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We need to set priorities for conservation because we cannot do everything, everywhere, at the same
time. We determined priority areas for investment in threat abatement actions, in both a cost-
effective and spatially and temporally explicit way, for the threatened mammals of the world. Our
analysis presents the first fine-resolution prioritization analysis for mammals at a global scale that
accounts for the risk of habitat loss, the actions required to abate this risk, the costs of these actions
and the likelihood of investment success. We evaluated the likelihood of success of investments using
information on the past frequency and duration of legislative effectiveness at a country scale. The
establishment of new protected areas was the action receiving the greatest investment, while restor-
ation was never chosen. The resolution of the analysis and the incorporation of likelihood of success
made little difference to this result, but affected the spatial location of these investments.
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1. INTRODUCTION
Conservation expenditure must be prioritized so that
scarce funds and resources are used efficiently and effec-
tively to prevent long-term loss and degradation of
natural systems. Various templates for prioritizing the
investment of conservation funds at a global scale have
been developed, each with different objectives [1].
Past prioritization analyses for mammal conservation
have identified the minimum area required to achieve
pre-specified targets and have typically been conducted
at a coarse resolution (e.g. 10 000 km2) [2,3]. Other
global-scale analyses for mammals have delivered
important information on the coverage of the global
protected areas (PAs) network [4,5], on the drivers of
extinction and biogeographic patterns [3,6–9] and on
the surrogacy value of mammals for other taxonomic
groups [10–12]. A fine-resolution prioritization analysis
at a global scale for any taxonomic group, including
mammals, has been precluded to date owing to the lack
of fine-resolution species distribution data [1]. The
availability of such data for mammals from the recently
completed Global Mammal Assessment (GMA) [13]
presents an important opportunity to address this gap
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and improve decisions about where funds should be
expended to conserve biodiversity. However, a compre-
hensive prioritization analysis at a global scale must
also account for: the vulnerability of sites, the actions
required to abate threatening processes, the costs of
these actions and their likelihood of success [14,15].

Typically, the implementation of conservation activi-
ties is a protracted process and the investment landscape
will change through time as areas are protected or
destroyed. The cost-effectiveness of investments can be
enhanced and the likely persistence of species can be
improved by explicitly accounting for landscape
dynamics [16–18]. While several of the global prioriti-
zation templates incorporate a measure of vulnerability
[1], the measures employed are static, generic measures
and therefore cannot inform when or how funds should
be spent. Until recently, there has been a deficit of
spatially explicit data on the rate of habitat loss owing
to a range of threatening processes, which is essential
to inform the relative priority for investing in different
actions in different locations through time [2,19,20].
There are two areas of dynamic conservation planning
that are largely unresolved in the literature. First, the
exact solution to a dynamic conservation planning pro-
blem requires the application of stochastic dynamic
programming [18,21,22] in order to find optimal sol-
utions. As large conservation problems are impossible
to solve using this method, we have the technical chal-
lenge of deriving robust approximations. Second, there
is some confusion about how the process of protection
This journal is q 2011 The Royal Society
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influences threats. In some analyses, threatened sites are
avoided, presumably because protection will not stop
the threat [23]. In other analyses, threatened sites are
preferred because protection will abate the threat. In
reality, many situations lie between these extremes—
protection may partially mitigate the threat, or mitigate
the threat with an uncertain probability [24–26].

It is impossible to provide direction on how funds
should be allocated without considering the actions
required to abate specific threats. Habitat loss and
degradation are the key threats to mammal persistence
[9,27]. Globally 5000 million hectares of native veg-
etation have been converted to agriculture [28] and
there are extensive areas which have been cleared for
agriculture that now require restoration [29]. While
designating PAs might stop or slow the conversion of
habitat, there is often also a need to reverse habitat
degradation to ameliorate the effects of past land use
decisions [30,31]. Similarly, many land-management
strategies require adjustment to enhance their suit-
ability for biodiversity [32]. For example, reduced
impact logging (RIL) practices have been identified
as a priority action to conserve biodiversity in tropical
forest regions [33,34]. Recent advances in conser-
vation planning facilitate the prioritization of multiple
conservation actions, ranging from protection to res-
toration [35,36]. Such multiple-action analyses have
to date been restricted to local or regional scale
situations.

None of the existing global prioritization templates
incorporate costs directly [1], let alone account for
the spatially variable costs of different conservation
actions. There is now sufficient evidence of the impor-
tance of explicitly incorporating economic data into
prioritization analyses, with conservation plans that
are up to 10 times more efficient [37] and conflicts
with areas important for agriculture halved [2]. The
identification of priority areas has also been found to
be more sensitive to the inclusion of cost data as
opposed to biodiversity data, emphasizing the need
to consider both ecological and economic data in
prioritization analyses [38].

Funding commitments are likely to require adjust-
ment through time with changes in political and
institutional capacity and stability. Between 1950 and
2000, over 90 per cent of the major armed conflicts
in the world occurred within countries containing bio-
diversity hotspots, and 80 per cent took place directly
in biodiversity hotspot areas [39]. In general, the links
between governance and the loss of biodiversity are
complex [40–42] but conflicts have been found to
result in habitat destruction as a result of an ineffective
enforcement [40,43,44]. This means that the chance
of successful investments varies from place to place
but this variation has not been incorporated in global
prioritization templates [1,42,45]. With biodiversity
hotspots concentrated in politically volatile regions, it
has been recommended that the conservation commu-
nity maintains continuous engagement during periods
of conflict [39]. However, concerns regarding security
and instable governance can force the suspension of
conservation activities [46,47], and international aid
can shift to peacekeeping and humanitarian efforts
[40]. Eklund et al. [48] find that when poor governance
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(specifically, corruption) results in much higher
management costs, conservation budgets are more
effectively allocated to countries with better governance.
If we assume that periods of ineffective legislature
will reduce the funding available for conservation then
the probability (and likely duration) of such interrup-
tions can be explicitly accounted for when prioritizing
conservation spending [45].

In this paper, we provide a logical and comprehensive
prioritization framework for conservation expenditure
at a global scale [14]. The objective of our analysis is
to maximize the number of species conserved, through
strategic investment in a suite of conservation actions,
given a fixed budget constraint. In doing so, we account
for the following information:

— mammal species distribution data;
— the main threats to each species and the probability

of habitat conversion owing to each threat;
— the actions likely to abate the threats and the costs

associated with the implementation of these
actions; and

— the likelihood of investment success.

Our aim is to determine the amount of funds to be
directed towards each conservation action in a spatially
and temporally explicit manner. Our analysis therefore
represents the first comprehensive, multiple-action,
prioritization analysis undertaken at a fine resolution
at a global scale.

2. METHODS
(a) Spatial data

We used an equal-area grid to delineate sites available for
conservation investment and conducted our analysis at
two spatial scales: 10 � 10 km and 30 � 30 km. There
are 1 141 064 sites at a 10 km resolution occupied by
the mammal species of concern in this analysis (see
below) and approximately 135 470 sites at a 30 km res-
olution. Grid layers were clipped to the spatial extent
of the 186 countries included in the analysis (the
countries for which data used in the analysis were avail-
able) meaning that sites located along the coastline are of
irregular shape.

We classified land within each site into five primary
land uses using the GlobCover global land cover map
and the 2010 World Database on Protected Areas (for
further information see electronic supplementary
material, appendix 1). For each grid cell, we calculated
the area (in square-kilometres) contained within PAs
[49], excluded areas [50], agricultural land [50],
non-intact closed native forest likely to be subject to
human disturbance [51] and unallocated land [50].
We considered unallocated land to be areas of native
vegetation that may be subject to habitat conversion
and available for the designation of PAs.

We used fine-scale habitat suitability models for ter-
restrial mammals [13] to calculate the total area of
suitable habitat (in square-kilometres) for each species
contained within each site. We considered Threatened
and Near-Threatened species, which together rep-
resent 21 per cent of terrestrial non-extinct mammals
(n ¼ 1128). We also accounted for Data-Deficient
species (n ¼ 779; 15 per cent of terrestrial non-extinct
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mammals). We then extracted information on the
threats to each species from the IUCN Red List data-
base [52]. We obtained information on the threats
affecting the status of 1669 species (178 Critically
Endangered species, 437 Endangered species, 473
Vulnerable species, 292 Near-Threatened species and
289 Data-Deficient species). Of these species, 1372
are threatened by agriculture/farming and/or forestry
activities, with 430 species affected only by agricul-
ture/farming, 195 species affected only by forestry
activities and 747 species affected by both threats.
We therefore considered two threatening processes:
the conversion of natural habitat to (i) agriculture
and (ii) plantation forestry. Threat information con-
tained within the GMA database identifies species
that are currently threatened, and therefore only
reflects responses to past land transformations. Our
analysis does not consider species which may poten-
tially be affected by a threat once land use change
occurs [53].
(b) System dynamics

We considered the future vulnerability of each site to
land use conversion by agriculture and plantation
forestry. We determined the rate of conversion to agri-
culture using the GLOBIO3 dataset and drivers of
land use change from the Integrated Model to Assess
the Global Environment [19]. Predictions were gener-
ated over 20 years (from 2010 to 2030) using the
scenario ‘order from strength’, which represents the
worst-case scenario in terms of habitat loss owing to
agricultural development [54]. We determined the
annual rate of conversion to plantation forest by
applying the past rates of forest conversion (from
2000 to 2005) to the area of intact forest within each
site [55]. We determined the percentage of the total
forest area in each country that contained plantations
in 2005 [56] and using the annual rate of conversion
estimated the proportion of the remaining forested
area that might be converted to plantations in the
future. We did not consider the possibility of contagion
in habitat clearance between sites, or feedbacks in the
rate of habitat conversion in a site over time; hence the
annual rate of land conversion to agriculture and plan-
tation within each site remained constant over our
analysis time period, but the area converted in each
site reduced through time as land was protected or
converted.
(c) Costs of conservation action

We considered three conservation actions for invest-
ment: the establishment and management of new
PAs within unallocated land, restoration of land cleared
for agriculture and RIL. The costs of implementing
a conservation action are a composite of the cost of
land purchase, management, foregone returns and
transaction costs [57]. We determined the cost of new
PAs in our analysis ($US per hectare per year) as the
sum of the opportunity cost of forgone agricultural
rents [58] and the predicted cost of PA management
[59,60]. We endowed this summed annual cost using
a discount rate of 9 per cent to determine the total
cost of protected area implementation within each site
Phil. Trans. R. Soc. B (2011)
($US per hectare) over the entirety of our 20-year plan-
ning period (for further information see electronic
supplementary material, appendices 2 and 4).

RIL was restricted to non-intact forest in tropical
developing countries. We determined countries that
were considered to be still developing [61], and from
those selected developing countries where more than
50 per cent of land area was contained within the tro-
pics. It has previously been found that RIL does not
incur an opportunity cost as it can yield more timber
and incur lower harvesting costs than standard logging
practices [62,63]. We determined the cost of RIL
using data on the costs of training personnel in RIL
techniques. We accounted for the cost of training con-
cession operators every 5 years in RIL practices
(estimated to equate to US$11 per hectare [64]),
and we endowed this cost over 20 years (using a dis-
count rate of 9%), which equates to US$50 per
hectare and assigned this as a flat cost to each site
where RIL was an available action for conservation.

We assumed that restoration may only occur on
agricultural land in sites where there is a zero rate of
habitat conversion, as restoration is unlikely in a site
still being cleared for agriculture. Restoration on agri-
cultural lands will bear an agricultural opportunity
cost, and also an implementation cost. The implemen-
tation cost of restoration varies with site-specific
characteristics that are impossible to account for at a
global scale. We used a standard cost of restoration
in tropical forest areas of US$12 150 ha21 [65] for
all locations and assigned this cost (combined with
the endowed cost of foregone agricultural rent) to
each site where land was available for restoration.

(d) Likelihood of conservation investment

success

We quantified the likelihood of investment success for
each site using data obtained from a time-series database
on legislature effectiveness [66]. Annual probabilities of
investment failure were determined according to the
number of incidences of complete legislature ineffec-
tiveness in each country between 1980 and 2005: for
one incidence during this timeframe, a probability of 4
per cent of investment failure was assigned to the country
(¼1/24, applicable to 39 countries); two incidences
resulted in a probability of 8 per cent (applicable to
11 countries) and three incidences equated to a 12.5
per cent probability of investment failure (applicable
to two countries). We considered the possibility that
funding could resume in countries where the ability
to invest had previously been lost, and calculated the
probability of funding resuming was approximated by
the inverse of the average number of years a country
has had an ineffective legislature from 1980 to 2005.
We determined whether funding was possible or not in
a particular year by comparing the probability of invest-
ment failure at each site to a random number drawn
from a uniform distribution of interval (0, 1).The algo-
rithm was run 100 times and the investment allocations
were averaged.

(e) The conservation prioritization approach

The objective of our analysis was to maximize the
gain in species protection, given a fixed budget for
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conservation investment (a detailed explanation of
the mathematical framework is provided in electronic
supplementary material, appendix 3). We employed the
current annual budget from the Global Environmen-
tal Facility, which equates to $968 million (see http://
gefeo.org/interior_right.aspx?id¼48). Our management
decision was to determine which conservation action
should be undertaken where and when, by maximizing
the expected utility E[Yij] gained from investments into
conservation actions:

E½Yij � ¼
wiðSij � LijÞ

Aijcij

:

The benefit gained from investing in action j is equal to
the sum of suitable habitat for all species (relative to the
total area of suitable habitat for each species globally)
within site i which would be protected by that action
(Sij), minus any expected loss of habitat that may occur
in that site (Lij) as during the following timestep (see elec-
tronic supplementary material, appendix 3). The total
cost investing in an action within a timestep is the product
of the amount of area within a site available to implement
a particular action (Aij), and the cost per unit area of that
action (cij). Therefore, the expected utility of a site-action
combination in a particular timestep is the quotient of the
overall benefits and cost, multiplied by the likelihood of
investment success in a site (wi).

Species threatened by both threatening processes
were simultaneously assumed to only be adequately
protected through the establishment and management
of PAs, whereas species affected by only one threat
may benefit from PAs and one of the other two actions.
Of our three potential conservation actions, only the
establishment and management of PAs prevented habi-
tat conversion, and only one action was able to be
implemented at each site during each timestep. The
establishment and management of PAs were therefore
favoured in sites where the habitat lost was greater
than the species habitat that could be gained through
restoration or RIL. There was a time lag of 15 years
before the benefits of restoration were realized.

We assumed a linear accumulation of benefit to a
species with respect to the allocation of investment
towards conservation actions over time. To avoid bias
in the prioritization analysis towards species with large
ranges, we devised species’ protection targets scaled
according to their global area of occupancy. Once
species had achieved their pre-specified targets, they
were removed from the analysis such that their presence
did not further influence the funding allocation process,
and no further benefit was accumulated. We set the
target thresholds at 100 per cent of the distribution of
each species with an area of occupancy of less than
500 km2 (22.7% of species), 20 per cent of the distri-
bution of each species with an area of occupancy of
greater than 125 000 km2 (18.5% of species) and
20–100% of the distribution of each species with an
intermediate area of occupancy (interpolated using a
log transformation) (58.8% of species) [4].

Finding an optimal solution to such a large problem is
computationally intractable, so we employed a myopic
greedy investment algorithm to identify a near-optimal
investment schedule over a 20 year time period [18,67]
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(see electronic supplementary material, appendix 3).
Continuous portions of area within the 10 or 30 km
grid cells were selected based upon the amount of
money available and the area available for an action.

We compared our analysis with a scenario where the
likelihood of investment success in the selection of sites
for investment was ignored. In this case, the algorithm
did not respond to variation in the likelihood of invest-
ment success, but if funds were allocated to countries
where the legislature was considered to have failed,
then the investment did not contribute towards the
achievement of the species’ targets. We also conducted
our analysis at both a 10 and a 30 km resolution. Elec-
tronic supplementary material, appendix 4 contains a
summary of the input data employed.
3. RESULTS
At a 10 km resolution, approximately 9 million km2 was
selected for investment and the average cost of the sites
selected for investment was US$351 776, with the aver-
age area being selected in a site during one timestep
being 60 km2. Nine species had no contribution
towards their target. There was very little difference
between the 10 and 30 km resolution datasets in terms
of the budget and area allocated to each action globally.
Using either dataset, 93.6 and 6.4 per cent of the budget
and approximately 97.5 and 2.5 per cent of the area
were allocated to PAs and to RIL, respectively. Restor-
ation was not allocated any funding using either
dataset. While priority countries remain the same, the
budget allocated to the top countries varies with
resolution. There were however differences in the total
allocation to each country and the rank ordering of
countries in terms of their total recommended invest-
ment (table 1 and see electronic supplementary
material, appendix 5). Species also exceeded their
target by a greater extent (prior to being removed
from the analysis) using the 30 km grid cell dataset
and therefore fewer species met their targets after 20
years (338 species versus 378 species met their targets,
respectively, using the 30 km versus the 10 km grid cell
datasets). The greatest extent to which a target was
exceeded was 2 per cent at the 10 km resolution and
7 per cent at the 30 km resolution.

Through time, the area of unallocated land is reduced
as land is either protected, converted to agriculture or
assigned to RIL (figure 1). We find that approximately
30 per cent of the total funding allocated in the first 5
years was directed towards Madagascar and Indonesia.
Overall, 91 countries received funding in the first 5
years, 101 countries in the first 10 years and 112
countries after 20 years. PAs received the greatest pro-
portion of the total budget over 20 years (just over
US$18.1 billion) with RIL receiving just over US$1.2
billion. Indonesia received the greatest amount of fund-
ing allocated to PAs over the 20 years, with Madagascar,
Peru, Mexico and Australia also receiving high levels
of investment (table 1(a), figure 2 and electronic
supplementary material, appendix 5). The greatest
investments in RIL were also directed towards Indonesia,
with Brazil, Colombia, Ecuador and Papua New Guinea
also favoured for investment (table 1(b), figure 3 and
electronic supplementary material, appendix 5).
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Table 1. The funding and area allocated to (a) protected areas (PAs) and (b) reduced impact logging (RIL) for the top five

countries receiving investment at a 10 km resolution (the results for all countries are provided in electronic supplementary
material, appendix 5). Values represent average allocations over 20 years from 100 runs of the investment allocation
algorithm.

(a) country

US$ allocated to PA after 20 years (millions) area allocated to PA after 20 years (km2)

10 km 30 km 10 km 30 km

Indonesia 1831 1979 195 045 188 606

Madagascar 1599 2116 69 109 88 641
Peru 1348 1255 57 386 55 217
Mexico 1319 1871 23 910 32 843
Australia 852 445 13 666 7 760

US$ allocated to RIL after 20 years (millions) area allocated to RIL after 20 years (km2)

(b) country 10 km 30 km 10 km 30 km

Indonesia 216 222 43 261 44 586

Brazil 133 98 26 789 19 736
Colombia 103 88 20 694 17 738
Ecuador 84 100 16 897 20 145
Papua New Guinea 76 63 15 378 12 727
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Figure 1. Spatial distribution of conservation funds through time at (a) 5, (b) 10, (c) 15 and (d) 20 years for all conservation

actions, and (e) the average change in land use through time. Restoration received no investment after 20 years. Black solid line,
protected areas; grey line, reduced impact logging; black dashed line, forestry; black dotted line, unallocated; grey dashed-
dotted line, agriculture.
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Accounting for the likelihood of success in the allo-
cation of funds did not influence the average area and
budget allocated to each action, but rather the
locations receiving investment differed (figure 4). For
example, some countries received greater investment
when the likelihood of investment failure was not
accounted for (e.g. Ethiopia, Liberia, Myanmar and
Nigeria). Seven fewer species met their targets when
Phil. Trans. R. Soc. B (2011)
the likelihood of investment success was not explicitly
accounted for but the level of target achievement
for these species was still greater than 95 per cent.
4. DISCUSSION
We have developed and applied at a global scale a
comprehensively formulated approach for prioritizing



average investment to protected
areas after 20 years (US$) 

0–1 200 269

1 200 269 – 2 629 524

2 629 524 – 4 821 734

4 821 734 – 9 113 968

9 113 968 – 62 216 252

Figure 2. Average total investment (US$) in protected areas after 20 years.

average investment to reduced
impact logging after 20 years (US$) 

0 – 109 800

109 800 – 191 650

191 650–281 600

281 600–383 800

383 800–500 000

Figure 3. Average total investment (US$) in reduced impact logging after 20 years.
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investments in the protection of biodiversity. While we
focus on mammal species in this analysis, we do not
advocate their use as surrogates for other species or
biodiversity as a whole [10,68]. Our approach is not
limited to any particular taxonomic group and fine-
resolution data for additional taxonomic groups
could be readily incorporated into our analysis as it
comes available. It is however likely that the socio-
economic factors that we have included here will be
more important determinants of investment priorities
than the choice of biodiversity data [38].
Phil. Trans. R. Soc. B (2011)
Our prioritization analysis has employed fine-
resolution species distribution data from the GMA
providing greater accuracy in the spatial distribution of
biodiversity features than was available previously.
But the downside of this level of detail is that the allo-
cation of funds is computationally exhaustive and
time-consuming at a global scale for even specialized,
high-performance computers. Using ecoregions, or
some other broad geographically defined unit of analy-
sis, would produce results far more quickly, but would
fail to adequately capture the spatial heterogeneity that



difference in irreplaceability

higher accounting for LoS

higher ignoring LoS

always irreplaceable
comparable in both

Figure 4. Comparative irreplaceability of sites (the frequency of selection of each site in 100 runs of the investment algorithm)

when the likelihood of investment success (LoS) is explicitly accounted for in the selection of sites and when it is ignored.
‘Comparable in both’ refers to sites where the difference in irreplaceability is less than 5% regardless of whether the likelihood
of success is accounted for. Sites that are always irreplaceable have a selection frequency of 100%.
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exists in the distribution of threats, species and costs.
Even for our analysis at a 10 and 30 km resolution, we
assumed a random distribution of species and land
uses within each site. By comparing the results from a
10 km grid cell dataset with a 30 km dataset, we find a
reduction in the number of species that achieve their tar-
gets over 20 years and that the total amount of funding
recommended to be allocated to each country differed
depending on the resolution of dataset employed. With
increasing computational capacity and the availability
of fine-resolution data, it is clear that fine-resolution
data should be employed wherever possible and analy-
ses should be undertaken at an appropriate scale to
inform implementation [15]. Our analysis does however
illustrate that it is now possible to undertake a fine-re-
solution, bottom-up prioritization analysis at a global
scale, where the analysis is driven by the conservation
actions required to abate the main threats to the species
of interest [36].

The priority areas consistently identified by existing
global prioritization templates are in the tropics and
Mediterranean environments [1]. We also found that
such regions were favoured for investment using our
prioritization approach, with the additional preference
given to the temperate regions of South America and
the arid and semi-arid regions of Central Asia. In gen-
eral, conservation attention has to date been directed
to the threatened species inhabiting the Australasian
and Nearctic regions, with tropical and Palearctic regions
receiving the least attention [69]. Current conservation
efforts in Indonesia are considered underfunded compa-
red with the relative priority of this country for mammal
conservation, and the same applies also to other
countries identified as priorities in our analysis such
as Madagascar, Mexico, Columbia, Brazil and Papua
New Guinea [2]. We find that Indonesia is the highest
priority country for investment, for both RIL and
the establishment and management of PAs. This also
reflects the results of previous global prioritization
analyses undertaken at a coarser resolution [2], but
we add value to these previous analyses by accounting
for landscape dynamics in the allocation of funds [18]
and thereby provide a temporal allocation of fund-
ing identifying not only where, but also how
Phil. Trans. R. Soc. B (2011)
and when funds should be allocated to conserve
mammals globally.

PAs are favoured in our analysis, although a small
proportion of funding is also directed towards RIL in
tropical countries with significant forested areas that
are subject to human disturbances, such as Indonesia,
Columbia, Brazil and Papua New Guinea. Restoration
was not prioritized within the time frame of 20 years
that we evaluated and as a consequence some species
would never be able to achieve their targets [70]. Over-
all, the number of species that could benefit from RIL
and restoration and the level of variation in this
number was less than that for the action of protecting
areas. Restoration was further disfavoured as this
action was not permitted to occur in any site that is
still losing native habitat (there were 148 257 sites
available for restoration compared with 1 141 025
sites available for protection at the 10 km scale). The
nature of our objective function, to maximize gains
given a fixed budget, also disfavoured expensive
actions such as habitat restoration. Previous studies
have shown the cost of conservation to drive the selec-
tion of sites for investment [38,71], and this effect is
emphasized where the variation in cost is much greater
than the variation in benefits (in our study the costs
of protection varied by approximately six orders of
magnitude, whereas the benefits varied by only two).

We assumed that all threatened species would benefit
from PAs and that species impacted simultaneously by
forestry and agriculture would only persist if both threats
were mitigated, hence the establishment and mana-
gement of PAs was the only action that was made
available to protect these species. To resolve the choice
of action in such cases would require determining the
probability of occurrence of each threat in each site.
This could be achieved if more accurate rates of con-
version data were available at a fine resolution, which
could be obtained via evaluating the economic value of
each parcel of land under agriculture versus plantation
forestry [72].

We included a 15-year time lag associated with when
the benefit of restoration was realized; however this time
lag was not explicitly considered during the prioritiza-
tion process and hence would not have influenced
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whether the action was selected or not. The incorpor-
ation of restoration time lags in our analysis could be
further improved by adapting the algorithm to account
for the presence of the time lag when selecting site/
action combinations for investment [73,74]. This is
likely to disfavour restoration even further, but would
reflect a more accurate problem formulation.

Greater variability in the costs of RIL and restora-
tion would have probably seen these actions selected
more frequently. Accounting for the spatial heterogen-
eity of the costs of restoration and RIL and of the
spatial distribution of the threatening processes we
have evaluated would therefore refine our assessment
of priority areas for conservation investment. Similarly,
refined data on conservation opportunities and con-
straints for each conservation action would improve
the analysis we have presented [75]. While restoration
was not favoured in our analysis, restoration would
probably be selected in the analyses undertaken at a
smaller spatial scale, in countries with little ongoing
habitat loss and where the ratio of the cost of restoration
compared with the cost of PAs was much closer to one.

Our choice of objective function accounted for the
expected consequences of choosing one action over
another within a particular site. The benefit gained
from investing in an action was countered by its ability
to prevent further loss of species habitat within the
next timestep. However, the current objective function
does not differentiate between sites in terms of their rela-
tive vulnerability. That is, while we were able to select the
action that achieved the greatest expected gain within a
site, sites with the greatest risk of habitat loss were not
necessarily chosen for investment [20]. The choice of
either maximizing gains or minimizing losses depends
upon whether a proactive or reactive approach to conser-
vation investments is desired [14,76]. Minimizing losses
will also be more appropriate when the levels of threat to
each site differ greatly and under such circumstances a
more risk-averse approach to investment allocation will
deliver better outcomes [18,77]. However, the choice
of approach is complicated in the context of multiple
conservation actions as some actions abate future habi-
tat loss and degradation and others ameliorate the
impacts of past pressures. The development of invest-
ment algorithms that combine two objective functions,
minimizing loss and maximizing gains, within a multiple
action framework represents an important area of future
research.

We recorded the progress made towards meeting the
target for each species as funds were allocated through
time, however our framework did not explicitly consider
the contribution towards each target when calculating
the benefit of investing in an action in a particular time-
step. An alternative formulation of our framework may
be to scale the benefit of investments according to the
extent that targets for each species are currently achieved
as it may be preferable to invest in an action to protect
species that have made little progress in meeting conser-
vation targets compared with species that were close to
meeting their target.

An important data limitation for undertaking global
scale prioritization analyses is knowledge of the current
distribution of plantation forests, the risk of conversion
of native habitat to plantations, and the predicted future
Phil. Trans. R. Soc. B (2011)
extent of plantation forests. Most data on plantations is
at country level and is non-spatial. The dataset on the
rate of conversion to plantation that we created assumes
that past conversion rates to plantations represent
future rates. We also assumed that all non-intact areas
of forest are subject to human disturbances, which is
probably an overestimate of this area. The development
of fine-resolution, spatially explicit maps of current plan-
tations is a key data gap that requires addressing in order
to facilitate future prioritization analyses that account for
multiple conservation actions. Similarly, direct killing of
mammals (e.g. through bushmeat hunting or poaching)
is a significant threat to mammal persistence [78] but
was not considered in our analysis owing to a paucity of
data at a global scale on the spatial distribution of this
threat. If such data were available then a simplistic way
of accounting for the costs associated with abating this
threat would be to factor in the costs of mitigation actions
(e.g. park patrols, compensation or public education pro-
grammes) into the costing of RIL and PA management.
An area of future investigation is to evaluate the relation-
ships between investments in this action and the
likelihood of investment success associated with political
instability [79] and habitat loss [80,81].

Our analysis has facilitated an assessment of the
impact of a conservation organization continuing to
invest in a country even though the legislature is con-
sidered ineffective, based on the assumption that
future investments will not succeed in achieving their
conservation goals as funds might be misused (or
directed towards other important needs). We find that
the achievement of targets is only marginally reduced
if the likelihood of investment success is ignored.
There are probably two reasons for this. First, there
were numerous site-action combinations available for
investment and therefore funds were able to be diverted
towards sites with a greater likelihood of success without
impacting the overall result. Second, when we ‘ignored’
the likelihood of success, funds were able to be invested
in countries where the legislature is considered ineffec-
tive, but no benefit was realized from this investment.
However, because of the generally low cost of these
sites and the comparatively similar average species rich-
ness for each site in countries with a higher likelihood of
success, the impact on the overall results was minimal.
Our approach to dealing with the probability of in-
vestment success is quite conservative: the costs of
conservation remained stable [48] and sites that had
already been selected for investment were not affected
by the cessation of funding as only future investments
were impacted. Future analyses will explore the impacts
of ignoring the likelihood of success of all investments:
past, present and future.

We have developed and applied the first comprehen-
sive and dynamic approach to prioritizing the allocation
of conservation spending at a global scale that considers
the costs, benefits and likelihood of success of a range
of conservation actions that will abate the main threats
to species persistence. We estimate that the budget
required to protect 10 per cent of the remaining native
habitat is approximately US$32 trillion, significantly
greater than the budget of approximately US$20 billion
accounted for in this analysis. Such gaps further empha-
size the value of prioritization approaches, such as the
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one we have developed and applied, and that can assist
with understanding what investments need to occur
where and when, to deliver the greatest return.
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