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Abstract: Breast cancer tumor draining lymph nodes (TDLNs) display distinct morphologic changes
depending on the breast cancer subtype. For triple-negative breast cancers (TNBC), draining LNs
display a higher amount of secondary lymphoid follicles, which can be regarded as a surrogate marker
for an activated humoral immune response. In the present study, we focus on PD1+ T-follicular
helper cells (Tfh) in TDLNs of TNBC, since PD1+ Tfh are drivers of the germinal center (GC) reaction.
We quantified PD1+ Tfh in 22 sentinel LNs with 853 GCs and interfollicular areas from 19 patients
with TNBC by morphometry from digitalized immunostained tissue sections. Overall survival was
significantly worse for patients with a higher number and area density of PD1+ Tfh within GCs of
TDLNs. Further, we performed T-cell receptor gamma chain (TRG) analysis from microdissected
tissue in the primary tumor and TDLNs. Eleven patients showed the same TRG clones in the tumor
and the LN. Five patients shared the same TRG clones in the tumor and the GCs. In two patients,
those clones were highly enriched inside the GCs. Enrichment of identical TRG clones at the tumor
site vs. the TDLN was associated with improved overall survival. TDLNs are important relays of
cancer immunity and enable surrogate approaches to predict the outcome of TNBC itself.

Keywords: tumor draining lymph node; breast cancer; PD1+ T-follicular helper cells; germinal center

1. Introduction

Breast cancer prognosis has improved dramatically in recent years due to targeted therapeutic
options. Nevertheless, triple-negative breast cancer (TNBC) is associated with poor patient overall
survival. Tumor immunology is presently in the focus of therapeutic cancer research, not only for
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breast cancer. Immune checkpoint blockade shows promising results for TNBC [1,2] and has become
a promising treatment for TNBC [3]. In general, PD-1/PD-L1 checkpoint inhibitors “revive” T-cells
(”exhausted” cytotoxic T-cells) within the tumor microenvironment by blocking the PD-1/PD-L1
interaction, which tumors use to inhibit a T-cell mediated immune response. As predictive surrogate
markers for immune checkpoint inhibitor therapy, T-cell infiltration, tumor PD-L1 expression, and tumor
mutational load are used [4,5]. Interestingly, besides local intra- and peritumoral factors, systemic
surrogate markers, such as PD-L1 expressing eosinophils and lymphocytes within the peripheral blood
may also be useful [6,7].

Studies analyzing PD-1/PD-L1 expression in tumor-draining lymph nodes (TDLN) have remained
scarce. In animal models, TDLNs have been shown to be key regulators in antitumor immune response
and control the magnitude of therapeutic efficacy of PD-1 and PD-L1 blocking [8]. TDLNs represent
the first sites of tumor metastasis and are resected in most diseases. Furthermore, apart from the tumor
environment, TDLN also represent the first site of tumor-induced immune modulation.

Considering the prognostic and predictive role of the lymph drainage via sentinel LNs and the
standardization of surgical regimes according to national applied guidelines, breast cancer represents
a proof-of-concept entity for the investigation of cancer-based immune modulating effects.

The interactions within and between the different lymph node compartments play an important
role in the initiation and regulation of immune responses [9]. Via T-cell priming and suppression, TDLNs
have been described balancing both the induction and the suppression of tumor immunity [10,11].
Tumor antigens are transported by CD103+ dendritic cells, initiating T-cell priming [12,13]. Furthermore,
TDLNs of TNBC display higher densities of germinal centers (GCs), indicative of higher humoral
activity [14]. The immune cell composition and spatial distribution in TDLNs may have a predictive
value for immune-based interventions. We, therefore, studied the distribution of PD1+ T-follicular
helper cells (Tfh) in the GCs, the distribution of CD8+ cytotoxic T-cells together with morphometrically
assessed LN compartments and clonal distribution of T-cells. We demonstrate a potential predictive
role of TDLNs in immunotherapy for breast cancer. In the clinical setting, our study may bear relevance
with regard to the necessity for sentinel LN dissection.

2. Results

All correlation coefficients, corresponding p-values, and numbers are provided in the supplemental table.

2.1. Study Cohort

From 2008–2015, 19 patients with TNBC with at minimum one tumor draining LN, all treated
in an adjuvant setting, were included into this pilot study. Patients’ ages ranged from 35 to 79 years
(mean 66.32 years, standard deviation (SD) 12.82 years). In sum, 22 analyzed tumor draining LNs
displayed 853 GCs, which were analyzed for area, roundness, and cellular composition of Bcl6+ PD1+

Tfh. CD8+ cytotoxic T-cells were quantified in GCs and interfollicular areas. As expected, the tumor
size positively correlated with the T-stage and the N-category with the number of affected LNs
(Supplementary Materials). HER2/neu IHC score ranged from 0 to 2+ (mean 0.53; SD 0.7). Subsequent
chromogenic in situ hybridization revealed no HER2/neu positive tumor (Table 1 displays the overall
description of the study cohort’s patient characteristics). Out of 19 patients, 15 patients are deceased.
Event-specific overall survival ranged from 5–72 months, with a mean 26.73 months and an SD of
22.59 months. Four patients were still alive after a 72 month follow-up.
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Table 1. Descriptive statistic of patients’ characteristics.

n Patients Mean Std Min 25% 50% 75% Max

Age 19 66.32 12.82 35.00 55.50 72.00 75.50 79.00

Grading (G1-3) 19 2.68 0.48 2.00 2.00 3.00 3.00 3.00

pT 19 1.53 0.51 1.00 1.00 2.00 2.00 2.00

pN 19 0.37 0.76 0.00 0.00 0.00 0.50 3.00

Number of LN Metastases 19 0.74 2.28 0.00 0.00 0.00 0.50 10.00

Total Number of LNs 19 6.21 8.48 1.00 1.50 3.00 5.00 31.00

Lymphangiosis (1 = yes, 0 = no) 19 0.16 0.37 0.00 0.00 0.00 0.00 1.00

HER2/neu IHC Score 19 0.53 0.70 0.00 0.00 0.00 1.00 2.00

MIB-1/Ki67 Proliferation Index 15 56.13 22.59 17.00 40.00 50.00 75.00 90.00

Event-Specific Overall Survival in Months 15 26.73 20.68 5.00 14.50 18.00 32.00 72.00

Overall Survival in Months 19 36.26 26.31 5.00 15.50 26.00 71.00 72.00

LN: lymph node.

2.2. Higher Numbers and Higher Densities of PD1+ Tfh Are Associated with Shorter Survival

To better understand where humoral immune reactions are taking place—especially in draining
LNs of TNBC–PD1+—Tfh were quantified and correlated with clinical and histological data. The cellular
density was calculated by number of PD1+ cells over the area of the corresponding GC. Using the
Pearson’s correlation coefficient, high mean numbers of PD1+ Tfh were associated with shorter
event-specific survival (cc = −0.614; p = 0.015; n = 15), which was also true for higher mean densities of
PD1+ Tfh (cc = −0.604; p = 0.017; n = 15), which is visualized exemplarily in Figure 1A,B. Subsequently,
we performed a Kaplan Meier survival plot, based on a mean split separation of the groups with either
higher or lower mean PD1+ Tfh. The results are displayed in Figure 1B,C, further supporting the
finding of an adverse outcome in TN patients with higher PD1+ Tfh densities. The descriptive statistics
of the cellular measurements are summarized in Table 2.

Table 2. Descriptive statistics of cellular measurements.

n Patients Mean Std Min 25% 50% 75% Max

CD8+ Interfollicular Density
(cells per mm2) 18 3228.61 1305.26 1267.61 2314.34 2746.34 4211.88 5714.43

Interfollicular Area (mm2) 18 49.62 22.83 15.17 32.06 45.51 66.35 97.87

Mean Number of CD8+

Cells per GC 19 17.67 19.00 1.24 2.75 13.91 21.18 74.38

Median Number of CD8+

Cells per GC 19 5.47 6.76 0.00 1.00 2.50 7.50 28.00

Mean GC Density of CD8+

Cells (cells per µm2) 19 641.97 664.70 97.10 189.75 406.79 810.49 2694.89

Median GC Density of CD8+

Cells (cells per µm2) 19 321.35 486.22 0.00 61.85 144.99 356.46 1810.47

Mean Number of PD1+

Tfh per GC 19 61.53 45.42 0.58 23.76 61.17 88.84 158.52

Median Number of PD1+

Tfh per GC 19 21.84 24.30 0.00 0.00 11.50 38.50 65.50

Mean GC Density of PD1+

Tfh (cells per µm2) 19 2475.33 1928.32 70.60 812.83 2539.88 4354.01 5598.64

Median GC Density of PD1+

Tfh (cells per µm) 19 1380.91 1749.04 0.00 0.00 849.68 2294.69 6089.25

GC: germinal center; Tfh: T-follicular helper cell.
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Figure 1. (A,B) Exemplary immunohistochemical triple stainings showing BCL6+ germinal centers 
(GCs, brown), PD1+ T-follicular helper cells (Tfh, blue), and CD8+ cytotoxic T-cells (red); 100µm 
indicated by white bar in the upper left, respectively. (A) Exemplary GC with polarized PD1+ Tfh 
distribution, lower PD1+ Tfh number and lower area density. (B) Exemplary GC with non-polarized 
PD1+ Tfh distribution, higher PD1+ Tfh number and higher area density. (C–E) Separation of groups 
by mean split. (C) Mean PD1+ Tfh number ≥ 61.5 cells per GC is associated with lower survival (p = 
0.03, logrank test, 15 deaths for 72 months follow-up observation time, 1 patient still alive in the PD1 
high group, 3 patients still alive in the PD1 low group after 72 months follow-up). (D) Mean density 
≥ 0.002475 PD1+ Tfh per mm2 GC area is associated with lower survival (p = 0.03, logrank test, 15 
deaths for 72 months follow-up observation time, 1 patient still alive in the PD1 high group, 3 patients 
still alive in the PD1 low group after 72 months follow-up). (E–I) Association between mean numbers 
of CD8+ GC cells, morphometrical, and clinical findings. (E) Higher mean numbers of CD8+ GC cells 

Figure 1. (A,B) Exemplary immunohistochemical triple stainings showing BCL6+ germinal centers
(GCs, brown), PD1+ T-follicular helper cells (Tfh, blue), and CD8+ cytotoxic T-cells (red); 100 µm
indicated by white bar in the upper left, respectively. (A) Exemplary GC with polarized PD1+ Tfh
distribution, lower PD1+ Tfh number and lower area density. (B) Exemplary GC with non-polarized
PD1+ Tfh distribution, higher PD1+ Tfh number and higher area density. (C–E) Separation of groups
by mean split. (C) Mean PD1+ Tfh number ≥ 61.5 cells per GC is associated with lower survival
(p = 0.03, logrank test, 15 deaths for 72 months follow-up observation time, 1 patient still alive in the
PD1 high group, 3 patients still alive in the PD1 low group after 72 months follow-up). (D) Mean
density ≥ 0.002475 PD1+ Tfh per mm2 GC area is associated with lower survival (p = 0.03, logrank
test, 15 deaths for 72 months follow-up observation time, 1 patient still alive in the PD1 high group,
3 patients still alive in the PD1 low group after 72 months follow-up). (E–I) Association between mean
numbers of CD8+ GC cells, morphometrical, and clinical findings. (E) Higher mean numbers of CD8+

GC cells are associated with higher GC numbers, higher mean GC areas (F), higher mean and median
CD8+ GC cell density (G,H), and higher tumor grade (I).



Int. J. Mol. Sci. 2020, 21, 5948 5 of 12

2.3. Higher Numbers of CD8+ GC Cells Are Associated with Elevated GC Amount, Enlarged GCs, and a
Higher Tumor Grade

Based on the PD1+ Tfh findings suggestive for a tumor associated humoral activation of the TDLN,
we speculated that CD8+ cells as possible cytotoxic counterparts might be correlated with improved
patients’ survival. We did not find any significant correlation in this direction. However, higher mean
numbers of CD8+ GC cells significantly correlate with higher GC numbers (cc = 0.497; p = 0.03; n = 19),
larger mean, but not median, GC areas (cc = 0.624; p = 0.004; n = 19), and higher mean and median
CD8+ GC cell area densities (cc = 0.565 and 0.54; p = 0.012 and 0.017; n = 19 and 19). Concerning the
clinical parameters, a weaker positive correlation for higher mean CD8+ GC cell numbers and the
tumor grading (cc = 0.458; p = 0.049; n = 19) was detectable. The findings are visualized in Figure 1E–I.
Looking for the pT category, only median numbers of CD8+ GC cells (cc = −0.468; p = 0.043; n = 18)
and interfollicular area density of CD8+ cells (cc = −0.486; p = 0.041; n = 18) displayed an inverse
correlation. The descriptive statistics of the cellular measurements are summarized in Table 2, of the
GC measurements are summarized in Table 3.

Table 3. Descriptive statistics of GC measurements.

n Patients Mean Std Min 25% 50% 75% Max

Number of GCs 19 44.89 35.77 7.00 18.00 40.00 65.50 125.00

Sum of GC Areas in mm 19 1.56 1.82 0.07 0.39 1.05 1.76 7.78

Ratio: Sum of GC
Areas/Whole LN area 19 0.02 0.02 0.00 0.00 0.01 0.02 0.08

Mean GC Area in µm2 19 29907.58 17232.53 9303.41 18429.66 23661.85 35912.72 80989.81

Median GC Area in µm2 19 16521.21 6728.29 7755.20 11012.91 15450.05 21316.81 29980.66

Mean Circularity Ratio
(1 circular, >1 non-circular) 19 1.24 0.12 1.08 1.15 1.20 1.31 1.54

Median Circularity Ratio
(1 circular, >1 non-circular) 19 1.17 0.09 1.06 1.09 1.13 1.22 1.43

2.4. Identical TRG/T-Cell Clones Are Present in the Tumor, the Draining LN, and the GC in the Majority of
Patients. Higher T-cell Clone Tumor/LN Ratios Are Associated with Improved Patients’ Overall Survival

Next, we investigated whether the above-mentioned effect of PD1+ Tfh numbers in GCs on the
patients’ overall survival might be driven by several identical, probably expanded T-cell clones in
the tumors and the corresponding LNs and GCs. From 14 out of 19 patients enough LN tissue was
available to perform TRG clonality analysis of LN and matched tumor samples. Within this subgroup,
eleven patients are deceased. Eleven out of 14 patients showed identical T-cell clones in the tumors
and the draining LNs (clone numbers range 0–391; mean 69.9; standard deviation 109.6). The number
of identical T-cell clones between the tumor and the draining LN was higher in patients with LN
metastases (cc = 0.584; p = 0.028; n = 14). Looking into the percentages of the identical T-cell clones
within the tumor (tumor infiltrating T-lymphocytes, TILs) and the corresponding LN revealed that the
identical T-cell clones being a minor fraction in the TIL and the LN T-cell population (Figure 2(BI,BII)).
However, if the identical clones occupy a larger fraction of the TILs compared to the fraction in the
corresponding LN T-cell population, the patients display an improved overall survival (Figure 2A).
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Figure 2. (A) Tumor/lymph node ratio of identical T-cell clones > 2.476 is associated with improved 
survival (p = 0.04, logrank test, 11 deaths for 72 months follow-up observation time, 1 patient still alive 
in the high ratio group after 72 months follow-up; ratio was calculated as (sum of % TRG reads 
tumor)/(sum of % TRG reads lymph node) of identical TRG sequences from tumors and matched 
lymph nodes). (B) Displays the percentage (%) of reads (TRG sequencing) of identical clones in 
different compartments to see whether clones are expanded: (I) identical clones between draining 
lymph node (LN) and tumor: % reads in the tumor sample; (II) identical clones between tumor and 
draining LN: % reads in the LN sample; (III) identical clones between tumor and germinal center 
(GC): % reads in the tumor sample; (IV) identical clones between tumor and germinal GC: % reads in 
the GC sample, showing two patients with strongly enriched clones inside the GCs; (V) identical 
clones between lymph node and GC: % reads in the LN sample; (VI) identical clones between lymph 
node and GC: % reads in the GC sample. 

Considering GCs, 10 of 14 patients contained enough GCs for TRG clonality analyses. Thereof, 
5 of 10 patients showed the same T-cell clones within the tumors and GCs (clone numbers range 0–
107; mean 14.2; standard deviation 33.1; findings are summarized in Table 4). 

Next, we asked which percentage of identical clones can be found in the tumor infiltrating 
lymphocytes, the draining LN, and the GCs, respectively. Regarding the identical clones between 
tumor and LN in the TIL population, higher percentages correlated with higher circularity of the GCs 
(cc = -0.594; p = 0.025; n = 14 for mean value and cc = −0.621; p = 0.018; n = 14 for median value of non-
circularity). Furthermore, measuring the percentage of the TRG reads allowed us to estimate if certain 
clones are enriched in different compartments (Figure 2B). The enrichment of the same clones in the 
population of TILs is comparable to the one in LN derived lymphocytes (Figures 2(BI,BII)). Identical 
T-cell clones between the tumor and GC represent only a very small TIL fraction (Figure 2(BIII)), 
which is also the case vice-versa. However, two patients show a high percentage in the GC of clones 
identified in the tumor samples (Figure 2(BIV)), speaking for a high enrichment inside the GC 
compartment 

Figure 2. (A) Tumor/lymph node ratio of identical T-cell clones > 2.476 is associated with improved
survival (p = 0.04, logrank test, 11 deaths for 72 months follow-up observation time, 1 patient still
alive in the high ratio group after 72 months follow-up; ratio was calculated as (sum of % TRG reads
tumor)/(sum of % TRG reads lymph node) of identical TRG sequences from tumors and matched lymph
nodes). (B) Displays the percentage (%) of reads (TRG sequencing) of identical clones in different
compartments to see whether clones are expanded: (I) identical clones between draining lymph node
(LN) and tumor: % reads in the tumor sample; (II) identical clones between tumor and draining LN: %
reads in the LN sample; (III) identical clones between tumor and germinal center (GC): % reads in
the tumor sample; (IV) identical clones between tumor and germinal GC: % reads in the GC sample,
showing two patients with strongly enriched clones inside the GCs; (V) identical clones between lymph
node and GC: % reads in the LN sample; (VI) identical clones between lymph node and GC: % reads in
the GC sample.

Considering GCs, 10 of 14 patients contained enough GCs for TRG clonality analyses. Thereof, 5
of 10 patients showed the same T-cell clones within the tumors and GCs (clone numbers range 0–107;
mean 14.2; standard deviation 33.1; findings are summarized in Table 4).

Next, we asked which percentage of identical clones can be found in the tumor infiltrating
lymphocytes, the draining LN, and the GCs, respectively. Regarding the identical clones between
tumor and LN in the TIL population, higher percentages correlated with higher circularity of the GCs
(cc = -0.594; p = 0.025; n = 14 for mean value and cc = −0.621; p = 0.018; n = 14 for median value of
non-circularity). Furthermore, measuring the percentage of the TRG reads allowed us to estimate if
certain clones are enriched in different compartments (Figure 2B). The enrichment of the same clones in
the population of TILs is comparable to the one in LN derived lymphocytes ( 2(BI,BII)). Identical T-cell
clones between the tumor and GC represent only a very small TIL fraction (Figure 2(BIII)), which is
also the case vice-versa. However, two patients show a high percentage in the GC of clones identified
in the tumor samples (Figure 2(BIV)), speaking for a high enrichment inside the GC compartment.
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Table 4. Descriptive statistics of T-cell receptor gamma (TRG) sequences of the CDR3 region
measurements in the tumor, the draining LNs, and the GCs of these LNs.

n Patients Mean Std Min 25% 50% 75% Max

Identical TRG Sequences
Between Tumor and LN:

Sum of % Reads in Tumor
14 3.67 4.42 0.00 0.43 2.34 5.08 14.37

Identical TRG Sequences
Between Tumor and LN:
Sum of % Reads in LN

14 4.10 5.95 0.00 0.12 2.16 4.82 21.22

Identical TRG Sequences
Between Tumor and GC:

Sum of % Reads in Tumor
10 0.59 1.03 0.00 0.00 0.04 0.56 2.54

Identical TRG Sequences
Between Tumor and GC:
Sum of % Reads in GC

10 19.07 38.65 0.00 0.00 0.04 3.60 92.62

Identical TRG Sequences
Between LN and GC: Sum

of % Reads LN
10 5.67 12.30 0.00 0.52 1.86 3.56 40.34

Identical TRG Sequences
Between LN and GC: Sum

of % Reads GC
10 44.19 40.79 0.12 15.71 19.98 90.13 94.24

Number of Identical TRG
Sequences Between

Tumor and LN
14 69.93 109.55 0.00 4.50 18.50 108.25 391.00

Identical TRG sequences:
Ratio of Sum % Reads

Tumor/Sum % Reads LN
11 2.48 2.81 0.11 0.58 1.38 3.51 9.01

Number of identical TRG
Sequences Between

Tumor and GC
10 14.20 33.07 0.00 0.00 1.50 7.75 107.00

Identical TRG Sequences:
Ratio of Sum % Reads

Tumor/Sum % Reads GC
5 0.43 0.72 0.02 0.03 0.03 0.42 1.68

Number of Identical TRG
Sequences Between LN

and GC
10 24.80 26.97 2.00 4.00 11.50 47.25 71.00

Identical TRG Sequences
Between LN and GC:

Ratio of Sum % Reads
LN/Sum % Reads GC

10 0.33 0.82 0.00 0.01 0.06 0.14 2.67

3. Discussion

In our previous work, we found that TN breast cancer is associated with higher amounts of
GCs in the tumor draining LNs, especially in contrast to the luminal subtypes [14]. TN breast
cancers are also known to harbor higher amounts of PD1+ tumor infiltrating “exhausted” cytotoxic
T-cells, indicative for a tumor microenvironment of an increased PD1 signaling [15]. On the humoral
axis, PD1 signaling represents the key for the function of PD1+ Tfh, which are drivers of the GC
reaction [16,17]. We, therefore, hypothesized that PD1+ Tfh cells play a role in the immune reaction
of TN breast cancers, leading to this pilot study. We did not find the nodal status being significantly
correlated with patients’ overall survival (cc = −0.277; p = 0.318; n = 15), keeping in mind the relatively
low number of patients. We saw that the sizes, shapes, and cellular composition of the examined
draining LNs displayed a spectrum, wherein higher numbers and densities of PD1+ Tfh cells are
associated with an adverse outcome. Considering this, the number of PD1+ Tfh could be a further
marker to predict the potential response of the patient towards an immune checkpoint inhibitor therapy.
Beyond this possible clinical impact, the mechanistic story behind this finding is yet untold. Under
physiological conditions, higher numbers PD1+ Tfh cells are associated with higher numbers of antigen
specific B-cells [18–20], which is important for a successful humoral immune response. Hence, shaping



Int. J. Mol. Sci. 2020, 21, 5948 8 of 12

a TDLN towards a humoral immune response would lead to a lower survival rate in TN breast cancer
patients. An approach to identify a possible source of this immune response is to directly isolate plasma
cells from tumor draining LNs and check whether they secrete antibodies binding to tumor antigens,
e.g., by indirect immunofluorescence of tumor sections incubated with supernatant from cultured
plasma cells [21]. However, the role of antibodies against tumor antigens needs further clarification
and could be complemented by techniques to identify foreign peptides [22,23] as antibodies against
tumor antigens are insufficient to carry an antitumoral immune response [24].

Interestingly, we did not find associations between important mediators of cellular immunity,
namely CD8+ T cells, and survival. However, higher numbers of CD8+ GC cells are associated with
larger GCs, a finding we already knew from patients with common variable immunodeficiency [25]
and which recently could be linked to an exhaustion phenotype with, e.g., coexpression of PD1 of
those follicular CD8+ cells [26]. This could explain their lacking impact on survival in our cohort.
Moreover, their positive correlation with tumor grading is suggestive of at least some tumor-dependent
modulation of CD8+ GC cells, yet a causative relationship is not proven by this finding.

Identical T-cell clones between tumor and draining LNs are a common finding in our cohort,
but these identical clones are the minor population in the entirety of TILs or the LN T-lymphocytes,
based on the number of reads. However, patients showed an improved survival when the population of
identical T-cell clones is enriched in the tumor (Figure 2B) vs. the LN, which is highly suggestive for an
expansion of anti-tumoral T-cells at the effector site. Two patients showed a strong enrichment
of tumor T-cell clones inside the GC, which makes them possible candidates of mediating a
tumor-antigen-dependent humoral response. It should be noted, though, that the majority of patients
did not show this enrichment of tumor T-cell clones inside the GCs. It is, therefore, not clear whether
tumor-antigen-specific T-cells shape the draining lymph node or are just modulated by, e.g., soluble
factors, which modulate T-cells with different antigen specificity in the same way. Future experiments
should, therefore, address the functional phenotype of the T-cells, as well as their clonality. Furthermore,
dissecting the different Tfh subtypes (Tfh1, Tfh2, Tfh17) would lead to a better understanding of
which co-stimulatory signal is behind the immune reaction and could, therefore, be a candidate to be
therapeutically antagonized, e.g., in an antitumoral vaccination approach.

4. Materials and Methods

4.1. Patients and Cohort

All patients in the present study have given written informed consent before inclusion. Ethics
approval was obtained by local authorities of the Ethics Committee of the University Medical Center
Freiburg (Ref: 10011/16; 25 April 2016). Surgery for primary breast cancer and corresponding LNs was
performed at the Department of Obstetrics and Gynecology at the University Medical Center Freiburg.
Only patients histopathologically diagnosed for triple-negative breast cancer were included. In order to
prevent the interference of neo-adjuvant therapeutic interventions with LN morphology and function,
only adjuvant-treated patients were included. Clinico-pathological data comprised UICC-, WHO-
and R- classification, tumor grading (according to Elston and Ellis [27]), and immunohistological
subtype (according to Goldhirsch et al. [28]) as well as patients’ overall survival (which equals patients’
disease-free survival in this cohort). All tissue specimens and corresponding data were distributed by
the Tumorbank of the Comprehensive Cancer Center Freiburg and pseudonymized before distribution.
Nineteen patients with tumors and 22 draining lymph node samples were included.

4.2. Multiple Immunohistochemical Staining

The immunohistochemical stainings were performed on sections of formalin fixed, paraffin-
embedded lymph nodes. In short, 2 µm-thick sections from each sentinel lymph node were transferred
to a 39 ◦C water bath before mounting on slides. Slides were dried at 58 ◦C overnight. After drying,
all sections were de-paraffinized in a descending alcohol series and then transferred to wash buffer.
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CD8 (ready to use antibody, clone C8/144B, Mouse Anti-Human, monoclonal, Dako Envision Flex REF
IR623, Dako Agilent, Glostrup, Denmark) was stained in red after heat mediated epitope retrieval for
two minutes at citric buffer pH6. PD-1 (ready-to-use antibody, Goat Anti-Human polyclonal, R&D
Systems AF 1086, Minneapolis, MN, USA) was stained in blue and BCL6 (ready-to-use antibody, Pg-B6,
Mouse Anti-Human, monoclonal, Dako Envision Flex IR625) in brown after heat mediated epitope for
five minutes in citric buffer at pH6. Formalin-fixed and paraffin-embedded tonsil and lymph node
specimens, derived from the archive of the Institute for Surgical Pathology at the University Medical
Center Freiburg, served as positive/negative control. Internal control comprises the characteristic
distribution pattern of cells in the applied stainings. In detail, PD1+ Tfh are represented in the
light zone of the GC, CD8+ cells are predominantly allocated at the interfollicular region, BCL6+

cells are predominantly allocated inside the GC (Figure 1A,B). After performing the triple staining,
the sections were counterstained with hematoxylin for 45 s followed by a washing step for five
minutes under running, deionized water. Finally, all slides were mounted with aqueous mounting
medium (Aquatex, Merck Millipore, Darmstadt, Germany) and covered with coverslips (Langenbrinck,
Emmendingen, Germany).

4.3. Slide Scanning and Evaluation of LNs

Multistained LNs were digitized using a Mirax Scan Panoramic Scanner (20× objective). All scans
were evaluated using the Definiens Tissue Studio for Immunohistochemistry analysis software
(Definiens AG, Germany, Versions 4.3.1–4.4.1).

Definiens Tissue Studio was trained for LN architecture (whole LN, GC, and interfollicular
zone) and for the subcellular localization of the applied immunohistochemical staining (CD8 and
PD1 membranous, BCL6 nuclear) using the provided workflow “Solution” for image analysis.
From the trained parameters, an analysis algorithm is created. For the respective coloring within the
CD8/BCL6/PD1, two Solution workflows were generated. In both, the GCs, the interfollicular region
and the surrounding connective tissue were defined as regions of interest (ROIs). The areas were
calculated from all ROIs. The first Solution workflow was applied to calculate the roundness of the
GCs and to determine the number of PD1+ cells inside the GC. To identify only PD1 expressing Tfh,
only PD1 and BCL6 co-expressing cells were analyzed. The second Solution workflow enumerated the
CD8+ cells within the GCs and the interfollicular region. Of note, automated analysis was visually
reviewed during the software training by experienced pathologists, and randomly selected GCs and
interfollicular zones were manually counted for Solution workflow verification. GC ROIs with an area
of at least 5000 µm2 were included in the evaluations.

4.4. Laser-Capture Microdissection, DNA Extraction, and NGS Analysis of TCR Gamma Clonality

In order to investigate the presence of mutual T-cell clones, we investigate the CDR3 region of
the TRGamma gene locus (TRG) by NGS in tumor and draining lymph nodes. We selected the TRG
because of its ubiquitous rearrangement in T–cells. Additionally, the TRG CDR3 region represents a
sensitive T-cell marker for tumor and lymph node tissue specimens where a dissection into separate
cell populations before DNA/RNA extraction was not possible [29]. DNA was isolated from 5 µm FFPE
slides of tumors, LNs and—if possible—from 5–10 pooled GCs, isolated by laser capture microdissection
(LCMD) after mounting on membrane coated slides (Zeiss LaserMicrobeamMicrodissection System
with LaserPressureCatapulting, RoboCut Software and Membrane Slide NF 1.0 PEN, respectively;
Carl Zeiss Microscopy GmbH, Göttingen). Before LCMD, individual GCs were marked and separated
into areas of 30.000 µm2. Marked areas were extracted by pulse laser beam and catapulted into the
lid of Adhesive Cap Tubes (Carl Zeiss Microscopy GmbH, Göttingen). Each tube contained LCMD
tissue from two serial sections of the same patient derived from different GCs. After LCMD of up
to ten GCs, the whole LN was macrodissected and transferred to a separate tube. After dissection,
tissue specimens were incubated with 25 µL 1:20 PCR buffer (Roche Applied Biosystems, Mannheim;
1:10 diluted in AccuGENE Molecular Biology Water, Lonza, Basel, Switzerland) and treated with
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proteinase K (Proteinase K 20 mg/mL, Genaxxon Bioscience, Ulm) at 58 ◦C overnight. Proteinase K
was inactivated at 95 ◦C for 10 min via the thermocycler. All tubes were centrifuged for one minute.
TRG sequencing and analysis was performed using the LymphoTrack® Dx TRG Assay Kit according to
the manufacturer’s guidelines, including the software. The resulting sequences were screened for same
sequences in tumors vs. LNs, tumors vs. GCs, and LNs vs. GCs, respectively, using a software-based
approach with string operators, quantified based on their percentage of reads and visualized (Python
3.7, Anaconda distribution; Pandas, Numpy and Matplotlib package; software scripts can be provided
upon request by the authors). The length of 130 bases covered the CDR3 region and was used to
identify the same sequences throughout the different isolates. Duplicates were eliminated afterwards.
The numbers of matching clones in the tumor, their draining LNs and their GCs were quantified.
Furthermore, the percentage of reads of the respective T-cell clones were summarized to quantify the
clonal density in the different compartments (tumor vs. LN vs. GC).

4.5. Statistical Analysis

The data collected by Definiens Tissue Studio were processed using Microsoft Excel 2016.
Kolmogorov–Smirnov adaption test (www.novustat.com, 26.06.2018) was performed for testing normal
distribution. According to the distribution, scale parameters were expressed as median, mean,
and range, respectively. Ordinal and nominal variables were expressed as absolute numbers. Further
statistical testing was performed with a two-sided significance level below p = 0.05 by Pearson test
for correlations coefficients, using a Python-based solution (Python 3.7, Pandas and Numpy package;
script can be provided upon request by the authors). Logrank test, and Cox proportional hazards
regression for survival were performed as well (Python 3.7, Pandas, Matplotlib and Lifelines package;
jupyter notebook can be provided upon request by the authors).

5. Conclusions

As higher amounts of PD1+ Tfh are correlated with an adverse outcome in TN breast cancer
patients in our pilot study, further studies are needed to identify the antigens, co-stimulatory factors
and tumor-derived factors driving this humoral immune response. Therefore, the sentinel LN as
a key relay of the local immune response necessarily must be taken into account for an improved
understanding of the tumor immunology.
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