybridized to genomic DNA, followed by ligation,
digestion with a methylation-sensitive restriction enzyme,
and amplification using a common primer pair. Apart
from the fact that incomplete restriction digests may
complicate the analysis, this assay has proven useful for
analysis of a defined set of genes in clinical specimens (43).
On the basis of the results presented here, ligation of
oligonucleotide probes hybridized to bisulfite-treated
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DNA affords a simple and cost-effective alternative to
multiplex analysis of CpG methylation in patient samples.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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