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Simple Summary: The objective of the study was to evaluate the radiomics features obtained by
contrast MRI studies as prognostic biomarkers in colorectal liver metastases patients to predict clinical
outcomes following liver resection. We demonstrated a good performance considering the single
textural significant metric in the identification of front of tumor growth (expansive versus infiltrative)
and tumor budding (high grade versus low grade or absent), in the recognition of mucinous type and
in the detection of recurrences. Moreover, considering linear regression models or neural network
classifiers in a multivariate approach was possible to increase the performance in terms of accuracy,
sensitivity, and specificity.

Abstract: Purpose: To assess radiomics features efficacy obtained by arterial and portal MRI phase in
the prediction of clinical outcomes in the colorectal liver metastases patients, evaluating recurrence,
mutational status, pathological characteristic (mucinous and tumor budding) and surgical resection
margin. Methods: This retrospective analysis was approved by the local Ethical Committee board, and
radiological databases were used to select patients with colorectal liver metastases with pathological
proof and MRI study in a pre-surgical setting after neoadjuvant chemotherapy. The cohort of patients
included a training set (51 patients with 61 years of median age and 121 liver metastases) and an
external validation set (30 patients with single lesion with 60 years of median age). For each segmented
volume of interest on MRI by two expert radiologists, 851 radiomics features were extracted as median
values using the PyRadiomics tool. Non-parametric Kruskal-Wallis test, intraclass correlation, receiver
operating characteristic (ROC) analysis, linear regression modelling and pattern recognition methods
(support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network (NNET), and
decision tree (DT)) were considered. Results: The best predictor to discriminate expansive versus
infiltrative tumor growth front was wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis extracted
on portal phase with accuracy of 82%, sensitivity of 84%, and specificity of 77%. The best predictor to
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discriminate tumor budding was wavelet_LLH_firstorder_10Percentile extracted on portal phase
with accuracy of 92%, a sensitivity of 96%, and a specificity of 81%. The best predictor to differentiate
the mucinous type of tumor was the wavelet_LLL_glcm_ClusterTendency extracted on portal phase
with accuracy of 88%, a sensitivity of 38%, and a specificity of 100%. The best predictor to identify the
recurrence was the wavelet_HLH_ngtdm_Complexity extracted on arterial phase with accuracy of
90%, a sensitivity of 71%, and a specificity of 95%. The best linear regression model was obtained in
the identification of mucinous type considering the 13 textural significant metrics extracted by arterial
phase (accuracy of 94%, sensitivity of 77% and a specificity of 99%). The best results were obtained in
the identification of tumor budding with the eleven textural significant features extracted by arterial
phase using a KNN (accuracy of 95%, sensitivity of 84%, and a specificity of 99%). Conclusions:
Our results confirmed the capacity of radiomics to identify as biomarkers and several prognostic
features that could affect the treatment choice in patients with liver metastases in order to obtain a
more personalized approach.

Keywords: colorectal liver metastasis; magnetic resonance imaging; radiomics; pattern recognition;
outcome prediction

1. Introduction

Radiomics is a promising area that investigates the capability of quantitative features
extracted by medical images as biomarkers to assess the biology of pathological processes
at microscopic levels. These data can be converted into image-based marks to spread
diagnostic, prognostic and predictive accuracy in oncological setting [1–8]. Radiomics
could theoretically support tumor detection, evaluation of prognosis, estimate treatment
response [9–14]. Radiomics is designed to be used in decision support of precision medicine,
using standard of care images that are routinely acquired in clinical practice. It presents
a cost-effective and highly feasible addition for clinical decision support. Moreover, this
analysis non-invasively characterize the overall tumor accounting for heterogeneity, inter-
rogating the entire tumor allows the expression of microscopic genomic and proteomics
patterns in terms of macroscopic image-based features [15–18]. Moreover, this analysis
gives prognostic and/or predictive biomarker allowing for a fast, low-cost, and repeatable
tool for longitudinal monitoring [19,20].

The association of radiomics and molecular features, so named radiogenomics, shows
clear effects for management of cancer patients. Although several studies have assessed the
rule of radiogenomics in hepatocellular carcinoma, only a few have tested the radiomics
rule in colorectal cancer metastatic lesions in the liver [1–3]. Today, radiologists play an
important role in the multidisciplinary team of colorectal patients with liver metastases.
During the staging and surveillance phase, it is critical to identify all liver lesions, since
this is related to proper patient management. Additionally, after conversion therapy, all
lesions assessed at first exam should be re-evaluated to identify responders and non-
responders as soon as possible [21–25]. Although computed tomography (CT) is habitually
the diagnostic tool employed for staging and surveillance, magnetic resonance imaging
(MRI) is a valuable diagnostic technique in oncologic settings, since it is the only technique
that allows evaluating of morphological and functional features of tumor status, providing
quantitative parameters that improve the characterization of a lesion and the assessment
after therapy [21–24]. Moreover, several liver-specific contrast agents have been inserted
to improve the hepatic lesions detection and characterization. Gadobenate dimeglumine
(Gd-BOPTA) and gadolinium ethoxybenzyl diethylenetria-mine pentaacetic acid (Gd-EOB-
DTPA) allow obtaining information about the vascularization of lesions in the different
phases of contrast circulation and functional parameters in the delayed hepatobiliary phase
(EOB-phase).

In this scenario, the possibility to compare radiomic data extracted by MRI in the
identification of recurrence, mutational status, pathological characteristics (mucinous and
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tumor budding), and surgical resection margin could provide significant benefits respect
to qualitative evaluation. In fact, radiomics predictors could permit an effective treatment
selection in the perspective of personalized medicine, treatment response prediction, in the
differentiation of favorable subsets of patients from those with poor prognosis, and selecting
patients that may benefit from surgical treatment. In the present study, we assessed the
radiomics features efficacy obtained by contrast (arterial and portal phase) MRI to predict
clinical outcomes following liver resection in colorectal liver metastases patients.

2. Materials and Methods
2.1. Dataset Characteristics

This study was approved by the local ethical committee board that renounces the
patient informed consent due to the retrospective nature of the study. The study was
performed in accordance with relevant guidelines and regulations.

Patient selection was made considering internal radiological databases in the period
from January 2018 to May 2021 using the following criteria: (1) liver pathological proven
metastases; (2) contrast MRI study in pre-surgical setting after neoadjuvant chemotherapy;
(3) MR images of high quality and (4) a follow-up CT scan of at least six months after
surgery. The exclusion criteria were: (1) discordance among the imaging diagnosis and the
pathological ones, (2) no contrast MRI studies and (c) no high-quality MR images.

The analyzed patients included a training set and an external validation set. The
internal training set included 51 patients (18 women and 33 men) with 61 years of median
age (range 35–82 years) and 121 liver metastases. The validation cohort, provided by
“Careggi Hospital”, Florence, Italy, consisted of a total of 30 patients with single lesion
(10 women and 20 men) with 60 years of median age (range 40–78 years). The patient
characteristics are summarized in Table 1.

Table 1. Characteristics of the study population (81 patients).

Patient Description Numbers (%)/Range

Gender
Men 53 (65.4%)

Women 28 (34.6%)

Age 61 y; range: 35–82 y

Primary cancer site

Colon 52 (64.2%)

Rectum 29 (35.8%)

Prior Chemotherapy 81 (100%)

Hepatic metastases description

Patients with single nodule 52 (64.2%)

Patients with multiple nodules 29 (35.8%)/range: 2–13 metastases

Nodule size (mm) mean size 36.4 mm; range 7–58 mm

Front of tumor growth

Expansive 30 (37.0%)

Infiltrative 51 (63.0%)

Tumor Budding

Absent 12 (14.8%)

Low grade 14 (17.3%)

High grade 55 (67.9%)

Mucinous carcinoma 25 (30.9%)

Recurrence
(new liver metastases) 19 (23.5%)

RAS mutation 42 (51.9%)
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2.2. MR Imaging Protocol

A Magnetom Symphony 1.5 T scanner (Siemens, Erlangen, Germany) and a Magnetom
Aera (Siemens) 1.5 T scanner equipped with an 8-element body and phased array coils
were used to acquire an MRI study that includes sequences before and after intravenous
(IV) contrast agent (CA) injection.

In this study, radiomic features extraction was made on volumetric interpolated
breath-hold examination (VIBE) T1-weighted SPAIR with controlled respiration used to
acquire images after IV CA injection with a liver-specific CA (0.1 mL/kg of Gd-EOB-BPTA,
Primovist, Bayer Schering Pharma, Berlin, Germany) as descripted in [26,27].

The VIBE T1-W sequence was acquired with two different flip angles (10 and 30 de-
grees). A power injector (Spectris Solaris® EP MR, MEDRAD, Inc., Indianola, IA, USA)
was used to administer the CA at an infusion rate of 2 mL/s. VIBE T1-w images were
acquired in four different phases: arterial phase (35 s delay), portal venous phase (90 s),
late/transitional phase (120 s), and hepatobiliary excretion phase (20 min). MRI protocol
details are reported in Table 2.

Table 2. MR Sequence parameters.

Sequence Orientation TR/TE/FA
(ms/ms/deg.)

AT
(min) Acquisition Matrix ST/Gap (mm) FS

Trufisp T2-W Coronal 4.30/2.15/80 0.46 512 × 512 4/0 without

HASTE T2-W Axial 1500/90/170 0.36 320 × 320 5/0 without and
with (SPAIR)

HASTE T2w Coronal 1500/92/170 0.38 320 × 320 5/0 without

In-Out phase T1-W Axial 160/2.35/70 0.33 256 × 192 5/0 without

VIBE
T1-W_FA10 Axial 4.80/1.76/10 0.18 320 × 260 3/0 with (SPAIR)

VIBE
T1-W_FA30 Axial 4.80/1.76/30 0.18 320 × 260 3/0 with (SPAIR)

Note: W = weighted, TR = repetition time, TE = echo time, FA = flip angle, AT = acquisition time, SPAIR = spectral
adiabatic inversion recovery, VIBE = volumetric interpolated breath hold examination, HASTE = half-Fourier-
acquired single-shot turbo spin echo.

2.3. Follow-Up CT Scan

CT studies were performed using a scanner with 64 detectors (Optima 660, GE Health-
care, Chicago, IL, USA). The scan data was 120 kVp, 100–470 mA (NI 16.36), slice thickness
was 2.5 mm, and table speed/rotation was 0.984/1 mm. The liver protocol included a
quadruple phase protocol, counting unenhanced, arterial, portal, and equilibrium phases.
A non-ionic contrast agent (120 mL of iomeprol, Iomeron 400, Bracco, Milan, Italy) was
injected at a rate of 3 mL/s using an automatic power injector (Empower CTA, EZ-EM
Inc., New York, NY, USA). The arterial phase was started 19 s after the descending aorta
attenuation reached 100 HU, measured by the bolus localization method.

2.4. Image Processing

Regions of interest (ROIs) were manually drawn slice-by-slice by two expert radiolo-
gists with 22 and 15 years of abdominal imaging experience, respectively, first separately
and then together and in accordance with each other. Region of interest segmentation
was performed avoiding encircling any distortion artefacts. For each volume of inter-
est, radiomics features were extracted as median values, reducing the possible influence
by artefacts.

The segmentation was performed on arterial phase and portal phase of VIBE T1-
W_FA10. For these reasons, we obtained the results both on arterial phase volume and on
portal phase volume.

Manual definition of the ROIs was made using the segmentation tool of 3DSlicer 4.11
(Figure 1) [https://www.slicer.org/, accessed on 20 December 2021].

https://www.slicer.org/
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Figure 1. An example of manual definition of the ROIs made using the segmentation tool of 3DSlicer
on VIBE T1-W_FA10.

2.5. MRI Post-Processing with Pyradiomic Tool

Eight hundred fifty-one radiomic features were extracted using PyRadiomics v3.0.1 [28]
and included first-order statistics, shape-based (3D) metrics, shape-based (2D) features,
gray level co-occurence matrix features, gray level run length matrix features, gray level
size zone matrix features, neighboring gray tone difference matrix features and gray level
dependence matrix parameters. The extracted features are in compliance with feature
definitions as described by the Imaging Biomarker Standardization Initiative (IBSI) [29]
and reported in [https://readthedocs.org/projects/pyradiomics/downloads/, accessed
on 20 December 2021]. Radiomics analysis was performed blinded to the clinical and
pathological data.

2.6. Statistical Analysis

Statistical analysis included univariate and multivariate approaches.

2.6.1. Univariate Analysis

The observer variability assessment was performed by calculating the intraclass corre-
lation coefficient.

A non-parametric Kruskal-Wallis test was performed to identify statistically significant
differences among clinical parameters and radiomic metrics of two groups (front of tumor
growth: expansive versus infiltrative; tumor budding: high-grade versus low-grade or
absent; mucinous type; and presence of recurrence).

Receiver operating characteristic (ROC) analysis was performed, and the Youden
index was used to individuate the optimal cutoff value for each feature in order to calculate

https://readthedocs.org/projects/pyradiomics/downloads/
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area under the ROC curve (AUC), sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV) and accuracy.

The McNemar test was used to calculate statistically significant differences among
dichotomy data of the performance results.

2.6.2. Multivariate Analysis

A multivariate analysis was performed in order to identify the combinations of vari-
ables which best predict the outcomes: (1) front of tumor growth: expansive versus infiltra-
tive; (2) tumor budding: high-grade versus low-grade or absent; (3) mucinous type; and
(4) presence of recurrence.

Given the high number of textural features, a first selection of variables was made
based on the results obtained from the univariate analysis (Table 3). Therefore, there was no
waiting for overfitting in our study because adequate feature selection was made according
to sample size.

Table 3. (Sub)datasets, variable selection criteria and predictors combinations.

Dataset Outcome Variable Predictors Accuracy Threshold on
Univariate Analysis

Dataset 1 Front of tumor growth Radiomic metrics on lesion by VIBE_FA10 ≥0.75

Dataset 2 Tumor budding Radiomic metrics on lesion by VIBE_FA10 ≥0.80

Dataset 3 Mucinous Type Radiomic metrics on lesion by VIBE_FA10 ≥0.80

Dataset 4 Recurrence presence Radiomic metrics on lesion by VIBE_FA10 ≥0.80

Dataset 5 Front of tumor growth Radiomic metrics on lesion by VIBE_FA30 ≥0.80

Dataset 6 Tumor budding Radiomic metrics on lesion by VIBE_FA30 ≥0.85

Dataset 7 Mucinous Type Radiomic metrics on lesion by VIBE_FA30 ≥0.85

Dataset 8 Recurrence presence Radiomic metrics on lesion by VIBE_FA30 ≥0.85

Linear regression modelling was used to assess the best linear combination of features
considered as predictors for each outcome (Table 3). The linear regression model was used
to assess the accuracy of linear combination, and ROC analysis with Youden index was
used to identify the optimal cut-off value, sensitivity, specificity, PPV, and NPV.

Moreover, pattern recognition methods were used in the context of a multivariate
artificial intelligence approach. The tested classifiers with a 10-k fold cross-validation
were support vector machine (SVM), k-nearest neighbors (KNN), artificial neural network
(NNET), and decision tree (DT)). A description of classifiers can be found in [30]. The best
classifier was chosen considering the highest area under ROC curve and highest accuracy.
An external validation cohort was used to validate the findings of the best classifier found
in the training step.

The statistical analyses were performed using the Statistics Toolbox and Machine
Toolbox of MATLAB R2021b (MathWorks, Natick, MA, USA) considering a p value ≤ 0.05
as significant.

3. Results
3.1. Univariate Analysis Findings

The intraclass correlation coefficients median value for extracted features was 0.94
(range 0.88–0.98). The size of the lesion did not affect the values of the extracted metrics
(p-value > 0.05 at the Kruskal-Wallis test considering lesions < 2 cm and ≥ 2 cm).

Among significant features to differentiate the tumor growth front in the arterial
phase, 7 textural parameters obtained an accuracy ≥ 75% Among these 7 features, the
best performance to discriminate expansive versus infiltrative front of tumor growth was
obtained by the wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis with accuracy of
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79%, sensitivity of 95%, specificity of 51%, PPV and NPV of 77% and 85%, respectively, and
a cut-off value of 0.12 (Table 4).

Table 4. Findings by univariate analysis with ROC performance results.

Significant
Textural
Features
Extracted

by Arterial
Phase Respect
to the Front of
Tumor Growth

by Portal Phase
Respect to the
Front of Tumor

Growth

by Arterial
Phase Respect
to the Tumor

Budding

by Portal Phase
Respect to the

Tumor
Budding

by Arterial
Phase Respect

to the
Mucinous Type

by Portal Phase
respect to the

Mucinous Type

by Arterial
Phase Respect
to Recurrence

by Portal Phase
Respect to
Recurrence

wavelet_LH
H_glrlm_Sh
ortRunLow
GrayLevelE

mphasis

wavelet_LH
H_glrlm_Sh
ortRunLow
GrayLevelE

mphasis

wavelet_LH
H_firstorder
_Minimum

wavelet_LL
H_firstorder

_10Percentile

wavelet_HL
H_glszm_La
rgeAreaHig
hGrayLevel
Emphasis

wavelet_LL
L_glcm_Clu

sterTendency

wavelet_HL
H_ngtdm_C
omplexity

wavelet_LL
H_glcm_Dif

ferenceEntropy

AUC 0.69 0.80 0.71 0.80 0.59 0.70 0.74 0.74

Sensitivity 0.95 0.84 0.98 0.96 0.35 0.38 0.71 0.71

Specificity 0.51 0.77 0.52 0.81 0.99 1.00 0.95 0.94

PPV 0.77 0.85 0.85 0.93 0.90 1.00 0.79 0.81

NPV 0.85 0.74 0.89 0.86 0.85 0.86 0.90 0.90

Accuracy 0.79 0.82 0.86 0.92 0.85 0.88 0.90 0.89

Cut-off 0.12 0.12 −41.76 −37.14 −0.02 408.22 3.34 1.54

Among significant features to differentiate the front of tumor growth in portal phase,
9 textural parameters obtained an accuracy ≥ 80%. Among these 9 features, the best
performance to discriminate expansive versus infiltrative front of tumor growth was
obtained by the wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis (the same feature
of previous case) with accuracy of 82%, sensitivity of 84%, specificity of 77%, PPV and NPV
of 85% and 74%, respectively, and a cut-off value of 0.12 (Table 4).

Among significant features to differentiate the tumor budding on arterial phase, 11 tex-
tural parameters obtained an accuracy ≥ 80%. Among these 11 features, the best perfor-
mance to discriminate tumor budding was obtained by the wavelet_LHH_firstorder_Minimum
with accuracy of 86%, sensitivity of 98%, specificity of 52%, PPV and NPV of 85% and 89%,
respectively, and a cut-off value of −41.76 (Table 4).

Among significant features to differentiate the tumor budding in the portal phase,
13 textural parameters obtained an accuracy ≥ 85%. Among these 13 features, the best perfor-
mance to discriminate tumor budding was obtained by the wavelet_LLH_firstorder_10Percentile
with accuracy of 92%, sensitivity of 96%, specificity of 81%, PPV and NPV of 93% and 86%,
respectively, and a cut-off value of −37.14 (Table 4).

Among significant features to differentiate the mucinous type of tumor in the arterial
phase, 13 textural parameters obtained an accuracy ≥ 80%. Among these 13 features,
the best performance to differentiate the mucinous type of tumor was obtained by the
wavelet_HLH_glszm_LargeAreaHighGrayLevelEmphasis with accuracy of 85%, sensitivity
of 35%, specificity of 99%, PPV and NPV of 90% and 85%, respectively, and a cut-off value
of −0.02 (Table 4).

Among significant features to differentiate the mucinous type of tumor in the portal
phase, 12 textural parameters obtained an accuracy ≥ 85%. Among these 12 features,
the best performance to differentiate the mucinous type of tumor was obtained by the
wavelet_LLL_glcm_ClusterTendency with accuracy of 88%, sensitivity of 38%, specificity of
100%, PPV and NPV of 100% and 86%, respectively, and a cut-off value of 408.22 (Table 4).

Among significant features to identify tumor recurrence in the arterial phase, 10 textu-
ral parameters obtained an accuracy ≥ 80%. Among these 10 features, the best performance
to identify tumor recurrence was obtained by the wavelet_HLH_ngtdm_Complexity with
accuracy of 90%, sensitivity of 71%, specificity of 95%, PPV and NPV of 79% and 90%,
respectively, and a cut-off value of 3.34 (Table 4).

Among significant features to identify tumor recurrence in the portal phase, 11 textural
parameters obtained an accuracy ≥ 85%. Among these 11 features, the best performance to
identify tumor recurrence was obtained by the LHL_glcm_Correlation with accuracy of
89%, sensitivity of 71%, specificity of 94%, PPV and NPV of 81% and 90%, respectively, and
a cut-off value of 1.54 (Table 4).
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3.2. Multivariate Analysis Findings
3.2.1. Linear Regression Analysis Findings

Linear regression models obtained good results in each considered classification
problem (1. Front of tumor growth: expansive versus infiltrative; 2. tumor budding:
high-grade versus low-grade or absent; 3. mucinous type and 4. presence of recurrence)
with accuracy in the range of 83−94% (Tables 5 and 6, Figures 2 and 3). The best linear
regression model was obtained in the identification of mucinous type considering the
13 textural significant metrics extracted by the arterial phase (AUC of 0.93, accuracy of
94%, sensitivity of 77%, and specificity of 99%) and in the identification of tumor budding
considering the 11 textural significant metrics extracted by the arterial phase (AUC of 0.92,
accuracy of 93%, sensitivity of 94%, and specificity of 90%).

Table 5. Linear regression and pattern recognition analysis with significant features from the arte-
rial phase.

Linear Regression of
Significant Features

Extracted by the Arterial
Phase

AUC Sensitivity Specificity PPV NPV Accuracy Cut-off

respect to the front of tumor
growth 0.74 0.89 0.89 0.93 0.83 0.89 1.45

respect to the budding 0.92 0.94 0.90 0.97 0.85 0.93 1.38

respect to the mucinous type 0.93 0.77 0.99 0.95 0.94 0.94 0.37

respect to the recurrence 0.81 0.58 0.97 0.86 0.87 0.87 0.43

Pattern Recognition
Analysis with Significant

Features
Dataset AUC Accuracy Sensitivity Specificity Training

Time [sec]
Model Type and

Parameters

The best classifier is a KNN
considering significant

features extracted on arterial
phase respect each of

outcome (front of tumor
growth, budding, mucinous

type, recurrence)

Training set 0.97 0.91 0.91 0.91 2.34

Weighted KNN; number
of neighbors:10; distance

metric: Euclidean;
distance weight: squared

inverse

Validation set 0.96 0.89 0.85 0.91

Training set 0.95 0.95 0.84 0.99 4.27

Validation set 0.95 0.95 0.8 1

Training set 0.87 0.88 0.97 0.56 8.55

Validation set 0.91 0.91 0.96 0.73

Training set 0.96 0.92 0.97 0.77 10.38

Validation set 0.93 0.92 1 0.66

Table 6. Results of linear regression and pattern recognition analysis with significant features from
the portal phase.

Linear Regression of Significant
Features Extracted by The Portal

Phase
AUC Sensitivity Specificity PPV NPV Accuracy Cut-off

respect to the front of tumor
growth 0.88 0.80 0.89 0.92 0.73 0.83 1.58

respect to the budding 0.82 0.93 0.67 0.83 0.86 0.83 1.50

respect to the mucinous type 0.88 0.77 0.96 0.83 0.94 0.92 0.36

respect to the recurrence 0.92 0.94 0.82 0.64 0.97 0.85 0.28

Pattern recognition analysis
results Dataset AUC Accuracy Sensitivity Specificity Training

time [sec] Model Type and parameters

The best classifier is a KNN
considering significant features

extracted on portal phase respect
to the front of tumor growth

Training set 0.96 0.90 0.91 0.89 13.4 Weighted KNN; number of neighbors:10;
distance metric: Euclidean; distance weight:

squared inverseValidation set 0.97 0.92 0.84 0.97 9.74

The best classifier is a decision
tree considering significant
features extracted on portal

phase respect to the budding

Training set 0.99 0.91 0.81 0.96
Maximum number of splits: 100

Split criterion: Gini’s diversity index
Surrogate decision splits: Off

Hyperparameter options disabledValidation set 0.97 0.93 0.84 0.97 3.4

The best classifier is a KNN
considering significant features

extracted on portal phase respect
to the to the mucinous type

Training set 0.89 0.93 0.8 1

Weighted KNN; number of neighbors:10;
distance metric: Euclidean; distance weight:

squared inverse

Validation set 0.92 0.91 0.99 0.62 11.8

Training set 0.98 0.92 1 0.62

The best classifier is a KNN
considering significant features

extracted on portal phase respect
to the recurrence

Validation set 0.94 0.93 0.99 0.77 10.1
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Figure 2. ROC curves of linear regression analysis with respect to the front of tumor growth (A),
tumor budding (B), tumor mucinous type (C), and the recurrence presence (D) obtained considering
significant features extracted by arterial phase.
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Figure 3. ROC curves of linear regression analysis with respect to the front of tumor growth (A),
tumor budding (B), tumor mucinous type (C), and the recurrence presence (D) obtained considering
significant features extracted by portal phase.

The coefficients of these linear models are reported in the Table 7.

Table 7. Linear regression model coefficients and intercept with respective p value.

Linear Regression of the Textural Features Extracted by the Arterial Phase with Respect
to the Front of Tumor Growth Coefficients p Value p Value

Intercept −1.99 0.31

<0.000

wavelet_LHH_gldm_SmallDependenceLowGrayLevelEmphasis 33.14 0.19

wavelet_LHH_firstorder_Minimum 0.01 0.02

wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis −1.32 0.14

wavelet_LHH_glrlm_ShortRunEmphasis −3.32 0.14

wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 2.11 0.03

wavelet_HLH_glcm_MaximumProbability 19.52 0.00

wavelet_HHH_gldm_SmallDependenceHighGrayLevelEmphasis 5.17 0.39

wavelet_HHH_glrlm_ShortRunHighGrayLevelEmphasis 0.06 0.70

Linear regression of the textural features extracted by the arterial phase with respect to
the tumor budding Coefficients p value p value

Intercept −12.52 0.00

<0.000

original_glcm_Idn 31.70 0.00

original_glcm_Idm 42.60 0.00

original_glcm_Id −56.44 0.00

wavelet_LHH_firstorder_Minimum 0.02 0.00

wavelet_LHH_firstorder_10Percentile −0.06 0.40

wavelet_LLH_glcm_MaximumProbability 1.88 0.16

wavelet_LLH_glcm_Imc1 8.92 0.01

wavelet_LLH_firstorder_10Percentile 0.00 0.74

wavelet_LLH_glrlm_GrayLevelNonUniformityNormalized −4.57 0.05

wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 1.67 0.11

wavelet_HLH_firstorder_10Percentile 0.44 0.00
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Table 7. Cont.

Linear Regression of the Textural Features Extracted by the Arterial Phase with Respect
to the Front of Tumor Growth Coefficients p Value p Value

Linear regression of the textural features extracted by the arterial phase with respect to
the mucinous type Coefficients p value p value

Intercept −2.18 0.01

<0.000

original_glszm_ZoneVariance 0.00 0.14

original_glszm_LargeAreaEmphasis 0.00 0.11

original_glszm_LargeAreaLowGrayLevelEmphasis 0.00 0.01

wavelet_HLL_glcm_InverseVariance 4.62 0.01

wavelet_HLL_glrlm_RunLengthNonUniformity 0.00 0.01

wavelet_LHH_glszm_LargeAreaEmphasis 0.00 0.08

wavelet_LHH_glszm_ZonePercentage 0.00 0.01

wavelet_LHH_glszm_LargeAreaLowGrayLevelEmphasis 17.35 0.00

wavelet_LHH_glszm_HighGrayLevelZoneEmphasis 0.00 0.00

wavelet_LLH_glcm_InverseVariance 0.00 0.95

wavelet_HLH_glcm_Imc1 0.61 0.64

wavelet_HLH_glszm_LargeAreaHighGrayLevelEmphasis 11.35 0.00

wavelet_HHH_glszm_ZonePercentage 0.00 0.00

Linear regression of the textural features extracted by the arterial phase with respect to
the recurrence presence Coefficients p value p value

Intercept 0.44 0.11

0.030

wavelet_LHL_glcm_JointAverage 0.00 -

wavelet_LHL_glcm_SumAverage −0.20 0.08

wavelet_LHL_glcm_MCC 0.26 0.65

wavelet_LHL_glszm_SmallAreaHighGrayLevelEmphasis −0.03 0.42

wavelet_LHL_glszm_HighGrayLevelZoneEmphasis 0.07 0.04

wavelet_LHL_ngtdm_Complexity −0.02 0.48

wavelet_LLH_firstorder_InterquartileRange 0.11 0.20

wavelet_LLH_firstorder_RobustMeanAbsoluteDeviation −0.25 0.22

wavelet_LLH_ngtdm_Contrast 8.37 0.04

wavelet_HLH_ngtdm_Complexity 0.03 0.07

Linear regression of the textural features extracted by the portal phase with respect to
the front of tumor growth Coefficients p value p value

Intercept −5.36 0.09

<0.000

wavelet_LHH_gldm_SmallDependenceLowGrayLevelEmphasis −11.71 0.34

wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis 1.47 0.01

wavelet_LHH_glszm_GrayLevelNonUniformityNormalized 0.14 0.78

wavelet_LLH_firstorder_10Percentile 0.00 0.57

wavelet_HLH_glcm_JointEnergy 23.11 0.06

wavelet_HLH_glcm_MCC 1.22 0.11

wavelet_HHH_glcm_MCC 16.45 0.00

wavelet_HHH_glcm_Imc2 −9.75 0.04

wavelet_LLL_firstorder_Uniformity −0.50 0.47
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Table 7. Cont.

Linear Regression of the Textural Features Extracted by the Arterial Phase with Respect
to the Front of Tumor Growth Coefficients p Value p Value

Linear regression of the textural features extracted by the portal phase with respect to
the tumor budding Coefficients p value p value

Intercept 29.69 0.06

<0.000

original_glrlm_GrayLevelNonUniformityNormalized 2.16 0.52

original_glszm_ZoneVariance 0.00 0.02

original_glszm_SmallAreaLowGrayLevelEmphasis 1.38 0.39

wavelet_LHH_firstorder_10Percentile 0.18 0.00

wavelet_LHH_ngtdm_Busyness 0.00 0.44

wavelet_LLH_firstorder_10Percentile 0.02 0.00

wavelet_LLH_glszm_LargeAreaLowGrayLevelEmphasis 0.00 0.23

wavelet_LLH_glszm_SmallAreaLowGrayLevelEmphasis 5.37 0.06

wavelet_HHH_glcm_JointEnergy −111.34 0.09

wavelet_HHH_glcm_MCC 16.23 0.00

wavelet_LLL_glrlm_GrayLevelNonUniformityNormalized −8.05 0.15

wavelet_LLL_glszm_ZoneVariance 0.00 0.33

wavelet_LLL_glszm_LargeAreaEmphasis 0.00 0.38

Linear regression of the textural features extracted by the portal phase with respect to
the mucinous type Coefficients p value p value

Intercept −0.10 0.51

<0.000

original_gldm_GrayLevelVariance −2.92 0.05

original_glcm_SumSquares 2.40 0.32

original_glcm_ClusterProminence 0.00 0.16

original_glcm_ClusterTendency 0.18 0.82

original_firstorder_Variance 0.00 0.81

original_glrlm_GrayLevelVariance −0.62 0.00

wavelet_LLL_gldm_GrayLevelVariance 1.73 0.03

wavelet_LLL_glcm_SumSquares −0.30 0.35

wavelet_LLL_glcm_ClusterProminence 0.00 0.10

wavelet_LLL_glcm_ClusterTendency −0.02 0.87

wavelet_LLL_firstorder_Variance 0.00 0.10

wavelet_LLL_glszm_GrayLevelVariance 0.02 0.00

Linear regression of the textural features extracted by the portal phase h respect to the
recurrence presence Coefficients p value p value

Intercept −0.23 0.81

<0.000

wavelet_LLH_gldm_GrayLevelVariance 6.15 0.00

wavelet_LLH_glcm_JointEntropy −0.25 0.48

wavelet_LLH_glcm_Contrast −2.96 0.01

wavelet_LLH_glcm_DifferenceEntropy −4.97 0.05

wavelet_LLH_glcm_DifferenceVariance 4.99 0.03

wavelet_LLH_glcm_DifferenceAverage 9.93 0.00

wavelet_LLH_firstorder_MeanAbsoluteDeviation 0.09 0.14

wavelet_LLH_firstorder_RootMeanSquared 0.05 0.14

wavelet_LLH_firstorder_Variance −0.01 0.00

wavelet_LLH_firstorder_Mean 0.04 0.00

wavelet_LLH_glrlm_GrayLevelVariance −1.06 0.34
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3.2.2. Pattern Recognition Approaches Findings

Considering significant texture metrics tested with pattern recognition approaches, the
best performance for each outcome (1. front of tumor growth: expansive versus infiltrative;
2. tumor budding: high-grade versus low-grade or absent; 3. mucinous type and 4. presence
of recurrence) was reached by a KNN as classifier given the features extracted by the arterial
phase (Figure 4). Instead, considering the features extracted by the portal phase, the best
performance was reached by a KNN as classifier in the identification of the font of tumor
growth, mucinous type, and for the detection of recurrences, and by a decision tree for the
tumor budding identification (Tables 5 and 6).
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Figure 4. ROC curves of KNN with respect to the front of tumor growth (A), tumor budding (B),
tumor mucinous type (C), and the recurrence presence (D) obtained considering significant features
extracted by arterial phase.

The accuracy was always greater than 88% (Tables 5 and 6, Figure 5) in both the
training and validation sets, and the best results were obtained in the identification of
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tumor budding, with the eleven textural significant features extracted by the arterial phase
(AUC of 0.95, accuracy of 95%, sensitivity of 84%, and specificity of 99%).
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Figure 5. ROC curves of KNN with respect to the front of tumor growth (A), tumor budding (B),
tumor mucinous type (C), and the recurrence presence (D) obtained considering significant features
extracted by portal phase.

The best performance in terms of accuracy obtained considering the extracted ra-
diomics features on arterial phase was significantly superior at the best performance
obtained in the portal phase (p value < 0.05 at McNemar test).

4. Discussion

The present study confirmed the possibility of radiomics to recognize as biomarkers
several features that could influence the treatment choice in patients with liver metastases
in order to obtain a more personalized approach. Our data were verified by an external
validation dataset. We obtained a good performance considering the single textural signifi-
cant metric in the identification of front of tumor growth (expansive versus infiltrative) and
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tumor budding (high-grade versus low-grade or absent), in the recognition of mucinous
type, and in the detection of recurrences.

At univariate analysis, the best predictor to discriminate expansive versus infiltrative
tumor growth front was wavelet_LHH_glrlm_ShortRunLowGrayLevelEmphasis by portal
phase with accuracy of 82%. The best predictor to discriminate tumor budding was
wavelet_LLH_firstorder_10Percentile by portal phase with accuracy of 92%. The best
predictor to differentiate the mucinous type was the wavelet_LLL_glcm_ClusterTendency
by portal phase with accuracy of 88%. The best predictor to identify the recurrence was
wavelet_HLH_ngtdm_Complexity by arterial phase with accuracy of 90%.

The best linear regression model was obtained in the identification of mucinous type
considering the 13 textural significant metrics extracted by the arterial phase (AUC of 0.93,
accuracy of 94%, sensitivity of 77%, and specificity of 99%). The best results were obtained
in the identification of tumor budding with the eleven textural significant features extracted
by the arterial phase using a KNN (AUC of 0.95, accuracy of 95%, sensitivity of 84%, and
specificity of 99%). Therefore, the best performance was reached considering the radiomics
features extracted on arterial phase.

Several studies demonstrated the correlation between radiomics parameters and
prognosis [31–40]. An association between homogeneity and worse overall survival (OS)
was demonstrated by Andersen et al. [32]. According to Rahmim et al., radiomic parameters
of heterogeneity obtained by FDG PET were predictors of lower OS [37]. Lubner et al.
demonstrated that the degree of skewness was inversely correlated to KRAS, while the
entropy was related with OS [34]. In addition to the survival advantages, the possibility
to predict recurrence in the liver has been demonstrated [37–40]. According to our results,
Ravanelli et al. related high CT uniformity and low OS and PFS in patients with CRC and
liver metastasis [39].

Radiomics and radiogenomics are emerging tools with significant limits. The major
weakness is the heterogeneity of software employed in different investigations due to the
variety of imaging devices in different hospitals. This clearly hinders the interpretation of
different data for multicenter studies. In addition, the segmentation may affect results [41].

Many previous studies have shown that the lower the degree of differentiation of
the primary tumor (mainly manifested by more aggressive and malignant phenotype),
the worse the prognosis; the number of metastases (≤ 4) and the diameter of metastases
(≤5 cm) are the main prognostic factors affecting the prognosis of patients with liver
metastases [42–44]. Ma et al. showed that the lower the degree of tumor differentiation,
the greater the number of metastases, and the larger the diameter of the metastases, the
heavier the tumor burden throughout the body, and the shorter the survival period. The
distance between metastases and great vessels could affect the recurrence-free survival
of patients [45]. However, the prognostic and predictive value of radiomics in colorectal
cancer metastases to the liver have been well studied, demonstrating its higher utility in
predicting clinical outcomes compared to other clinical data [2].

The present study had several limitations: (1) the small size of the population consid-
ered, although the analysis was performed on a homogeneous sample and on all individual
lesions; furthermore the patients analyzed included a training set and an external val-
idation set for a total of 151 liver lesions analyzed. The external dataset was used to
validate the results obtained during the training phase; however, the results of this study
were considered preliminary, and the future goal is to broaden the dataset to evaluate
the generalization of the results; (2) the retrospective nature of the study; (3) a manual
segmentation, that, although several studies support automatic segmentation to avoid
inter-observer variability, in our opinion, the manual approach is more realistic. Moreover,
we did not assess the impact of chemotherapy. However, we assessed the impact of the
different phases of contrast study (arterial and portal), although we have not evaluated
these results with respect to transitional and EOB-phase due to morphological sequences,
such as T2-weigthed, T1-weigthed, or diffusion-weighted imaging. Data that we plan to
evaluate in a future study.
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5. Conclusions

Our results confirmed the capacity of radiomics to identify as biomarkers several
prognostic features that could affect the treatment choice in patients with liver metastases
in order to obtain a more personalized approach. We obtained a good performance consid-
ering the single textural significant metric in the identification of front of tumor growth
(expansive versus infiltrative) and tumor budding (high-grade versus low-grade or absent),
in the recognition of mucinous type and in the detection of recurrences.
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