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Ferroptosis is an evolutionarily conserved form of regulated cell death triggered by iron-
dependent phospholipid peroxidation. Ferroptosis contributes to the maintenance of
tissue homeostasis under physiological conditions while its aberration is tightly connected
with lots of pathophysiological processes such as acute tissue injury, chronic
degenerative disease, and tumorigenesis. Epigenetic regulation controls chromatin
structure and gene expression by writing/reading/erasing the covalent modifications on
DNA, histone, and RNA, without altering the DNA sequence. Accumulating evidences
suggest that epigenetic regulation is involved in the determination of cellular vulnerability to
ferroptosis. Here, we summarize the recent advances on the epigenetic mechanisms that
control the expression of ferroptosis-associated genes and thereby the ferroptosis
process. Moreover, the potential value of epigenetic drugs in targeting or synergizing
ferroptosis during cancer therapy is also discussed.
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INTRODUCTION

Ferroptosis, which was first proposed by Dixon et al. in 2012, is a novel programmed cell death
driven by iron-dependent accumulation of lipid peroxidation (1–7). As an evolutionally-conserved
cell death form, ferroptosis plays a critical role in diverse physiological and pathological processes
(8). Apparently, understanding the comprehensive molecular mechanisms of ferroptosis has great
biological importance and clinical significance. Epigenetic regulation controls gene expression by
writing/reading/erasing the covalent modifications on DNA, histone, and RNA, without altering the
DNA sequence (9). Accumulating evidence suggests that epigenetic regulation modulates
the expression dosages of ferroptosis-associated genes and consequently contributes to the
determination of cell sensitivity to ferroptosis. Here we summarize current knowledge on the
role of epigenetic regulation in ferroptosis and its implication in cancer therapy.
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THE REGULATORY CIRCUITS OF
FERROPTOSIS

Biochemistry of Ferroptosis
Since the ferroptosis was first defined in 2012, the core
biochemical components of ferroptosis have been rapidly
identified in the past decade.

Lipid Peroxidation
Polyunsaturated fatty acids are susceptible to lipid peroxidation
and essential for the ferroptosis process (10). The abundance and
localization of polyunsaturated fatty acids determine the level of
intracellular lipid peroxidation and furtherly decide the sensitivity
of cells to ferroptosis (11). Phosphatidylethanolamines (PEs)
containing arachidonic acid are the major phospholipid that
peroxides and promotes ferroptosis (7, 12). Further on, the PE-
Coenzyme-A derivatives form and insert into phospholipid, which
was defined as a necessary step of pro-ferroptotic signal
production (7). In 2015, through the haploid genetic screening,
Dixon et al. identified 9 lipid metabolism-associated genes,
including the lipid remodeling gene LPCAT3 and fat acid
metabolism gene ACSL4, that play essential roles in ferroptosis
(5). Doll et al. convincingly proved that ACSL4 is involved in the
generation of pro-ferroptotic state (7).

Intracellular Iron
Iron complexes or loosely bound iron structure are essential for
the formation of reactive oxygen (13). In eukaryotic cells, the
uncoordinated redox-active Fe2+ that was temporally released in
the plasma is generally referred as “The Labile Iron Pool” or “free
Fe2+” (14). Technically, free Fe2+ catalyzes the formation of
hydroxyl radical and hydroxide from H2O2 through “Fenton
reaction”. Consistent to the name of “ferroptosis”, both Fenton
reaction and iron-dependent enzymes are the formation of
reactive oxygen, which causes severe oxidative damage to
neighbor cell structure, are key players in ferroptosis (15, 16).
Conversely, treatment with iron chelators such as could inhibit
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ferroptosis. Under normal physiological condition, the level of
iron is well regulated by transferrin (extracellular environment)
and ferritin (intracellular environment). Apparently, the
signaling pathways that alter iron metabolism have potential
effect on the regulation of ferroptosis.

Glutathione and GPX4
Glutathione (GSH) metabolism was identified as the first
pathway regulating the ferroptosis process. The hydro-sulfuryl
structure makes GSH as a commonly considered antioxidant and
free radical scavenger in the intracellular environment (17). In
1986, the glutamate-cystine transportation system X−

c was
identified by Bannai et al. (18). The transporter is composed
by one light chain subunit and one heavy chain subunit, which
were respectively encoded by SLC7A11 and SLC3A2. System X−

c

transfers glutamate out of cells and cystine into cells at a ratio of
1:1, and then cystine is reduced into cysteine which participates
in the synthesis of GSH (Figure 1) (19). High concentration of
extracellular glutamate inhibits cystine uptake through
inhibition of Xc- leading to glutathione decrease and oxidative
cell death (20, 21). Indeed, the first ferroptosis inducer, erastin,
mainly targets on system X−

c (1).
The glutathione peroxidases (GPXs) are series of peroxide-

degrading enzymes. GPX4 uses GSH as an essential cofactor to
prevent lipid peroxide and maintain redox homeostasis (22). In
2008, Seiler et al. identified lipid peroxidation as the key mediator
of cell death in glutathione peroxidase 4 (GPX4) knockout cells
(23). Thus, people began to consider this type of cell death
different from either apoptosis or necrosis. Several small
molecule compounds were screened out as ferroptosis inducer
(24–27). Among them, RSL3 targets on GPX4 (25).

The FSP1-CoQ10 Pathway
Independent of GPX4 regulatory pathway, the FSP1-CoQ pathway
is a novel ferroptosis pathway identified by Doll et al. through an
expression cloning approach to identify genes in human cancer
cells that are able to complement the loss of GPX4 (6).
FIGURE 1 | Multiple epigenetic mechanisms regulate the expression of SLC7A11 gene, a representative ferroptosis-associated gene.
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Doll et al. revealed that apoptosis-inducing factor
mitochondria-associated 2 (AIFM2, renamed as FSP1)
overexpression can largely abrogate GPX4 inhibition-induced
ferroptosis. A previous study showed that FSP1 functions as a
NADP dependent coenzyme Q (CoQ) oxidoreductase in vitro
(28). CoQ10 is a mobile lipophilic electron carrier that
endogenously synthesizes lipid-soluble antioxidants and acts as
a lipophilic free radical-trapping agents (RTAs) in the plasma
membrane (29). Intriguingly, FSP1 overexpression fails to
suppress ferroptosis in both CoQ2 knockout cells and in cells
treated with the CoQ2 inhibitor (6, 30). CoQ2 is the enzyme that
catalyzes the first step in CoQ10 biosynthesis, and the soluble
analog of CoQ10 is sufficient for suppressing ferroptosis and lipid
peroxidation (6, 30). These two latest studies clearly suggest that
FSP1 acts parallel to GPX4 to inhibit ferroptosis by regulating the
nonmitochondrial CoQ10 antioxidant system.

The DHODH-CoQH2 Pathway
Dihydroorotate dehydrogenase (DHODH), an enzyme essential
for the de novo biosynthesis of pyrimidine-based nucleotides, is
a known therapeutic target for multiple diseases (31).
Furthermore, DHODH inhibitors, including brequinar,
leflunomide, and teriflunomide, have been clinically evaluated
but failed to receive FDA approval for the treatment of cancer
(32–34). Mao et al. identified DHODH as the third anti-
ferroptosis pathway, independent of GPX4 and FSP1 (35).
Mechanistically, DHODH in the mitochondrial inner
membrane regulates the production of CoQH2, a radical-
trapping antioxidant in mitochondrial. Importantly, DHODH
inhibitor brequinar selectively suppresses GPX4-low tumor
growth by inducing ferroptosis, whereas combined treatment
with brequinar and sulfasalazine synergistically induces
ferroptosis and suppresses GPX4-high tumor growth.

The GCH1-BH4 Pathway
Tetrahydrobiopterin (BH4) is a redox-active cofactor involved in
the production of nitric oxide, neurotransmitters, and aromatic
amino acids (36). The GCH1-PTS-SPR pathway catalyzes GTP
to BH4, and GCH1 is a rate-limiting enzyme in the synthesis of
BH4 (37, 38).

Kraft et al. found that the overexpression of GCH1 provide
protection to against ferroptosis by abolishing lipid peroxidation
(36). GCH1 overexpression exhibits robust protection against
RSL3- and imidazole ketone erastin (IKE)-induced ferroptosis
and genetic ablation of GPX4-induced ferroptosis but does not
protect cells against inducers of apoptosis and is only marginally
effective against necroptosis. Those results indicate that GCH1
selectively inhibits ferroptotic cell death (36).

Intriguingly, BH4 loss in cells leads the accumulation of
coenzyme A, NADP, and oxidized GSH (GSSG) in cells.
Further, the elevation of reduced CoQ10 in cells with GCH1
overexpression have been detected (38). Thus, these results
indicate that the GCH1-BH4 pathway acts as an endogenous
antioxidant pathway to inhibit ferroptosis through a mechanism
independent of the GPX4 signal pathway.
Frontiers in Oncology | www.frontiersin.org 3
The Signal Pathways of Ferroptosis
Several canonical oncogenic and tumor suppressive pathways
have been reported to converge to the ferroptosis process. In
general, these pathways alter the ferroptosis sensitivity through
modulating the expression levels and enzymatic activities of core
ferroptosis executors.

The p53 Pathway
The p53 pathway inhibits cystine uptake and sensitize cells to
ferroptosis through repressing SLC7A11 expression (39).
Notably, the acetylation–defective mutant p53KR loses the
function of inducing cell-cycle arrest but still retains the ability
to regulate SLC7A11. Moreover, the spermidine/spermine N1-
acetyltransferase 1 (SAT1) gene, which encodes a rate-limiting
enzyme in polyamine catabolism, was identified as a
transcription target of p53 and promote ferroptosis through
conversing spermidine and spermine back to putrescine (40).
However, there were also some controversial reports on the
function of p53 pathway in ferroptosis. For instance, the
dipeptidyl-peptidase-4 (DPP4) can be blocked by p53, resulting
in resistance to ferroptosis (41). Alternatively, the wild-type p53
stabilization can delay the induction of ferroptosis in cancer cells
upon system X−

c inhibition (42). These findings indicate a
content-dependent role of p53 in the regulation of ferroptosis.

The KEAP1-NRF2 Pathway
It has been well-established that nuclear factor erythroid 2-related
factor 2 (NRF2) pathway plays an essential role in antioxidant
response. The correlation between NRF2 pathway and ferroptosis
has also been studied (43, 44). NRF2 upregulates system X−

c and
thereby protects brain tumor cells from ferroptosis (45). Since the
NRF2 pathway is commonly activated in diverse malignant
tumors, it is likely that aberrant NRF2 activation contributes to
protect tumor cells against ferroptosis. A recent work revealed that
3D organoid culture causes ferroptosis and insufficient NRF2
activation leads to the failure of establishment of organoids (46).
In addition, the tumor suppressor ARF (CDKN2A) has recently
been identified as a binding partner for NRF2 and impacts
ferroptosis sensitivity (47). Mechanistically, ARF represses
NRF2-induced transcriptional upregulation of SLC7A11 and
other antioxidant genes.

The Hippo Pathway
Hippo pathway controls organ size by regulating cell proliferation,
apoptosis, and stem cell self-renewal (48). Wu et al. observed that
high cell density protects many types of cells against ferroptosis
during the in vitro cell culture. Furthermore, they revealed that the
cell density-dependent acquisition of ferroptosis resistance is
triggered by E-cadherin-mediated activation of intracellular NF2
(also known as merlin) and Hippo signaling pathway (49, 50).
Antagonizing this signaling allows the nuclear translocation of
proto-oncogenic transcriptional co-activator YAP and promotes
ferroptosis by upregulating several ferroptosis modulators,
including ACSL4 and TFRC (50). The identification of E-Cad/
Hippo/YAP/ACSL4 axis may explain a long term-observed
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phenotype that mesenchymal cells are more sensitive to
ferroptosis than epithelial cells (50). Similarly, epithelial-
mesenchymal transition (EMT) increases the vulnerability of
cells to ferroptosis, which may be partially attributed to the
inactivation of Hippo pathway during EMT (51).

Besides the above three well-established signaling pathways,
other canonical development and disease-associated pathways
such as RAS-RAF-MAPK and PI3K/Akt also have intersection
with the core regulatory circuity of ferroptosis and participate in
the regulation of ferroptosis process.
EPIGENETIC MECHANISMS UNDERLYING
FERROPTOSIS

DNA Modification
DNA methylation is the most common epigenetic modification
that has been studied in gene regulation. Homocysteine
treatment induced DNA methylation of GPX4 gene in nucleus
pulposus, leading to ferroptosis sensitivity (52). DNA
hypermethylation of CDH1 gene promoter in head and neck
cancer cells repressed E-cadherin (encoding by CDH1)
expression and increased ferroptosis susceptibility (51). These
two cases clearly demonstrate that DNA methylation is involved
in the epigenetic silencing of ferroptosis-associated genes.
However, whether other ferroptosis-associated genes are also
affected by DNA methylation requires further study. Moreover,
TET (ten-eleven translocation) proteins could catalyze 5mC
oxidation, which in turn initiates the active or passive DNA
demethylation (53). It is still unclear whether TET proteins-
mediated DNA demethylation also plays a role in the regulation
of ferroptosis.

Histone Modifications
Histones form the framework of DNA entangling (54). The tails
of four core histones (H2A, H2B, H3 and H4) are proved to
undergo chemical modifications, including lysine methylation/
acetylation, arginine methylation/citrullination and serine/
threonine/tyrosine phosphorylation (55). These chemical
modifications alter the interaction between histones and other
nuclear proteins including the transcriptional machine, thereby
changing the expression of targeted genes.

Histone acetylation marks are written by histone
acetyltransferases (HATs), read by bromodomains (BRDs), and
erased by histone deacetylases (HDACs). NRF2 activates the
transcription of SLC7A11 gene partially through recruiting
HATs (CBP and p300) (47, 56). Moreover, the expression of
many ferroptosis-associated genes (GPX4, SLC7A11, and
SLC3A2) were down-regulated in breast and lung cancer cell
lines upon BRD4 knockdown (57). The inhibition of BRD4
also enhances the expression of a histone deacetylase called
sirtuin 1 (SIRT1) (57). Additionally, SIRT1 causes epigenetic
reprogramming of epithelial-mesenchymal transition (EMT)
thus promotes ferroptosis in head and neck cancer (51).

H2A ubiquitination/de-ubiquitination play a critical role in
the regulation of SLC7A11 expression and erastin-induced
Frontiers in Oncology | www.frontiersin.org 4
ferroptosis (Figure 1). PRC1 complex, the best-known
ubiquitin ligase of H2Aub, is responsible for the establishment
of H2A ubiquitination on SLC7A11 promoter (58). In contrast, a
nuclear deubiquitinating enzyme named BRCA1-associated
protein 1 (BAP1) could decrease the H2A ubiquitination
occupancy on the SLC7A11 promoter (59). Interestingly,
although H2Aub is generally correlated with gene repression,
both BAP1 and PRC1 represses SLC7A11 expression. The weird
results indicate that BAP1 and PRC1 coordinately repress
SLC7A11 expression through dynamic regulation of H2Aub
levels on the SLC7A11 promoter. However, the exact role of
H2Aub in SLC7A11 gene expression requires further research. In
addition to H2A, mono-ubiquitination of histone H2B on lysine
120 is an epigenetic active marker associated with SLC7A11
expression. Wang et al. revealed that P53-mediated repression
of SLC7A11 is dependent on USP7-mediated H2B de-
ubiquitination (60).

The di- or tri-methylation of H3K9 are well-established
epigenetic marks of heterochromatin and associated with
transcriptional silencing (61). Inhibition of SUV39H1 (one of
histone H3K9me3 methyltransferases) by small chemical
molecules or siRNA upregulates DPP4 expression through
reducing the H3K9me3, thereby inducing iron accumulation,
lipid peroxidation, and ferroptosis (62). In contrast, KDM3B, a
histone H3 lysine 9 demethylase, was reported to prevent erastin-
induced ferroptosis of HT-1080 cells (63). Mechanistically,
KDM3B knockdown did not change the H3K9 methylation
level on the SLC7A11 promoter, while KDM3B cooperates with
transcription factor ATF4 to upregulate the expression of
SLC7A11. Also, KDM4A, a histone demethylase, was revealed
to regulate SLC7A11 transcription by controlling H3K9me3
demethylation in the promoter of SLC7A11 (Figure 1) (64).
Besides H3K9, multiple lysine and arginine residues of histones
(such as H3R2, H3K4, H3K27, H3K79, H4R3, H4K20, and
H2BK5) also undergo methylation/demethylation dynamics
and exhibit pleiotropic roles in gene transcription (65).
Therefore, it is of great interest to determine whether the
histone methylation of other sites and their writers, readers,
and erasers also participate in the regulation of ferroptosis-
associated genes.

RNA Modifications
N6-methyladenosine (m6A) RNA modification emerges in
recent years as a new layer of regulatory mechanism
controlling gene expression in eukaryotes (66). The m6A RNA
modification is a reversible epigenetic modification that targets
on mRNA and noncoding RNAs. The m6A modification
regulates gene expression by affecting the fate of the modified
RNA molecules (67). Intriguingly, m6A modification has been
observed to play a regulatory function in ferroptosis. The m6A
reader YTH domain containing 2 (YTHDC2) can bind to
SLC7A11 mRNA and thereafter promotes its decay (Figure 1)
(68). The main death type of tissue ischemic reperfusion injury
has been proved to be ferroptosis (11). Xu et al. revealed that
m6A methylase methyltransferase like 14 (METTL14) promotes
renal ischemic reperfusion injury (69). Mechanistically, they
identified YAP1 mRNA as a target of METTL14 and the
January 2022 | Volume 12 | Article 771870
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translation of m6A-modified YAP1 mRNA was inhibited.
However, a recent study revealed that YAP1 activates ACSCL4
gene transcription and thereby promotes ferroptosis (69). These
paradoxical results suggest that the role of YAP1 in ferroptosis
might be context-dependent and tissue or cell-type specific.

Non-Coding RNAs
The microRNA (miRNA) is a series of single strand noncoding
small RNA, which is made up of 20-22 nucleotides. The miRNA
can targets the 3’-UTR region of mRNA, triggering mRNA
decay or translational inhibition (70). Plenty of miRNAs have
been identified to participate in the regulation of the key genes
of ferroptosis. For instance, miRNA-17-92 can protect cells
from erastin-induced ferroptosis through targeting the ACSL4
axis and down regulating the ACSL4 expression (71). miRNA-
4715-3p induces ferroptosis by inhibiting GPX4 expression
(72). miRNA-137 targets SLC1A5 to suppress glutamine
transportation and induce ferroptosis (73).

The role of long noncoding RNA (lncRNA) in gene regulation
is gradually focused during the recent years (74). lncRNA is
defined as transcripts of more than 200 nucleotides that are not
translated into proteins (75). lncRNAs including HOX transcript
antisense RNA and metastasis−associated lung adenocarcinoma
transcript 1 are identified in the mechanism of ferroptosis
suppress induced by XAV939 treatment (76). The lncRNA
P53RRA induces ferroptosis by interacting with Ras GTPase-
activating protein-binding protein 1 (G3BP1) and activating p53
pathway, then induce ferroptosis by affecting transcription of
several metabolic genes (77). Wang et al. found lncRNA
LINC00336 combines with ELAVL1 and inhibit ferroptosis by
decreasing intracellular iron and lipid ROS level (78).

Circular RNA (cirRNA) is a type of single-stranded RNA
which, unlike linear RNA, forms a covalently closed continuous
loop. Circular RNA can regulate gene regulation by directly
Frontiers in Oncology | www.frontiersin.org 5
conjugating mRNA or indirectly transporting miRNAs in the cell
(79, 80). In addition, cirRNAs are appealed to involve the
ferroptosis regulation. Circular RNA cIARS regulates
ferroptosis in HCC cells through interacting with RNA binding
protein alkB homolog 5 (ALKBH5) (81). CircABCB10 silencing
inhibits the cell ferroptosis and apoptosis by regulating the miR-
326/CCL5 axis in rectal cancer (82). Circ_0008035 contributes to
cell proliferation and inhibits apoptosis and ferroptosis in gastric
cancer via miR-599/EIF4A1 axis (83).

Collectively, these findings demonstrate that epigenetic
mechanisms contribute to the regulation of ferroptosis-
associated genes (Table 1). However, whether, when, and how
those key regulator genes as well as many newly found genes are
epigenetically modulated are poorly understood. Therefore,
systematic identification of the epigenetic regulatory network
underlying ferroptosis is required in future study.
TARGETING EPIGENETIC
REGULATION: A NEW STRATEGY IN
THE PREVENTION AND THERAPY OF
FERROPTOSIS-ASSOCIATED DISEASES

As aforementioned, epigenetic mechanisms play a critical role in
the regulation of ferroptosis-associated genes, thereby finetuning
the cellular response to ferroptotic stress. Therefore, targeting
epigenetic regulation represents a promising strategy to enhance
or inhibit ferroptosis and has potential application in the
prevention and therapy of ferroptosis-associated diseases.
Indeed, many epigenetic drugs have been reported to display
exciting results in cancer therapy through modulating
ferroptosis (Table 2).
TABLE 1 | Epigenetic regulation of ferroptosis-associated genes.

Type Molecular mechanism Consequence on
ferroptosis

Reference

DNA modification Homocysteine treatment inhibits GPX4 expression through increasing the promoter DNA methylation
level

Promotion (52)

DNA hypermethylation of CDH1 increases its expression Inhibition (51)
Histone
modification

KDM4A induces H3K9me3 demethylation at the promoter region of SLC7A11 and promotes its
transcription

Inhibition (64)

BAP1 decreases the H2A ubiquitination level at SLC7A11 promoter and suppresses its expression Promotion (59)
PRC1 increases the H2A ubiquitination level at SLC7A11 promoter and suppresses its expression Promotion (58)
USP7 decreases H2Bub1 level at SLC7A11 promoter and represses its expression Promotion (60)
SUV39H1 modulates the H3K9me3 status of DPP4 gene promoter and down-regulates its expression Promotion (62)

RNA modification YTHDC2 binds on the mRNA of SLC7A11 and promotes its decay Promotion (68)
METTL14 deposits m6A on YAP1 mRNA and inhibits its translation Promotion (69)

Noncoding RNAs miRNA-17-92 down-regulates ACSL4 expression Inhibition (71)
miRNA-4715-3p inhibits GPX4 expression Promotion (72)
miRNA-137 suppresses SLC1A5 expression Promotion (73)
lncRNA P53RRA activates p53 pathways Promotion (77)
lncRNA LINC00336 interacts with ELAVL1 to decrease the intracellular iron and lipid ROS level Inhibition (78)
cIARS interacts with ALKBH5 Promotion (81)
CircABCB10 regulates miR-326/CCL5 axis Inhibition (82)
Circ_0008035 regulates miR-599/EIF4A1 axis Inhibition (83)
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DNMT Inhibitors
DNMT inhibitors have been successfully used in the treatment of
certain hematopoietic malignancies (85). Moreover, recent work
showed that DNMT inhibitors could enhance the efficiency of
immune checkpoint inhibitors (ICI) in cancer immunotherapy
(86). As aforementioned, 5-Aza-cd treatment could release the
DNA methylation-mediated epigenetic silencing of GPX4 and
CDH1 genes, restoring the resistance of cells to ferroptosis (51,
52). Given that DNMT inhibitors have very broad effect on gene
expression and genomic stability, it should be careful to
distinguish whether their effect on ferroptosis is achieved
through the direct regulation of specific ferroptosis-associated
gene or the indirect activation of certain signaling pathways due
to epigenetic reprogramming.

BET Inhibitors
Bromodomain and extra terminal protein (BET) inhibitors are a
class of drugs that prevent the interaction between BET proteins
and acetylated histones (87–89). Sui et al. revealed that
ferroptosis is involved in JQ1-induced cell death of BRCA and
LUAD (57). Moreover, treatment with JQ1 and ferroptosis
inducers (RSL3, erastin, or sorafenib) produced a satisfactory
anticancer effect, suggesting that the combination of BET
inhibitors with ferroptosis inducers may become a new
therapeutic modality.

HDAC Inhibitors
Pharmacological inhibition of SIRT1 by EX-527 increases
ferroptosis susceptibility by suppressing EMT, while SIRT1
agonists, resveratrol and SRT1720, promote ferroptosis (51). A
recent drug screening also identified a class I HDAC inhibitor,
Vorinostat, as an inducer of ferroptosis in small cell lung cancer
(SCLC) and isocitrate dehydrogenase (IDH1/2)-mutant brain
tumors, suggesting an unique vulnerability that is regulated by
histone or non-histone acetylation (84).
DISCUSSION

As a new concept introduced in 2012, ferroptosis has attracted
tremendous attention in biomedical fields. The existing work
about the epigenetic regulation of ferroptosis mainly focused on
several key ferroptosis genes. Whether the epigenetic mechanisms
Frontiers in Oncology | www.frontiersin.org 6
affect multiple ferroptosis genes and how these different epigenetic
mechanisms corporate with diverse signaling pathways to
determine the responsiveness of cells to ferroptosis stimuli
remain unknown. Therefore, a systematic study on the
epigenetic regulatory network of ferroptosis process is still a
blank in this field and requires extensive investigation.

Given that ferroptosis plays a role of surveillance in
tumorigenesis and also contributes to the efficiency of
multiple cancer therapies [chemotherapy, radiotherapy (90),
and immunotherapy (91)], it is rationale to speculate that
targeting the epigenetic machines alone or in combination
with the traditional therapies will be promising strategies for
cancer therapy. Since ferroptosis is closely related to
neurodegenerative diseases, ischemia-reperfusion injury of
organ, neurotoxicity, and others (11, 92–95), it is also of great
interest to explore the epigenetic mechanisms underlying the
altered ferroptosis sensitivity under different pathological
processes. The advances in this cross-disciplinary research
field may shed light on the treatment of diseases mentioned
above by modulating ferroptosis.
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TABLE 2 | Epigenetic drugs that modulate ferroptosis in cancer therapy.

Drug type Name Molecular mechanism Consequence on
ferroptosis

Cancer types Reference

DNMT inhibitors 5-Aza-cd Inhibition of DNMT by 5-Aza-cd increases
the expression of E-cadherin and GPX4

Inhibition Head and neck cancer (51, 52)

BET inhibitors JQ-1 Inhibition of BRD4 by JQ-1 downregulates
the expression of GPX4, SLC7A11 and SLCA2

Promotion Breast cancer; Lung Adenocarcinoma (57)

HDAC inhibitors EX-527 Inhibition of SIRT1 by EX-527 increases EMT Promotion Head and neck cancer (51)
Vorinostat Unknown Promotion Small cell lung cancer; IDH1/2 mutant brain

tumors
(84)
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