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A B S T R A C T

Enzymes require some flexibility for catalysis. Biotechnologists prefer stable enzymes but often this
stabilization comes at the cost of reduced efficiency. Enzymes from thermophiles have low flexibility but
poor catalytic rates. Enzymes from psychrophiles are less stable but show good catalytic rates at low
temperature. In organic solvents enzymes perform poorly as the prior drying makes the enzyme
molecules very rigid. Adding water or increasing reaction temperature improves flexibility and catalytic
rates. In case of hydrolases, flexibility and enantioselectivity have interdependence. Understanding the
complex role of protein flexibility in biocatalysis can help in designing biotechnological processes.
ã 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It was the early workers in the area of protein structure who
pointed out the importance of conformation (even before organic
chemists) in defining the function of the protein molecule. So,
establishing structure–function relationships in biological systems
became the focus of the investigations and it continues till date
(albeit new terms evolve to refer to it, the first one was molecular
$ This is an open-access article distributed under the terms of the Creative
Commons Attribution-NonCommercial-No Derivative Works License, which
permits non-commercial use, distribution, and reproduction in any medium,
provided the original author and source are credited.
* Corresponding author. +91 1126591503.
E-mail address: munishwar48@yahoo.co.uk (M.N. Gupta).

http://dx.doi.org/10.1016/j.btre.2015.04.001
2215-017X/ã 2015 The Author. Published by Elsevier B.V. This is an open access article
biology) [36]. Lindstrom Lang’s suggestion to refer to various levels
of organization of the protein structure as primary, secondary,
tertiary and quaternary structures created a useful framework for
studying structure–function relationship [57]. The importance of
conformational flexibility was highlighted by Koshland’s induced
fit theory [38]. At that point in time, the inherent contradiction was
not apparent between the importance of an ordered structure and
yet the necessity of it being flexible. Many decades later, we are
confronted by that. As much as 30% of the eukaryotic proteins are
intrinsically disordered proteins (IDPs) and in fact depend upon
that “lack of ordered structure” for their biological function [49]. As
Mittag et al. points out, neither the lock and key mechanism
presuming a rigid protein structure, nor Koshland’s induced fit
mechanisms of molecular recognition explain their biological
function [49]. The induced fit mechanism is limited to either few
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig.1. Effect of temperature on subtilisin catalysed transesterification reaction in n-
hexane. The samples of SC and urea treated SC lyophilized for 48 h were then used
for the transesterification reaction between N-acetyl-L-phenylalanine ethyl ester
and n-propanol. The inlay shows the fold increase between the lyophilized SC and
the SC lyophilized with urea. The reaction was carried out at various temperatures.
Initial rates of transesterification were determined by estimating the aliquots taken
at different time intervals by HPLC. The reactions in each case were carried out in
duplicates and the results within each set agreed within 3%.
Reproduced with permission by Elsevier from Ref. [52] Tetrahedron Lett., http://dx.
doi.org/10.1016/j.tetlet.2015.02.109.
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side chains or re-organization of domains. In the case of the IDPs all
those descriptions do not make any sense as they presume
structured protein segments; IDPs seem to derive the advantage
from lack of structure during their biological function, for example,
while working as “hub proteins”. Such hub proteins use “one-to-
many binding modes” [73] by exploiting the structural disorder
and assume the required different conformations during binding
with different partners. Some authors have talked of ‘preformed
elements’ or ‘molecular recognition features’ [49]. The cost for this
behaviour is paid by their vulnerability to aggregation. Many
degenerative diseases result from aggregation of IDPs and that
includes numerous neurodegenerative diseases like Alzheimer’s
disease and Parkinson’s disease [74,41]. Considering that vulnera-
bility to aggregation and stability have more or less one to one
correlationship, it is frustrating that a very subtle change in the
native structure can result in protein forming amyloid aggregates.
Bemporad and Chiti have referred to “native-like structures”
becoming more prone to aggregation [5]. Biotechnologists have a
stake in the way our understanding of the “importance of well
defined structure” versus the lack of it in biological function is
changing. The present mini-review lists some key reasons for that
in different contexts of applied biocatalysis.

2. Biotechnologists tend to favour stable proteins

Extensive efforts have been made by biotechnologists to
stabilize proteins/enzymes. Chemical modification, protein immo-
bilization, chemical crosslinking and protein engineering have all
been used to enhance stability of the enzymes
[51,26,68,54,72,28,48,70,22]. Most of these studies are directed
towards reducing their vulnerability to high temperature but there
have been efforts about enhancing stability towards other ‘stress’
conditions as well. Alkaline proteases (more active and stable at
high pH) are required as detergent enzymes [69]. Enzymes more
stable in organic solvents has now become a very active area of
research [17,48,1]. Understanding stability under high pressure
conditions has also been carried out [29].

While these are undoubtedly desirable studies, in the pursuit of
more stability, we have often overlooked “collateral damage”.
Immobilization, for example, is often accompanied by increased
mass transfer constraints [15,10]. Most of the text books while
discussing the Michaelis Menten kinetics, unfortunately end up
implying that decreasing Km (better association constant for the ES
complex formation) results in a more efficient enzyme. As Fersht,
in his seminal book [16], discusses it fairly succinctly, nature while
designing more efficient enzymes aims at improving kcat/Km. For
achieving a desired kcat/Km value, “the enzyme evolves to increase
Km” [16]. Binding can be easily improved (as reflected in the low
value of Km) by increasing rigidity. The whole approach of
bioimprinting of proteins is based upon that [47]. Good kcat is
favoured by flexibility.

3. Lessons from extremophiles

Enzyme catalysis occurs in vivo at sub-zero temperatures to hot
springs [50,7,12,14,71,53]. The enzymes from psychrophilic organ-
isms tend to be very flexible, have good catalytic activity bur poor
thermal stability. The enzymes from thermophiles generally tend
to be very stable at high temperatures; however rigid conforma-
tions result in their not being very efficient catalysts [14,71,53].

As early as 1993, Jaenicke [33] pointed out that “molecular
adaptation obviously results in optimum protein flexibility rather
than maximum stability”. It is worth noting that if metabolic rates
are normalized to temperatures of the normal habitats of the
microorganisms, enzymes show metabolic rates in the same range.
The changes in protein–substrate interactions with temperature
play a compensatory role to protein flexibility during this
adaptation [30].

The studies on enzymes from psychrophiles reveal that increase
in flexibility is largely achieved by altering the structural traits in
the reverse direction as compared to enzymes from thermophiles
[19]. “The current consensus is that only subtle modifications of
the conformation of cold adapted enzymes can be related to the
structural flexibility and that each enzyme adopts its own strategy.
Moreover, it appears that there is a continuum in the strategy of
protein adaptation to temperature, since known structural factors
involved in protein stability of thermophiles are either reduced in
number or modified, in order to increase flexibility in psychrophilic
enzymes” [18]. Possibility of operating biocatalytic processes at
low temperature (with reduced energy consumptions) makes
these enzymes quite attractive choices. For continuously operated
processes, microbial growth is a worrisome factor; operating such
processes at low temperature with enzymes from psychrophiles
minimizes that possibility. Excellent reviews on the biotechnolog-
ical applications of enzymes from psychrophiles are already
available [18,12,20].

4. Biocatalysis in organic media

The possibility of carrying out biocatalysis in media other than
aqueous buffers has been found to be extremely useful for
biotechnologists. Nearly anhydrous organic solvents, aqueous–
organic co-solvent mixtures, water–organic solvent biphasic
systems, reverse micelles and ionic liquids represent such non
aqueous media [46,24,11,25,27,55,32,62,63,13]. The ensuing dis-
cussion will mostly pertain to nearly anhydrous organic solvents.
The high stability which enzymes normally have in this kind of
media was “dramatically” shown by Klibanov and Zaks reporting
the survival of a lipase when placed at 100 �C in 99% organic
medium [76]. While this excellent result does not seem to have
been utilized much by biotechnologists for carrying out bio-
transformations at 100 �C, the subsequent unfolding story has
revealed that this high stability, originating from the very highly
rigid structure (which enzymes acquire in such media) is
accompanied by poor kcat/Km as compared to the corresponding
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kcat/Km values of enzymes in aqueous buffers [40]. This has led to a
somewhat interesting situation that subtilisin “denatured” by 6 M
urea in aqueous buffers, when dried up, actually shows very high
activity in anhydrous n-hexane (as compared to the untreated
enzyme) [23,52] (Fig. 1).

5. Enantioselectivity and catalytic promiscuity

The effect of flexibility is not just limited to enzyme stability or
catalytic rates alone. It affects enantioselectivity as well. Cross-
linked enzyme aggregates (CLEA) is a very well known example of
carrier free immobilization [65,64]. CLEAs perform well in both
aqueous and non-aqueous media [61,64,44]. It essentially consists
of treating the active enzyme precipitate in situ with a crosslinking
reagent (mostly glutaraldehyde is used). Fig. 2 describes what
happened when the glutaraldehyde concentration was varied
while preparing the CLEA of a lipase [44]. Higher crosslinking
reagent concentration makes the protein more rigid. This could be
correlated with high half-lives (at 55 �C), lower hydrolytic activity,
and more drastic decrease in initial rates of transacetylation in
solvent free medium. What was most interesting was that
enantioselectivity (E) improved considerably upon mild cross-
linking and dropped when more crosslinks were introduced. So,
there is an optimum for protein rigidity for obtaining best
enantioselectivity. More is not always better. It is obvious that
optimum rigidity will be different for each enzyme and will
depend upon the reaction parameters like temperature, nature of
the reaction medium and aw of the reaction medium for any
enzyme [56].

In organic solvents, higher aw and temperature, both increase
the flexibility of the enzyme molecule. Many years back,
Mattiasson’s group, in a series of papers, had studied the effect
of varying aw and temperature on the enantioselectivity of alcohol
dehydrogenase (ADH) from Thermoanaerobacter brockii in the
reduction of few ketones [75,34,35]. This reaction is a valuable way
of obtaining chiral alcohols. Some interesting observations were as
follows: the enantioselectivity was different for different sub-
strates both in aqueous medium as well as in hexane [75]. With
2-pentanone as a substrate in hexane, low temperatures favoured
enantioselectivity (with S-alcohol as the major product). Expect-
edly, rates were lower at low temperature. With 2-butanone,
enantioselectivity increased with increasing temperature but it
was reversed as well (R-alcohol was the main product). The
authors rationalized the result by pointing out that with both
Fig. 2. Performance of the cross-linked enzyme aggregates (CLEAs) made with
various amounts of glutaraldehyde in anhydrous solvent free medium during the
transacetylation of citronellol with vinyl acetate using Burkholderia cepacia lipase.
The half lives were measured at 55 �C.
Adapted from Ref. [44] Biocatal. Biotransform., 26, 235–242.
substrates, increase in temperature favoured the formation of
R-alcohols. Surprisingly, increasing aw increased the enantiose-
lectivity [34]. The correlation between flexibility and enantiose-
lectivity seems to be less than completely understood. More
extensive discussion on this can be found at several places [56,21].

In the case of hydrolases at least, the picture has become clearer
over the years. We have referred to the effect of the treatment of
subtilisin with 6 M urea and performance of the treated enzyme in
n-hexane. Fig. 1 shows the effect of temperature at which the
transesterification was carried out in hexane by dried subtilisin
and urea-treated subtilisin [52]. At lower temperature when the
protein flexibility decreased, the urea treated enzyme had 90�
higher initial rates (as compared to the untreated enzyme) at 15 �C.
Only at 10 �C higher reaction temperature (25 �C) this dropped to
50-fold. Interesting enough, adding small amount of water to the
reaction medium (which is known to increase protein flexibility)
had the similar effect. The urea treated enzyme showed lower
enantioselectivity in the kinetic resolution of the unnatural
substrate (R,S)-1-phenylethanol but higher enantioselectivity in
the kinetic resolution of the natural substrate N-acetyl-(R,S)-
phenylalanine ethyl ester [52]. This is in agreement with the
excellent reasoning by Broos [8] who explains the interplay
between flexibility and enantioselectivity for natural and unnatu-
ral substrates in terms of transition state theory.

Higher flexibility also seems to favour better catalytic activity
for the promiscuous reactions. Promiscuous reactions are reactions
wherein an enzyme catalyses a reaction type which is not in line
with how it is classified under EC nomenclature system
[37,4,45,43]. Urea treated subtilisin again showed higher reaction
rates for the aldol condensation between p-nitrobenzaldehyde and
acetone in organic solvents [52].

6. Conclusion

The importance of conformational flexibility has been under-
stood for a long time. The DDG for the N $ D transition in proteins
is merely in the range of 5–20 kcal/mol [68] and arises out of the
balance between enthalpy and entropy terms in DG = DH � TDS
equation. It is just that the two developments in recent decades
have created a need for us to look at them with renewed interest
more closely. First is the possibility of carrying out reactions in a
wide range of non-aqueous media. We have recently pointed out
that the structures of enzymes do not become rigid in nearly
anhydrous organic solvents (as is often implied) [52]. These
become rigid at the drying stage and do not get a chance to acquire
the necessary flexibility in such solvents unless water or other
H-bonding solvents like DMF/DMSO are added. Hence, how we dry
enzymes prior to placing these in such media is important. Benefits
of the presence of lyoprotectants and cryoprotectants during
lyophilization has been known for some time [58,2,60]. It seems
that drying by precipitating with organic solvents may be better
[59,62,63,66,42]. What is interesting is that at least in the case of
alpha chymotrypsin and subtilisin, its makes a difference whether
organic solvent is added to the aqueous solution of the enzyme or
vice versa [67].

The sub context is that we need to pursue more vigorously the
role which flexibility plays for defining enantioselectivity and in
relatively more recently discussed catalytically promiscuous
reactions.

The second development is more recent and it is a little early to
understand its importance completely. Intrinsically disordered
proteins (IDPs) challenge our entrenched thinking in terms of
structure–function paradigm. In these cases, the total flexibility in
large parts of the protein molecules define the biological role. The
“hub” proteins recognize and bind to many different but a specific
set of ligands [49]. The molecular recognition presumably operates
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via induced fit mechanism. Let us step back a little and refer to the
old and now buried debate on “selection” versus “instruction”
theories on generation of antibodies [9]. The proponents of
selection theories turned out to be correct and clonal selection
theory is a part of the standard texts on immunology or even
biochemistry [31,6]. Many current approaches in biotechnology are
inspired by this philosophy. The directed evolution technology [3]
for tailoring biocatalyst designs, peptide libraries and combinato-
rial approach, all rely upon selecting the right candidate from a
large pool [39]. IDPs seem to tell us that there may be possibilities
of developing another set of strategies inspired by “instruction”
school of thought led by Pauling. A given protein moulds itself to
become its receptor. In a way, molecular bioimprinting of proteins
shows that it is possible. Perhaps, that is just scratching the surface.
It seems that we still have not heard the last word on the
importance of flexibility in biocatalysis.
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