
Photoacoustics 38 (2024) 100632

Available online 5 July 2024
2213-5979/© 2024 The Authors. Published by Elsevier GmbH. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

Unsupervised deep learning enables real-time image registration of 
fast-scanning optical-resolution photoacoustic microscopy 

Xiaobin Hong a, Furong Tang a, Lidai Wang b,*, Jiangbo Chen a,* 

a School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, Guangdong, PR China 
b Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Ave, Kowloon, Hong Kong Special Administrative Region of China   

A R T I C L E  I N F O   

Keywords: 
Photoacoustic microscopy 
Unsupervised deep learning 
Image registration 

A B S T R A C T   

A fast scanner of optical-resolution photoacoustic microscopy is inherently vulnerable to perturbation, leading to 
severe image distortion and significant misalignment among multiple 2D or 3D images. Restoration and regis
tration of these images is critical for accurately quantifying dynamic information in long-term imaging. However, 
traditional registration algorithms face a great challenge in computational throughput. Here, we develop an 
unsupervised deep learning based registration network to achieve real-time image restoration and registration. 
This method can correct artifacts from B-scan distortion and remove misalignment among adjacent and repetitive 
images in real time. Compared with conventional intensity based registration algorithms, the throughput of the 
developed algorithm is improved by 50 times. After training, the new deep learning method performs better than 
conventional feature based image registration algorithms. The results show that the proposed method can 
accurately restore and register the images of fast-scanning photoacoustic microscopy in real time, offering a 
powerful tool to extract dynamic vascular structural and functional information.   

1. Introduction 

Optical-resolution photoacoustic microscopy (OR-PAM), character
ized by subcellular resolution, rich optical contrasts, and label-free im
aging capability, has shown inspiring prospects in anatomical, 
functional, and histological studies [1–7]. A fast scanning speed plays a 
crucial role in enhancing throughput and enabling the study of dynamic 
physiological or pathological processes in vivo [8,9]. Several fast scan
ners have been developed to achieve fast scanning imaging, such as 
water-immersible micro-electro-mechanical systems (MEMS) scanners 
and polygon scanners [10–14]. In fast-scanning OR-PAM systems, 
various factors such as manufacturing precision, installation error, and 
material fatigue of the scanners can impact the scanning trajectory 
uniformity. Under severe working conditions, for example, in 
high-speed water-immersible scanning with fiber based photoacoustic 
probe or in a handheld imaging system, the scanner suffers from con
stant random disturbances [15–19]. These factors may result in distor
tions of individual images and the misalignments among repetitive 
images, thereby affecting subsequent signal enhancement, feature 
extraction, and quantitative image analysis et al. Therefore, it is of great 
importance to restore and register distorted images for fast-scanning 

OR-PAM. 
The scale-invariant feature transform (SIFT) and speeded-up robust 

features (SURF) methods are commonly used to extract coordinates of 
feature points from image pairs [20,21]. Then the deformed images can 
be corrected based on the coordinates. However, these feature point 
based registration algorithms may not be suitable for images with 
blurred feature points or a limited number of features [22]. Schwarz 
et al. proposed a method to address the displacement between adjacent 
B-scanning layers in acoustic-resolution photoacoustic microscopy 
(AR-PAM). However, because the limited penetration depth of OR-PAM 
offers an insufficient number of reference objects in depth, the dynamic 
reference surface required by this method is challenging to realize in 
high-resolution OR-PAM [23]. Huang et al. introduced a multi-scale 
vascular feature-matching algorithm based on the Demons transform 
to correct motion artifacts in mice vasculature [24]. Unfortunately, it 
suffered from slow data processing speed. In recent years, deep learning 
has played an increasingly vital role in medical image processing [25]. 
Some studies have attempted to remove artifacts from photoacoustic 
images using deep learning techniques [26–29]. Chen et al. proposed a 
deep learning based motion correction algorithm for OR-PAM that 
effectively corrected distortions in arbitrary directions [30]. 
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Nevertheless, the network required ground-truth data as input, which is 
not easily available in photoacoustic imaging. Sun et al. proposed a 
method for correcting motion artifacts in continuous sequences of 
intravascular photoacoustic images [31]. However, the application of 
deep learning methods to address the misalignment among multiple 2D 
or 3D images of OR-PAM has not been conducted. 

Herein, we report an unsupervised deep learning based method that 
overcomes the limitations of previously mentioned techniques and 
achieves real-time image registration for fast-scanning OR-PAM. Our 
approach utilizes mutual information as the similarity metric between 
image sequences, approximating the nonlinear mapping from a dis
torted image to its undistorted counterpart. Importantly, this method 
eliminates the need for ground-truth input. We demonstrate the accu
racy of our registration algorithm and its real-time processing capability 
using image frames obtained from a water-immersible resonant mirror 
based OR-PAM system. The results highlight the significant improve
ment achieved in correcting intra-image artifacts and inter-image 
misalignment, effectively addressing the challenge of real-time image 
registration encountered by high-speed photoacoustic microscopy dur
ing long-term imaging. 

2. Materials and methods 

2.1. Imaging system 

The water-immersible resonant mirror based OR-PAM system has 
been described in previous work [12]. The optical beams were reflected 
onto the sample by a single-axis water-immersible resonant mirror 
coated with aluminum. The generated ultrasound waves were reflected 
by the resonant mirror, collimated by a planoconcave acoustic lens 
(#48–267-INK, Edmund Optics Inc), then transmitted through two 
prisms, and finally detected by a piezoelectric transducer (with a 
50-MHz center frequency and 78 % bandwidth, V214-BC-RM, 
Olympus). A linear translation stage (PLS-85, Physik Instrumente 
GmbH & Co) was used to drive the fiber-based PA probe to scan in the 
slow axis direction. The A-line rate was 3.2 MHz, the B-scan rate was 
2036 Hz, and the C-scan rate reached 1.7 Hz over an area of 2.5 ×
6.7 mm2. 5 micrograms of epinephrine was injected into the muscles of 
the hind legs of mice. It can induce changes in hemoglobin concentration 
and oxygen saturation (sO2) of the blood vessels in the mouse ear. 

2.2. Registration network 

The network structure, as depicted in Fig. 1, comprises a convolu
tional neural network (CNN) and a spatial transformation module [32]. 
In this framework, an image pair of fixed If and moving Im images 
(defined in a two-dimensional spatial domain Ω⊂ℝ2) is input into the 
network. The CNN, denoted as gθ(If , Im), then generates a deformation 

field ϕ. θ represents the parameter of the CNN. Subsequently, this 
deformation field ϕ and the moving image Im are fed into the spatial 
transformation module, where the moving image undergoes warping. 
The final output is the predicted registration image (Im∘ϕ). The spatial 
transformation module includes a grid generator and a sampler. For 
each pixel p, a sub-pixel position ṕ = p + gθ(p) is computed within the 
moving image. Here, gθ(p) represents the deformation of pixel p. The 
values of eight neighboring pixels are interpolated using the bilinear 
interpolation method: 

Im∘ϕ(p) =
∑

q∈Z(pʹ)
Im(q)

∏

d∈[x,y]

(
1 −

⃒
⃒pʹ

d − qd
⃒
⃒
)

(1)  

where Z(p′) is the pixel neighbors of p’, and d iterates over dimensions of 
Ω. 

We opt for the UNet [33] as the CNN to generate the deformation 
field, with subsequent improvement incorporated. Specifically, we 
introduce a simplified attention module after the downsampling layer. 
This module comprises a convolutional layer with a kernel size of 1, 
followed by a sigmoid layer. The attention mechanism assigns weights to 
the input feature map through convolutional operations and the sigmoid 
function, as expressed in the following Eq. (2). This allows the network 
to allocate varying weights to different pixels during feature map pro
cessing, enhancing its performance by focusing more on useful features. 

x̂ = x⋅Sigmoid(Conv(x)) (2) 

In this study, we focus on two types of image distortion. One is intra- 
image artifacts, which refer to the misalignment between adjacent odd 
and even columns. The other type of distortion is the deformation be
tween image sequences. It specifically manifests as misalignment and 
certain local deformations between the current odd frames and their 
preceding odd frames and the subsequent even frames. 

To address various distortion types, we adopt network structures 
with varying depths and loss functions tailored to each distortion scale. 
For the first type of distortion with smaller scales, two additional 
downsampling and upsampling layers are added to the UNet architec
ture shown in Fig. 1. This enhancement is designed to capture de
formations at finer spatial resolutions. Each layer in the encoder has 
convolutional kernels of size 4, a stride of 2, and padding of 1. Following 
each convolutional layer, a LayerNorm layer and ReLU activation layer 
with a parameter of 0.2 are added. With each layer, the input size is 
halved. After 6 layers, the final feature map size output by the encoder is 
(1/64)2 of the input image size. During the decoding phase, the output 
size is progressively increased through bilinear interpolation, with a 
sampling factor set to 2. The upsampling process culminates in a 
deformation field that is the same size as the input image. Skip con
nections integrate features learned during the encoding phase directly 
with corresponding layers in the decoding phase, thereby aiding the 
network in better preserving low-level features and spatial information. 

Fig. 1. The registration network diagram.  
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For scenarios where fixed and moving images exhibit similar image 
intensity distributions, the loss function is defined as follows: 

Lsim

(

If , Im∘ϕ

)

=
1
|Ω|

∑

p∈Ω

[
If (p) −

[
Im∘ϕ

]
(p)
]2 (3)  

Lsmooth(ϕ) =
∑

p∈Ω

⃦
⃦∇2u(p)

⃦
⃦2 (4)  

∇2u(p) =
((

∂2u
∂x∂x

)

,

(
∂2u

∂y∂y

))

(5)  

∂u
∂x

≈ u
((

px +1, py

))

− u
((

px, py

))

(6)  

∂2u
∂x∂x

≈
∂u
∂x

((

px +1, py

))

−
∂u
∂x

((

px, py

))

(7)  

∂u
∂y

≈ u
((

px, py +1
))

− u
((

px, py

))

(8)  

∂2u
∂y∂y

≈
∂u
∂y

((

px, py +1
))

−
∂u
∂y

((

px, py

))

(9)  

L = Lsim
(
If , Im∘ϕ

)
+ λLsmooth(ϕ) (10) 

Where λ is a hyperparameter. We choose the mean squared error 
(MSE) as the similarity loss, which capitalizes on the disparities between 
adjacent pixels to approximate spatial gradients. The reason for intro
ducing the smoothing loss is that during the registration process, 
discontinuous deformation fields are often generated to maximize the 
similarity metric of the images, whereas ideal deformation fields should 
be diffeomorphic to ensure that the topological properties are not 
altered. Therefore, we introduce regularization penalties to enforce the 
continuity and overlap of the deformation field [34]. 

For the second type of deformation between image sequences with 
larger scales, the structure of the UNet is as shown in Fig. 1. The con
figurations of the convolutional layers are similar to the basic ones 
mentioned above. After 4 downsampling operations, the encoder out
puts a feature map that is (1/16)2 the size of the input image. The 
decoder remains the same configuration as above. However, we modify 
the loss function to better measure similarity. Given that MSE is more 
suitable for scenarios with comparable fixed and moving image in
tensities, it falls short when tracking dynamic photoacoustic image 
changes over time, such as sO2 fluctuations, where image intensities also 
shift. As the MSE similarity loss function for registration can lead to 
inaccuracies, we opt for mutual information (MI) as the similarity loss 
function. MI facilitates a more accurate assessment of the similarity 
between photoacoustic images captured at different time points by 
effectively modeling the probabilistic relationships between pixel in
tensities [35]. The expression for mutual information is as follows: 

Lsim

⎛

⎝If , Im∘ϕ

⎞

⎠ = −
1
n
∑n

i=1
log

⎛

⎝1
M
∑M
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exp( −

1
2

(
⃒
⃒
⃒(Im∘ϕ)i −

(
If
)

j

⃒
⃒
⃒

σ

)2
⎞

⎠

⎞

⎠

(11) 

We compute the mutual information using the Parzen window for
mula for the Gaussian function since the histogram based probability 
computation method is not differentiable and thus not applicable in 
deep learning [36]. In the Eq. (11), n represents the number of samples, 
M denotes the absolute value of the distance between the predicted 

output and the target. exp( − 1
2(
|(Im∘ϕ)− If |

σ )
2
) corresponds to the Gaussian 

kernel function, and σ signifies the standard deviation of the Gaussian 
kernel, serving as a hyperparameter. 

3. Experimental procedures 

3.1. Data preparation 

The dataset comprises 399 photoacoustic images of mouse ears along 
with their corresponding images of sO2. During data preprocessing, the 
intensity values of the images were clamped based on their 1st and 99th 
percentiles to remove outliers. Next, we normalized these values to fall 
within the [0,1] range. Subsequently, a 3×3 median filter was applied to 
all data. Then an initial affine alignment was performed to roughly align 
the image position. The input image size of the network was 1024×320. 

3.2. Network training 

3.2.1. Intra-image registration 
The workflow for intra-image even-odd column misalignment 

registration is illustrated in Fig. 2(a). Odd columns were extracted from 
the preprocessed data, halving the image length. Bilinear interpolation 
was then applied between columns, resulting in interpolated images of 
the same size as the input images. Although information from even 
columns was lost, this process ensured no misalignment between col
umns. These interpolated images served as fixed images, while the 
original unextracted and uninterpolated images served as moving im
ages inputted into the registration network. This setup allowed the 
moving images to align with the fixed images while retaining informa
tion from even columns. In this scenario, the interpolated images pro
vided an approximate baseline that was easily obtained, enabling the 
moving images to align with them without losing information. Ulti
mately, this process produced prediction moved images that were 
complete and free from misalignment. 

The dataset was randomly divided into training and test sets in a 
ratio of 8:2. The Adam algorithm was chosen to optimize the parameters 
in the CNN, with an initial learning rate of 0.001, a batch size of 1, an 
iteration count of 6380, and λ set to 0.01. 

3.2.2. Inter-image registration 
The process of inter-image registration is shown in Fig. 2(b). 

Considering both distortions between adjacent odd and even frames and 
deformations between odd frames, we adopted a custom two-stage 
training strategy. 

In Stage 1, an atlas based registration method was employed. We first 
extracted all odd frames from the training set. Assuming the first 
collected image had no distortion. Then, the first frame served as the 
fixed image, while the rest frames served as moving images to be aligned 
with the first frame. In Stage 2, we extracted all even frames from the 
training set. To preserve dynamic information between adjacent pho
toacoustic images, even frames were treated as moving images, while 
the preceding odd frame was used as the fixed image inputted into the 
network to learn how to align even frames with their preceding odd 
frames. During the testing phase, all odd frames in the testing set were 
first registered to the first frame to obtain moved predicted odd frames. 
Then, even frames in the testing set were treated as moving images, with 
adjacent moved predicted odd frames as fixed images, resulting in all 
moved predicted even frames. 

80 % of the images were allocated to the training set and the 
remaining 20 % was reserved for the test set. The Gaussian kernel 
standard deviation σ for mutual information loss was set to 0.6 and the λ 
was set to 10. The total number of iterations for the training stages was 
6380. Similarly, Adam was selected as the optimization algorithm with 
an initial learning rate of 0.001 and a batch size of 1. The network was 
implemented in Python 3.8 using the PyTorch framework. The work
station setup included a 13th Gen Intel(R) Core(TM) i7–13700KF 
3.40 GHz CPU, 32 GB RAM, and an NVIDIA GeForce RTX 4080. 
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4. Results 

4.1. Intra-image registration 

The misalignment between even and odd columns and the corre
sponding registration results in the mouse ear region are illustrated in  
Fig. 3. Fig. 3(a) and (b) depict the maximum amplitude projection 
(MAP) images of the blood vessel structure before and after registration, 
respectively. To better demonstrate the performance of the proposed 
method, two regions marked with green boxes in Fig. 3(a) were enlarged 
and shown in Fig. 3(c) and (d). There are obvious jagged artifact 
structures caused by B-scan misalignment. Fig. 3(e) and (f) show the 
corresponding registration results. While the use of bilinear interpola
tion in the spatial transformation module causes a slight reduction in the 
spatial resolution which calculates new pixel values by weighted aver
aging of neighboring pixels, it does not hinder our ability to compare the 
images. We can still observe that our method effectively eliminates 
misalignment between the columns. 

To fully validate the effectiveness of the proposed method, we 
extracted odd-column and even-column images from both the pre- 
corrected and post-corrected images, and quantitatively analyzed their 
similarity using peak signal-to-noise ratio (PSNR) and structural simi
larity index (SSIM). A higher PSNR value indicates a higher similarity 
while a value of SSIM approaching 1 indicates a higher image similarity. 

If there is no misalignment between the odd and even columns, the odd- 
column and even-column images should exhibit high similarity. Addi
tionally, to ensure that no image details were lost during processing, we 
calculated the ratio H of high-frequency information in the corrected 
image to that in the pre-corrected image. The closer this ratio H is to 1, 
the more high-frequency information is preserved. We also converted 
the images to the HSV color space and calculated the histogram inter
section IS of the hue channel before and after correction. By comparing 
the histograms of the hue channel, we can measure the similarity of the 
color distribution without being affected by brightness and saturation. 
The closer the intersection IS is to 1, the more similar the color distri
butions of the images are, and the more information processed images 
retain. The results of the analysis are shown in Table 1. 

It can be observed that our method effectively corrects the 
misalignment between odd and even columns, preserving the vast ma
jority of the image information with less than 0.5 % loss of image detail. 

Furthermore, we compared the registration results with different loss 

Fig. 2. (a) Intra-image registration workflow diagram. (b) Inter-image registration workflow diagram.  

Fig. 3. (a) The MAP image of the blood vessel structure in the mouse ear before registration. (b) The MAP image after registration. (c) and (d) The enlarged images of 
the two green boxes in (a). (e) and (f) The enlarged images of corresponding areas in (b). 

Table 1 
Quantitative analysis of image similarity before and after registration.   

PSNR SSIM H IS 

Before registration 21.2694 0.9398 - - 
After registration 23.8099 0.9595 0.9975 0.9967  
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functions. For example, using SSIM as the similarity loss function, and 
comparing its results with those of MSE. We discuss the differences 
between the two loss functions from two perspectives. 

First is computational complexity. The formula for calculating SSIM 
is shown below: 

SSIM

⎛

⎝x, y

⎞

⎠ =

(
2μxμy + C1

)(
2σxy + C2

)

(
μ2

x + μ2
y + C1

)(
σ2

x + σ2
y + C2

) (12) 

Where μx and μy are the means of images x and y respectively, σ2
x and 

σ2
y are their variances, σxy is the covariance between the two images, and 

C1 and C2 are constants used for stability to avoid division by zero. It’s 
clear that SSIM has higher computational complexity, which can in
crease training time. In fact, we found that with the same number of 
training iterations, SSIM loss took 1.4 times longer than MSE during the 
experiments. Additionally, the SSIM loss involves more parameters than 
MSE loss, making it more susceptible to improper parameter choices that 
can affect the effectiveness of the loss function. 

The second perspective is the registration effectiveness. We per
formed a quantitative analysis of the registration results for different loss 
functions in terms of structural similarity and information retention. The 
results are shown in Table 2. 

Table 2 shows that when using SSIM as the loss function, although its 
structural similarity is slightly higher, it exhibits lower similarity in 
color distribution. This is because MSE directly measures the differences 
in pixel values between images, minimizing MSE loss aims to make 
images as close as possible at the pixel level. In contrast, SSIM takes 
multiple perspectives on brightness, contrast, and structure, empha
sizing overall perceptual similarity rather than exact pixel-level 
matching. This may cause SSIM to overlook some details in certain cases. 

Compared to the MSE loss, the SSIM loss only slightly improves 
structural similarity but requires longer training time and results in 
more loss of image information. Therefore, we believe that choosing 
MSE as the loss function is more reasonable. 

4.2. Inter-image registration 

Fig. 4 displays two pairs of unregistered MAP images collected at 
different times. We enlarged the distortions between adjacent frames 
and differentiated them with different colored box pairs. The area 
selected by the single blue box in (a) is shown enlarged in Fig. 6. It can 
also be seen that the amplitude of the signal in the blood vessels is 
changing due to the physiological response to adrenaline. 

For comparison, we applied traditional non-learning based regis
tration algorithms Demons [37] and the SIFT method to register the test 
set comprising a total of 80 images. We evaluated the results using 
common quantitative metrics, including PSNR, mutual information 
matrix (MIM), normalized cross-correlation (NCC), and the runtime on 
both the central processing unit (CPU) and graphics processing unit 
(GPU). The MIM was computed using mutual information and presented 
in grayscale form, where the higher overall brightness of the image in
dicates a higher correlation between the images. Similarly, NCC mea
sures image similarity, with values closer to 1 indicating greater 
similarity. 

Fig. 5 shows grayscale images representing the MIM for three 
different methods. The brightness of the MIM for the images corrected 
by SIFT, Demons, and the proposed method is significantly higher than 
that of the original images. This suggests effective suppression of 

deformations. Besides, our method appears to be the most optimal 
among the three methods. Fig. 6 shows the enlarged effect of over
lapping adjacent odd frames within the blue box area of Fig. 4(a). Two 
images were overlaid in green and magenta colors, respectively. If the 
vessel positions in these two images perfectly align, the overlapped 
vessels should appear gray; otherwise, misalignment exists. Before 
registration, the misalignment is evident due to the presence of green 
and magenta on either side of the vessels. After correction by the 
registration network, these color disappears, indicating successful 
alignment between adjacent odd frames. Notably, while Demons also 
alignes the images, it sacrifices effective image information, as indicated 
by the yellow arrows in Fig. 6(i). This is attributed to the non-uniform 
grayscale of photoacoustic images, to which the Demons algorithm is 
highly sensitive. When the vascular morphology is changing, SIFT 
struggles to extract effective feature points for matching, leading to 
unsatisfactory registration results. 

Table 3 provides a quantitative analysis of the PSNR, NCC, and 
runtime for different methods. It can be seen that after registration using 
the three methods, there is a great improvement in the PSNR and NCC of 
the image sequences, with our proposed method demonstrating superior 
performance. When executed on the same CPU, the Demons takes over 
50 times longer than our approach. Moreover, when utilizing a GPU, our 
method achieves a doubled speed improvement. Overall, our proposed 
method achieves comprehensive performance advantages. 

Fig. 7(a) - (d) show the corrected adjacent image pairs. The colored 
boxes indicate the areas where distortion was originally present. 
Compared to Fig. 4(a) - (d), Fig. 7(a) - (d) demonstrates that the pro
posed method can effectively mitigate edge distortion and deformation 
in even frames in contrast to their adjacent odd frames. The same 
network was applied to the sO2 data. However, since the sO2 images are 
composed of three color channels: red, green, and blue, we first split 
each image containing three channels into three images, each containing 
only one channel. Subsequently, each channel image was registered 
separately following the same process used for MAP images. Finally, the 
three images of different color channels were merged at the output to 
obtain the final corrected sO2 image. In Fig. 7(e) - (h), we present the 
corresponding corrected images of sO2. With the aligned image se
quences, we analyzed changes in vessel diameter for two cross sections 
annotated in Fig. 7(a). Specifically, cross section A was extracted from 
the artery and cross section B was from the vein, as shown in Fig. 7(i). 
Notably, the diameter of the artery gradually decreases due to the effect 
of epinephrine and stabilizes around 180 seconds, while the diameter of 
the vein can be regarded as essentially unchanged. Similarly, we 
examined changes in sO2 for two areas annotated in Fig. 7(e). Area 1 was 
extracted from the artery and area 2 was from the vein, as depicted in 
Fig. 7(j). It can be found that sO2 in the artery remains essentially un
changed, whereas sO2 in the vein exhibits a tendency to rise and then fall 
as a result of epinephrine, ultimately stabilizing around 120 seconds. 

Table 4 quantitatively evaluates the similarity of the sO2 dataset 
before and after registration with different algorithms. It is evident that 
the similarity metrics of the images have significantly improved after 
registration. Among the three methods, our method demonstrates the 
most impressive effect. Well-registered images enable more accurate 
observation of changes in blood sO2 at specified locations. The dynamic 
demonstration of vascular structure and sO2 are shown in Supplemen
tary video 1 and video 2 respectively. 

Supplementary material related to this article can be found online at 
doi:10.1016/j.pacs.2024.100632. 

Additionally, we discuss the impact of these two hyperparameters λ 
and σ on the experimental results during the process of registering image 
sequences. Fig. 8(a) depicts the pre-registration photoacoustic image of 
the mouse ear at a certain moment. Fig. 8(b) and (c) respectively depict 
the trends of SSIM with the sequence interval when setting λ and σ to 
different values. Fig. 8(d) and (j) represent the enlarged views of the 
green box regions in Fig. 8(a). Fig. 8(e) - (i) represent the registration 
results with different values of parameter λ. Fig. 8(k) - (o) represent the 

Table 2 
Quantitative analysis results of different loss functions.  

Loss function SSIM IS 

MSE  0.9595  0.9967 
SSIM  0.9627  0.9943  
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registration results with different values of parameter σ. During the 
registration process of odd-numbered sequences, we set parameter λ to 
be 0.001, 0.01, 0.1, 1, and 10, while keeping other parameters and 
conditions unchanged. The results in Fig. 8(b) indicate that as λ de
creases, the SSIM between different sequence intervals gradually in
creases, suggesting that the similarity between the images increases as λ 

decreases. However, smaller values of λ are not necessarily better. 
Compared to the pre-registration image (d), Fig. 8(e) - (h) show varying 
degrees of missing vascular information indicated by the arrows. The 
reason for this phenomenon is that a smaller bending energy penalty 
coefficient implies a lower requirement for the smoothness of the 
deformation field, allowing the network to perform larger deformations 
during registration to better match the details and structures of the 
image. However, excessive or irregular deformations can also damage 
image details and textures, leading to a loss of image information. 
Therefore, considering both the registration effectiveness and accurate 
preservation of image information, we choose to set λ to 10. Similarly, 
we set parameter σ to be 0.1, 0.3, 0.6, 0.9, and 1.2. Fig. 8(c) shows that 
the SSIM is significantly higher when σ is set to 0.1 and 0.3 compared to 
when σ is set to 0.6, 0.9, and 1.2. However, Fig. 8(k) and (l) also indicate 
that setting σ to 0.1 and 0.3 results in the loss of vascular information. 
Moreover, setting σ too large will increase the degree of smoothing, 

Fig. 4. Two pairs of unregistered MAP images were collected at different times. The area selected by the blue box in (a) is shown enlarged in Fig. 6. Other different 
colored box pairs highlight and magnify the distortion that occurs in even frames compared to adjacent odd frames. 

Fig. 5. Grayscale images representing the MIM of different methods.  

Fig. 6. (a) - (e) The enlarged images of adjacent odd frames overlapped at different times within the blue box area of Fig. 4(a). (f) - (h) Corresponding images of (a) - 
(c) after registration using our method. (i) Corresponding image of (d) after registration using Demons algorithm. The yellow arrow points out where vascular 
information is missing. (j) Corresponding image of (e) after registration using SIFT algorithm. 

Table 3 
Quantitative evaluation results of the similarity before and after the registration 
of MAP images with different algorithms.   

PSNR NCC Runtime（CPU/GPU） 

Origin  16.0671  0.9392 - 
SIFT  24.6815  0.9465 4 s/- 
Demons  31.4853  0.9882 212 s/- 
Ours  40.4501  0.9989 4 s/2 s  
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which can adversely affect the registration effectiveness. To set the 
optimal σ with a more quantified reference, we incorporated a quanti
tative analysis based on IS and H. Specifically, we used IS to assess the 
degree of vascular information retention and H to evaluate the 
smoothness of the image. Since significant vascular information loss 
occurred at σ values of 0.1 and 0.3, we only conducted a quantitative 
analysis for σ values of 0.6, 0.9, and 1.2. The analysis results are 
demonstrated in Table 5 with maximum values highlighted in bold. It 
can be noted that when σ is equal to 0.6, the SSIM and H values are both 
the highest. Therefore, we believe that setting σ to 0.6 is preferable. 

5. Discussion 

We report an unsupervised deep learning based registration network 
for correcting image distortions caused by scanning distortion inherent 
to the scanner and dynamic perturbation from high-frequency scans of 
the OR-PAM system. By using the proposed method in this paper, both 
pseudo-artifacts between odd and even columns within a single image 

and misalignment among multiple images can be addressed. This 
method not only reduces expensive hardware costs [38] but also im
proves throughput. Compared to traditional registration algorithms, the 
proposed method achieves superior registration performance in a 
shorter time. In contrast to previously reported deep learning based 
correction methods, our method does not necessitate ground-truth 
input, which is challenging to acquire in large quantities. We incorpo
rate mutual information into the loss function, adapt the network 
structure according to different needs, and design unique two-stage 
training strategies to better suit the application scenarios and re
quirements of images from OR-PAM. Experimental results show that the 
proposed method can effectively eliminate image artifacts and 
misalignment, facilitating observation and comparison of changes in the 
morphology and function of the vascular, as well as subsequent quan
titative analysis. However, our method also has limitations. Its effec
tiveness is influenced by the size and quality of the dataset, as poor 
training results may occur with small or low-quality datasets. Therefore, 
it is necessary to continue to expand our dataset in the future. By 
incorporating labeled data, explore semi-supervised learning and 
contrastive learning to optimize label utilization efficiency and enhance 
the stability and validation of models. We will also investigate 
domain-adaptive methods, aiming to enable models to migrate effi
ciently between different domains and thus better adapt to different data 
distributions. 

6. Conclusion 

To tackle the challenges posed by the misalignment of inter-image 

Fig. 7. (a)-(d) The aligned images of adjacent frames using our method. (e) - (h) The corresponding sO2 images after registration. (i) The diameter changes in the 
specified cross sections of blood vessels. (j) The sO2 changes in the specified areas of blood vessels. 

Table 4 
Quantitative evaluation results of the similarity. before and after the registration 
of sO2 images with different algorithms.   

PSNR NCC SSIM 

Origin  14.1879  0.8542  0.5212 
SIFT  21.3737  0.9012  0.6839 
Demons  22.8185  0.9551  0.8165 
Ours  23.9173  0.9625  0.8317  
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arising from B-scan trajectory distortion and dynamic perturbation in 
the fast scanning OR-PAM system, we propose a deep learning based 
registration network. Operating without the need for ground-truth in
puts, our method approximates the distorted image to the undistorted 
image using mean square deviation and mutual information as similarity 
metrics. We integrated the proposed algorithm into a resonant mirror 
based OR-PAM system, enabling the correction of intra-image motion 
artifacts in the microvascular structure, as well as misalignment among 
images, thereby achieving stable video frame display. With the regis
tered image frames, we can accurately quantify changes in microvessel 
diameter and sO2 at specified locations, verifying that our approach can 
facilitate the observation of dynamic tissue structural changes and 
extraction of quantitative functional information. The results show that 
our method can achieve efficient alignment of 40 image frames per 
second, demonstrating the potential for real-time imaging processing 
capabilities in fast-scanning systems. It is expected to be a tool to pro
mote the development of not only OR-PAM but also microscopic imag
ing systems that adopt fast scanners. 
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