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Abstract

Histologic chorioamnionitis is an inflammatory disorder of the placenta that commonly precedes 

preterm delivery. Preterm birth related to chorioamnionitis and fetal inflammation has been 

associated with a risk for serious inflammatory complications in infancy. In addition, preterm 

infants exposed to chorioamnionitis may be more susceptible to infection in the neonatal intensive 

care unit and possibly later in life. A significant body of work has established an association 

between chorioamnionitis and inflammatory processes. However, the potential consequences of 

this inflammation on postnatal immunity are less understood. In this review, we will discuss 

current knowledge regarding the effects of fetal exposure to inflammation on postnatal immune 

responses.

Introduction

The diagnosis of suspected clinical chorioamnionitis is based on non-specific symptoms 

such as maternal fever, leukocytosis, abdominal or uterine tenderness, or fetal tachycardia 

(1). However, the ‘gold standard’ for confirmation of this diagnosis rests on placental 

evidence of acute histological chorioamnionitis (HCA), represented by the infiltration of 

inflammatory neutrophils in maternal or fetal placental tissues (2). A more updated, but still 

controversial definition of chorioamnionitis, also referred to as intrauterine inflammation, 

infection or both (‘Triple I’), incorporates both clinical and histologic criteria (3). While 

clinical chorioamnionitis is commonly accompanied by HCA (4), the reverse situation may 

not be true. In fact, most cases of HCA occur without clinical symptoms in the mother or 
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fetus and thus present ‘silently’ (5, 6). Despite the lack of clinical expression, however, 

asymptomatic placental inflammation is not innocuous even in the absence of infection (7). 

A diagnosis of HCA often precedes the delivery of extremely preterm infants (5), and like 

clinical chorioamnionitis, is associated with early-onset infection (8). Conversely, HCA was 

correlated with a decreased risk of late-onset neonatal infection with coagulase-negative 

staphylococci (9). HCA has also been closely linked to the pathogenesis of serious postnatal 

inflammatory disorders including bronchopulmonary dysplasia, brain injury, retinopathy of 

prematurity, and necrotizing enterocolitis (10–13). Preterm infants born to mothers with 

clinically suspected chorioamnionitis are typically identified as being at higher risk for 

infection and are typically screened (14). In contrast, in the absence of maternal symptoms, 

the possibility that a preterm infant has been exposed to HCA and a consideration of its 

inherent inflammatory and infectious risks may not be addressed in a timely fashion or even 

at all. This is particularly true given that a diagnosis of HCA rests on microscopic 

examination of the delivered placenta, and resulting information may not be available for 

days to weeks after birth.

A variety of approaches to identify gestations affected by HCA have been studied. The 

expression patterns of biological markers in amniotic fluid and cord blood, such as 

interleukin-6 and C-reactive protein, have been assessed for their predictive value in 

histological chorioamnionitis; however, sensitivity and specificity of these markers have not 

been consistent (15–17). Clinical prediction rules for HCA and funisitis have also been 

developed in order to identify newborns exposed to antenatal inflammation (18). The 

targeted clinical variables included the absence of pre-eclampsia, normal intrauterine 

growth, maternal or fetal evidence of clinical chorioamnionitis, prolonged premature rupture 

of membranes (PPROM), and vaginal delivery. Although these methods have shown clinical 

promise, to date none have been uniformly successful in identifying gestations with HCA.

The inflammatory complications associated with HCA have been well described (13, 19–

24). Less appreciated is that affected preterm infants also may be at risk for immune 

consequences in addition to or in combination with the adverse effects of HCA-mediated 

inflammation (25, 26). Increasing evidence supports the concept that the ensuing neonatal 

immune dysfunction reflects the effects of inflammation on immune programming during 

critical developmental ‘windows’ (26). The goals of the present review article are to 

summarize the following: 1) The effects of inflammation during pregnancy on the 

reconfiguration of neonatal inflammatory and immune responses; and 2) The implications of 

intrauterine inflammatory exposure for immunity in the neonatal period and beyond. 

Understanding how in utero inflammation programs the postnatal immune response may 

reveal novel approaches to reduce inflammatory injury and the risk for infection in preterm 

infants.

Effects of antenatal inflammation on neonatal immunity

Inflammation and immunity.

Inflammatory exposure during intrauterine life is a pathologic force that can drive alterations 

of postnatal innate and adaptive immunity (Fig. 1). A growing body of data implicate myriad 

environmental exposures during pregnancy, many associated with inflammation, on 
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subsequent immunity (reviewed in (25)). Recent evidence of a stereotypic developmental 

pattern of converging immune responses in preterm and term infants in the first three months 

of life, but divergent responses in infants with inflammatory exposure, additionally credits 

the role of intrauterine exposure at critical developmental windows in shaping immunity 

(26).

Studies in humans and in animal models have begun to define how inflammatory exposure 

can shape immune function in fetuses and in the newborn period; these are summarized in 

several recent reviews (27, 28). Acute HCA associated with fetal inflammation is a risk 

factor for numerous adverse neonatal outcomes (13, 19–24). Inflammatory injury related to 

HCA has been observed in both extremely preterm infants as well as in late preterm infants 

delivered after PPROM (29). However, HCA at the earliest gestations may more heavily 

influence neonatal immune responses, such as increased Th17 frequencies (30). This 

enhanced effect in very preterm newborns likely reflects the age-dependent ‘waves’ of 

immune cell populations with inflammatory or regulatory function that are generated in the 

developing fetus (31).

Immune priming and HCA.

In utero ‘priming’ or activation of the fetal immune system at critical developmental time 

points can lead to chronic inflammatory disorders as well as increased vulnerability to 

infection after birth (25). Maternal infections with chronic inflammation, such as HIV or 

malaria, during pregnancy were associated with fetal inflammation and alterations in infant 

B cell responses (32). Infants born to mothers with allergic disease had lower frequencies of 

Tregs, which in turn were impaired in their capacity to suppress effector T cells, particularly 

Th2 cells (33). This latter finding may be of particular relevance to exposed infants and 

future risk for asthma given its close association with Th2 polarization (34). Furthermore, 

even the low-grade systemic inflammation associated with maternal obesity was shown to 

induce placental and fetal inflammation (35).

Emerging evidence also points to a critical role of activated fetal cells in driving intrauterine 

responses during chorioamnionitis. Gomez-Lopez et al. utilized DNA fingerprinting to show 

that predominance of inflammatory fetal neutrophils in the amniotic fluid of gestations with 

chorioamnionitis was highly associated with the delivery of extremely preterm neonates 

(36). Increased neonatal T cell activation has also been associated with preterm delivery 

(37). Frascoli et al. observed that activation of the fetal adaptive immune system suppressed 

maternal-fetal tolerance in the context of preterm labor (38). In that study, fetal blood 

showed early maturation of dendritic cells and enhanced maternal microchimerism in 

preterm relative to term gestations. Additionally, preterm (but not term) fetal T cells were 

alloreactive to maternal antigens, and maternal antigen-specific stimulation induced the 

proliferation of fetal Th1-type cells. Furthermore, the cytokines (IFNγ+ or TNF-α) released 

by proliferating T cells directly increased myometrial contractility in an in vitro assay, 

suggesting a directive role of activated fetal T cells in preterm labor. Although naïve T cells 

typically predominate in fetuses, high frequencies of memory (CD4+CD45+RO+RA-) T 

cells have been observed in association with preterm labor (37). This finding may be 
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important given differing gene expression patterns and function in naïve vs. memory T cells 

(39).

The inflammatory processes induced by HCA also contribute to fetal immune activation. In 

a recent transcriptomic study, preterm infants exposed to HCA exhibited gene expression 

signatures indicative of immune priming (40). The most frequently upregulated genes in 

these neonates were associated with activation of innate and adaptive immune pathways. 

Notably, the microRNA, miR-155, was shown to be a top upstream regulator. MiR-155 is a 

master modulator of inflammatory and immune responses, and its elevated expression in 

immune cells has been associated with chronic inflammatory states including atopic 

dermatitis, multiple sclerosis and rheumatoid arthritis (reviewed in (41)). Pertinently, 

MiR-155, which is also expressed in activated CD4+ T cells, can promote pathogenic Th17-

biased responses (42).

Evidence of immune priming was also observed in a murine model of LPS-induced 

antenatal inflammation followed by a postnatal ‘second hit’ immune challenge (43). In pups 

exposed to antenatal inflammation, infection with Sendai virus (the murine counterpart to 

the respiratory syncytial virus (RSV) that causes bronchiolitis in human infants) triggered 

strong inflammatory responses in the lungs, the primary site of infection, but also in distal 

organs such as the liver. This exaggerated correlation was not witnessed in infected control 

pups without antenatal LPS exposure. In addition, an inductive effect of maternal 

inflammation on lung CD4 T helper cell populations with a pro-inflammatory Th1- and 

Th17 phenotypes was most pronounced in exposed weanling pups relative to neonates. 

These findings suggested that the processes initiated in utero not only persisted but were 

possibly amplified beyond the neonatal period. Interestingly, a similar enhancement of lung 

Th17 cells was observed following secondary RSV challenge in adult mice that had survived 

severe sepsis (44).

Inflammatory innate immune responses in HCA.

A number of studies have shown that experimentally induced antenatal inflammation leads 

to exaggerated inflammatory immune responses in exposed offspring. In ex vivo studies of 

preterm fetal sheep, experimental chorioamnionitis promoted the functional maturation of 

lung monocytes and hastened their capacity to produce inflammatory cytokines in response 

to stimulation (45). Preterm piglets born after several doses of intra-amniotic LPS had 

increased systemic and organ specific (gut and lung) inflammatory responses at birth (46). In 

a murine model of antenatal inflammation, neonatal and weanling offspring of LPS-treated 

dams showed increased basal innate immune responses in the lungs and livers that were 

amplified following a ‘second hit’ viral infection (43).

The fetal inflammatory responses induced by HCA have also been shown to persist in 

newborn infants as systemic inflammation, much of it driven by neutrophils. As part of the 

ELGAN study, Chen et al. showed that the elevated levels of key neutrophil-associated 

inflammatory proteins (including myeloperoxidase, IL1β, IL-8, ICAM-3 and MMP9) in the 

cord blood of preterm infants born with funisitis (inflammation of cord blood vessels 

consistent with the fetal inflammatory response syndrome, FIRS) remained high on 

postnatal day 7 (47). Autopsies of human fetuses and newborn infants who died after severe 
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chorioamnionitis also showed amplified neutrophil production (myelopoiesis) in 

hematopoietic organs (48, 49). These observations are consistent with the excessive 

neutrophil responses associated with this perinatal condition (36, 50–52) as well as the 

neutrophil-driven inflammatory responses in neonatal lungs and other organs (53, 54). 

Similar observations of neutrophil-driven inflammation have been observed in animal 

models. Antenatal inflammation was shown to promote neutrophil recruitment and the 

infiltration of organs such as the lungs and brain (43, 55, 56). High expression levels of 

inflammatory cytokines, including IL-1β, IL-6, IL-8, and IL-17 in the blood, thymi, lungs, 

and/or intestinal tracts of fetal sheep, macaques and piglets animals following experimental 

chorioamnionitis have been reported (46, 57–59). In addition, altered DNA methylation 

profiles have been observed in placentas with HCA, reflecting activation of innate immunity 

and neutrophil increases (60).

Antenatal fetal exposure has also been shown to induce inflammatory responses in the liver. 

In sheep studies of liver homeostasis and metabolism after LPS-induced chorioamnionitis, 

Vlassaks et al. found increased hepatic T-lymphocytes and apoptotic hepatocytes in term 

newborns and increased liver triglycerides and cholesterol levels at 7 weeks of life, 

indicating long-lasting postnatal effects on lipid metabolism (61). Endotoxin-induced 

chorioamnionitis also caused hepatic damage associated with disturbed lipid and glucose 

metabolism, reduced antioxidant capacity, and elevated liver enzymes (62). The adverse 

hepatic effects of fetal inflammation may have specific relevance to neonatal immunity, 

given the increasingly appreciated role of the liver in directing immune function (63)

Inflammatory adaptive immune responses after HCA.

T helper cell subsets belong to the adaptive arm of the immune system and can promote or 

suppress inflammatory responses. In addition to the effects of fetal inflammation on innate 

immunity, recent studies have identified the robust involvement of pro-inflammatory T 

helper cell lymphocyte subsets, such as Th17 cells, in fetuses or preterm infants with 

antenatal inflammation. Th17 cells characteristically function to protect the host against 

extracellular pathogens (64–66). However, under certain inflammatory conditions, Th17 

cells may become pathogenic and promote tissue injury (67). Th17 cells release the 

canonical cytokine, IL-17, which is also produced by other immune cells such as γδ T cells 

and pro-inflammatory Treg cells (68). IL-17 plays a critical role in processes involved in 

FIRS associated with HCA (59). The developing brain is particularly sensitive to 

inflammatory injury, and exposure to IL-17 at critical ‘windows’ of immune development 

can induce microglial activation and white matter injury (reviewed in (69)). Furthermore, in 

addition to directly inducing tissue injury, Th17 cells can amplify inflammatory responses 

through cross-talk with neutrophils (70).

While Th17 cells play an important biological role in normal pregnancy (71), increased 

frequencies of pathogenic Th17 cells have been observed in placentas of women with 

recurrent miscarriages (72) and in gestations affected by chorioamnionitis (73). Higher 

circulating Th17 frequencies in mothers or in the cord blood of babies of preterm gestations 

with HCA have also been reported (74, 75). The exact mechanism(s) that promote Th17 

responses in the context of HCA remain enigmatic. However, expression levels of several 
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cytokines that are critical to the propagation of Th17 cells from naïve CD4 cells, including 

IL-1β and IL-6 (76), are also increased in the amniotic fluid in HCA (77, 78). The finding 

that inflammatory neutrophils promote in vitro propagation of Th17 cells (79) suggests their 

contribution to an intrauterine cytokine milieu that also modulates Th17 responses in HCA, 

as observed in the context of chronic inflammatory conditions such as rheumatoid arthritis 

(80).

In a recent human study, cord blood from preterm and term infants with HCA had increased 

frequencies of Th17 cells relative to unaffected controls (74). Th17 cells were highest in the 

cord blood of extremely preterm infants, who also exhibited increased T cells with an 

effector memory phenotype associated with Th17-type responses (81). In addition, the 

elevated circulating Th17 frequencies observed at birth in preterm neonates exposed to 

chorioamnionitis persisted in the first month of life (75). Increased Th17-type responses 

have been observed in the cord blood of human infants following both acute and chronic 

HCA (73), and in animal models in the context of antenatal inflammation. Fetal macaques 

exposed to LPS-induced chorioamnionitis had increased splenic IL-17+ and IL-22+ Th17 

cells (59), while weanling murine pups exposed to LPS exhibited increased lung Th17 

responses (43).

T regulatory (Treg) cells constitute a T helper cell subset that typically functions to suppress 

activated cells and inflammatory responses, including those mediated by Th17 cells (82, 83). 

Chorioamnionitis has been variably associated with decreased T regulatory (Treg) cell 

frequencies or reduced Treg suppressor function (84). Fetal rhesus monkeys and sheep 

exposed to experimental chorioamnionitis had an increased ratio of IL-17 producing cells to 

Tregs in lymphoid organs (85). Exposure was also associated with decreased frequencies of 

circulating Tregs in extremely preterm human neonates and in fetal macaques (59, 74). 

However, the majority of Tregs in these two studies also co-expressed the canonical Th17 

transcription factor, RORγt, and/or IL-17, consistent with a pro-inflammatory rather than a 

regulatory phenotype (86, 87). Pertinently, IL-17+ Tregs can serve as a major source of 

IL-17 during inflammation (88).

The enhanced Th17-type responses observed in conjunction with antenatal inflammation 

have been linked to inflammatory injury in the lungs or brain. Elevated frequencies of IL-17 

producing cells in fetal rhesus monkeys with chorioamnionitis were associated with lung 

inflammation in neonates (85). When LPS-induced antenatal inflammation was combined 

with neonatal hypoxic-ischemic brain injury in a rat pup model, Th17-like lymphocytes 

migrated to the brain to direct neuroinflammatory responses (89). Th17 cells appear to be 

the major cell group mediating this inflammatory IL-17 effect; while γδ t cells also produce 

IL-17 (90), experimental HCA did not measurably alter this lymphocyte population in 

exposed lambs (91).

Other lymphocyte subsets may have the capacity to contribute to neonatal inflammatory 

responses in HCA that are not mediated by IL-17. A higher proportion of Th1 cells were 

determined in the umbilical cord blood of human neonates with clinical evidence of 

perinatal infection (92). A recently described subset of lymphocytes unique to cord blood 
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produces IL-8/CXCL8 and can activate neutrophils and γδ t cells (93), although whether 

and how HCA influences these lymphocytes is not clear.

Immune suppression and HCA.

In contrast to the hyper-inflammatory responses associated with HCA exposure, protective 

immune responses may be suppressed. Immune suppressive mechanisms in chorioamnionitis 

may be selectively quantitative. Human fetuses and neonates exposed to chorioamnionitis 

have been shown to exhibit both thymic involution and depletion of splenic T cells (94, 95). 

Studies in fetal sheep affected by chorioamnionitis found reductions in CD8+ but not CD4+ 

T cells in thymic cell populations (96).

Intrauterine inflammatory exposure may also lead to qualitative alterations in neonatal innate 

or adaptive immune function. A relationship between an inflammatory antenatal 

environment and immune suppression is suggested by the enhanced HIV-positivity observed 

in human infants born to HIV-affected mothers in the context of chorioamnionitis (97), 

possibly due to activated fetal lymphocytes (98). A recent study also showed suppressed 

transcriptional responses to Staphyloccoccus epidermidis in ex vivo monocytes from preterm 

human neonates with chorioamnionitis (99). Studies in animal models are supportive of this 

premise: Repetitive intrauterine LPS exposure in sheep induced ‘immune paralysis’ of ex 
vivo fetal and neonatal monocytes following stimulation with LPS or other Toll-like receptor 

ligands (45, 100). Similarly, chronic, but not acute, intra-amniotic infection with Ureaplasma 
parvum resulted in suppressed ‘second hit’ LPS-induced cytokine responses in the fetal lung 

(101, 102). This evidence further supports the idea that prenatal exposure to HCA-mediated 

inflammation, particularly if longstanding, can alter postnatal immune response patterns. 

Pertinently, septic human neonates have been observed to exhibit early hyper-inflammatory 

responses followed by suppressed immune responses (103), a pattern reminiscent of that 

observed in infants exposed to HCA. Similarly, Azizia et al. found a correlation between 

prematurity, neonatal sepsis, and reduced monocyte MHC class II expression associated 

with immune paralysis in HCA-exposed gestations, with an increased risk for sepsis and 

organ dysfunction (104).

Potential mechanisms of immune suppression in HCA.

The immune system in preterm infants is developmentally restricted in its capacity to protect 

the host against infection (105). The added burden of intrauterine inflammatory exposure 

during sensitive developmental ‘windows’ to already impaired immune function also remain 

incompletely understood, but may involve developmentally regulated epigenetic processes 

(106). In studies of short-term antenatal LPS exposure in preterm sheep, the role of timing 

rather than the specific inflammatory trigger was found to have a greater impact on 

abnormal neurological findings in the fetal brain (107). However, the mechanisms involved 

in the inflammation-induced immune suppression of infants exposed to HCA, like the 

immune dysfunction associated with neonatal sepsis (103), remain incompletely understood 

(108).

A variety of quantitative and qualitative alterations of immune function that are biologically 

prevalent in preterm infants can contribute to processes that suppress immunity (31, 109) 
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(Fig. 2). The characteristic limitations of neutrophil production and storage that are typical 

in preterm infants can lead to rapid depletion and severe neutropenia during periods of 

increased utilization, such as sepsis (110). In addition, neonatal neutrophils and monocytes 

exhibit intrinsic dysfunction, including hyporesponsiveness to stimulation and impaired 

antimicrobial capacity (111, 112) that may be additionally affected by inflammation-induced 

immune paralysis. HCA can induce excessive fetal neutrophil production (granulopoiesis), 

suggesting a fetal capacity to overcome or circumvent developmental restrictions under 

inflammatory conditions (113). However, the functionality of these newly-minted 

neutrophils may also be impaired. Inflammation can lead to hypofunctional T cells through a 

process that downregulates the T cell receptor (TCR) zeta-chain (114), although whether this 

functions as a suppressive mechanism in the context of HCA is unknown. Conversely, while 

neonatal immune cells are also at a developmental disadvantage in terms of generating 

protective cytokines, such as IFNγ, neonatal Th1 cell frequencies may be increased 

following HCA exposure (115).

Cells with regulatory function may serve to further suppress immune function in newborns 

exposed to HCA (Fig. 2). Granulocytic myeloid-derived suppressor cells (Gr-MDSC), an 

immature neutrophil subset with high frequencies in neonates, suppress T cell function (116, 

117). This action may occur through the reduction of L-arginine levels (118), which are 

biologically low in preterm infants (119). Pertinently, increased expression of arginase 1 and 

subsequent depletion of L-arginine were observed in exposed offspring in a rat model of 

LPS-induced chorioamnionitis (120). MDSCs are also important negative regulators of 

inflammatory responses (121, 122). Elevated circulating frequencies of granulocytic MDSCs 

have been reported in extremely preterm infants in association with clinical inflammation, 

though not specifically HCA (123). Importantly, these MDSCs persisted for several months 

beyond the immediate neonatal period, suggesting an immunosuppressive role in later 

infancy. Neonatal inflammatory neutrophils and monocytes also release the alarmins, 

S100A8 and S100A9, which may suppress hyper-inflammatory responses through the 

expansion of MDSCs (124, 125). Pertinently, increased S100 protein expression levels in 

amniotic fluid have been observed in gestations with HCA (126).

Lymphocytes with intrinsic suppressive function can also inhibit immune responses in 

preterm infants. Tregs are critical to the suppression of T cell responses to self and maternal 

antigens that is necessary for maternal-fetal tolerance (127, 128). Although Tregs in preterm 

infants with HCA may exhibit a pro-inflammatory (Th17-like) phenotype (74), conversely 

their release of IL-17 could attract MDSCs to mediate immune suppression (129). 

Regulatory B cells, another type of immune cell, can modulate neonatal inflammatory 

responses (130) and promote Th2 skewing in neonatal mice through suppressive actions on 

dendritic cells (131).

Recent evidence also points to a role of a unique subset of CD71+ erythroid cells in 

modulating myeloid and T cell responses (132). Pertinently, these regulatory erythroid cells 

are found in high numbers in preterm but not term neonates. CD71+ cells were shown to 

suppress protective immune responses to pertussis infection in neonatal mice, in part 

through actions mediated by arginase and expression of programmed death ligand-1 (133).
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Steroid associated effects on immune responses in HCA.

While current treatment guidelines for chorioamnionitis are institutionally varied, antenatal 

steroids (in the form of betamethasone) are commonly administered for preterm labor. A 

recent meta-analysis showed that steroid administration in the setting of HCA was 

associated with reduced mortality and incidence of respiratory distress, patent ductus 

arteriosus, intraventricular hemorrhage (IVH) and severe IVH; in the setting of clinical 

chorioamnionitis, steroid administration reduced severe IVH and periventricular 

leukomalacia (134). Although several studies suggest that antenatal steroids can dampen the 

inflammatory cascade, their effects on fetal inflammation are not well defined. Evidence of 

anti-inflammatory effects of steroid administration includes the inhibition of intrauterine 

TFG-β signaling associated with fetal lung inflammation and the partial prevention of the 

structural lung changes induced by LPS exposure (135, 136).

The antenatal timing of steroid administration may also influence inflammatory responses. 

Kuypers et al. showed that while steroid administration prior to intrauterine LPS exposure 

reduced the adverse effects of inflammation on the brain in fetal sheep, conversely steroids 

aggravated inflammatory changes in the brain and thymus in the context of pre-existing 

inflammation (137, 138). These observations suggest that, in the presence of 

chorioamnionitis, steroids could potentially amplify fetal injury in an organ-specific manner. 

In studies of fetal sheep exposed to intra-amniotic endotoxin and subsequently treated with 

steroids, inflammatory responses in ex vivo monocytes were initially suppressed but were 

followed by a later activation, possibly the result of steroid-induced functional maturation 

(139).

Summary

Histologic chorioamnionitis is a common disorder that is tightly linked to preterm delivery 

and dysregulated immune function. Inroads are being made towards better defining the 

immune effects of antenatal inflammatory exposure on the fetus and newborn, which 

includes a pattern of hyper-inflammation combined with immune suppression. However, 

much remains to be learned regarding the underlying mechanisms so that potential 

therapeutic targets can be identified.

Perinatal inflammation has clear implications for human health. Mounting evidence points to 

a negative impact of early inflammatory exposure of any origin on the developing immune 

program (140, 141). Chorioamnionitis has been identified as contributing factor in childhood 

asthma (142, 143), possibly through a mechanism involving Th2 skewing (144). However, 

much remains to be learned in this regard. Numerous factors aside from microbial exposure 

have been shown to induce systemic maternal inflammation and/or chorioamnionitis, 

including nutritional and psychosocial factors (reviewed in (140)). Of great concern are the 

observations linking perinatal inflammation from various causes with immune dysfunction 

and abnormal stress responses, not only in the immediate postnatal period but possibly 

throughout life or even into the next generation (145). Thus, the importance of advancing 

knowledge of perinatal inflammation and its causes cannot be overstated.
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Figure 1. Potential effects of HCA on neonatal inflammatory and immune responses.
Studies in humans and in animal models have linked HCA, a neutrophil (PMN)-driven 

placental disorder associated with increased Th17 responses, with exaggerated inflammatory 

responses of both innate and adaptive immune cells. Neutrophil (PMN) production and 

activation may be increased, along with the release of inflammatory cytokines and 

chemokines that promote PMN infiltration and injury to major organs. Experimental fetal 

inflammation can induce functional maturation and activation of monocytes (Mono) and 

macrophages (Macs) that can also heighten inflammatory responses. Fetal inflammation 

enhances the generation of inflammatory Th17 cells and IL-17+ Treg cells; while IL-17 is 

important to host protection, high levels can induce organ injury, particularly in the brain. 

Exaggerated inflammatory responses may lead to suppression of protective immune 

responses, which increase risk for infection. Neonatal infection in the context of HCA 

exposure has also been shown to increase risk for organ injury and has been linked to 

bronchopulmonary dysplasia.
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Figure 2. Potential mechanisms of suppressed protective immunity in neonates exposed to fetal 
inflammation associated with HCA.
Experimental HCA has been associated with ‘immune paralysis’ as suggested by decreased 

LPS responsiveness in fetal sheep monocytes. HCA has been variably associated with 

quantitative and qualitative defects in T cells. Conversely, increases in Th17 and 

inflammatory Treg cells promote IL-17 release. While IL-17 provides immune protective 

function, it can also promote the generation of myeloid-derived suppressor cells (MDSCs), 

which adversely affect protective immunity. The increased expression of S100 proteins, 

particularly S100A8 and S100A9, may promote host protection; however, high levels can 

increase MDSC generation. Recent evidence also indicates an immunosuppressive role of 

CD71+ erythroid cells, which could potentially be increased with HCA.

Sabic and Koenig Page 19

Pediatr Res. Author manuscript; available in PMC 2021 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Effects of antenatal inflammation on neonatal immunity
	Inflammation and immunity.
	Immune priming and HCA.
	Inflammatory innate immune responses in HCA.
	Inflammatory adaptive immune responses after HCA.
	Immune suppression and HCA.
	Potential mechanisms of immune suppression in HCA.
	Steroid associated effects on immune responses in HCA.

	Summary
	References
	Figure 1.
	Figure 2.

