
Methods

Marginal measures and causal effects using the

relative survival framework

Elisavet Syriopoulou ,1* Mark J Rutherford1 and Paul C Lambert1,2

1Biostatistics Research Group, Department of Health Sciences, University of Leicester, Leicester, UK

and 2Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden

*Corresponding author. Biostatistics Research Group, Department of Health Sciences, University of Leicester University

Road, Leicester LE1 7RH, UK. E-mail: e.syriopoulou@leicester.ac.uk

Editorial decision 28 November 2019; Accepted 3 December 2019

Abstract

Background: In population-based cancer survival studies, the event of interest is usually

death due to cancer. However, other competing events may be present. Relative survival

is a commonly used measure in cancer studies that circumvents problems caused by the

inaccuracy of the cause of death information. A summary of the prognosis of the cancer

population and potential differences between subgroups can be obtained using marginal

estimates of relative survival.

Methods: We utilize regression standardization to obtain marginal estimates of interest

in a relative survival framework. Such measures include the standardized relative sur-

vival, standardized all-cause survival and standardized crude probabilities of death.

Contrasts of these can be formed to explore differences between exposure groups and

under certain assumptions are interpreted as causal effects. The difference in standard-

ized all-cause survival can also provide an estimate for the impact of eliminating cancer-

related differences between exposure groups. The potential avoidable deaths after such

hypothetical scenarios can also be estimated. To illustrate the methods we use the exam-

ple of survival differences across socio-economic groups for colon cancer.

Results: Using relative survival, a range of marginal measures and contrasts were esti-

mated. For these measures we either focused on cancer-related differences only or chose

to incorporate both cancer and other cause differences. The impact of eliminating differ-

ences between groups was also estimated. Another useful way for quantifying that im-

pact is the avoidable deaths under hypothetical scenarios.

Conclusions: Marginal estimates within the relative survival framework provide useful

summary measures and can be applied to better understand differences across exposure

groups.
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Introduction

In population-based cancer survival studies the event of in-

terest is usually death due to a specific cancer. However,

death from other causes may prevent the event of interest oc-

curring, i.e. there are so-called competing risks. To quantify

cancer survival while accounting for differential other cause

probability of death, net survival can be estimated. Net sur-

vival is the survival in a hypothetical world where the only

possible cause of death is death due to cancer. It can be esti-

mated using either the cause-specific or relative survival (ex-

cess mortality) approach.1,2 The cause-specific approach

estimates cancer survival by censoring patients who died

from other causes at the time of death. Information on cause

of death is often inaccurate, particularly for the elderly.

Relative survival is an alternative method to estimate net sur-

vival, but does not require information on cause of death

through incorporating the expected mortality rates using

population life tables.3–7 Information on appropriate

expected mortality rates is essential for the interpretation of

relative survival as net survival.

Within the relative survival framework, two probabilities

of interest are the net probability of death, which is 1 minus

relative survival, and the crude probability of death. Each ap-

proach yields a different estimand and the choice is based on

the research question of interest.8 Net probabilities of death

focus on a hypothetical world where the cancer of interest is

the only possible cause of death. They provide a useful mea-

sure when comparing populations, such as countries or socio-

economic groups, with differential other cause mortality rates

as they focus on differences that are only due to the cancer of

interest. Crude probabilities of death are more appropriate

when making clinical decisions for a specific patient as they

quantify survival in the presence of other possible causes of

death.9 In the competing risks literature, the terminology is

generally different where crude probabilities are often re-

ferred to as cause-specific cumulative incidence functions.10

To improve understanding of the mechanisms that drive

associations, causal inference methods can be applied.11,12

The mathematical framework used for formulating

statistical models and assumptions for causal inference is

that of potential outcomes: the outcomes that would be ob-

served if the patient received a specific level of the expo-

sure.13 Causal effects are defined as contrasts of marginal

effects of the potential outcomes and enable quantification

of differences in prognosis of subgroups.14 In order to

make causal statements certain assumptions need to hold

and these are explored later in this paper in the context of

the relative survival setting—with one main issue being the

level of stratification in the lifetables that is adequate to

achieve conditional exchangeability for other cause mor-

tality. Marginal effects can be estimated using approaches

such as inverse probability weights, but here our focus is

on using regression standardization to obtain standardized

survival and related functions.15,16 Their simple interpreta-

tion as a single measure for each time-point circumvents

problems of communication of results from complex statis-

tical models. Contrasts of standardized measures can also

be utilized to investigate the impact of eliminating the ob-

served differences between groups.

In this paper, we define various marginal measures using

the relative survival framework and we define causal effects

to compare population subgroups. To illustrate the meas-

ures we use the example of survival differences across

socio-economic groups for colon cancer. Moreover, we esti-

mate the potential avoidable deaths under a hypothetical

scenario of eliminating survival differences between groups.

The remainder of the paper is organized as follows.

First, we introduce the data to illustrate the methods and

describe relative survival and excess mortality. Then, we

define marginal measures of interest as well as contrasts

between subgroups. Following, we describe contrasts

within subsets of the population, including the avoidable

deaths. Finally, we provide a summary of the methods.

Introducing the illustrative example

Data, made available by Public Health England, includes

patients diagnosed with colon cancer in 2008 in England,

Key Messages

• Marginal measures provide population estimates in a relative survival framework with a simple interpretation.

• Such measures are marginal relative survival, marginal all-cause survival and marginal crude probabilities of death.

• Under certain assumptions, the difference in marginal estimates between subgroups can be interpreted as the aver-

age causal effect.

• Using the relative survival framework enables us to focus on cancer-related differences instead of all-cause differen-

ces that are more difficult to explore.

• The avoidable deaths under hypothetical scenarios can also be estimated.
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with follow-up to the end of 2013 and information on gen-

der, age at diagnosis and deprivation status. There were

five deprivation groups, derived from national quintiles of

the income domain of the area of patients’ residence at di-

agnosis.17,18 For simplicity we only included the least and

most deprived groups, resulting in 7346 patients in total,

55% of whom are in the least deprived group. More details

on the study population are available in Table 1.

Excess mortality and relative survival

The underlying all-cause mortality rate of an individual i,

with covariate pattern Z ¼ zi, is given as the summation of

the expected mortality rates if they did not have the can-

cer, h� tjZ1 ¼ z1ið Þ; and their excess mortality due to the

cancer, k tjZ2 ¼ z2ið Þ:

h tjZ ¼ zið Þ ¼ h� tjZ1 ¼ z1ið Þ þ k tjZ2 ¼ z2ið Þ;

with Z denoting the set of all covariates. Z1 and Z2 de-

note the covariates for expected and excess mortalities re-

spectively. The expected mortality rate is obtained from

available life tables on a comparable population in the

general population matched by characteristics such as

age, sex, calendar year and deprivation status.2 The sur-

vival analogue of excess mortality is relative survival. The

relative survival of an individual, i; R tjZ2 ¼ z2ið Þ, is de-

fined as their all-cause survival, S tjZ ¼ zið Þ, divided by

their expected survival, S� tjZ1 ¼ z1ið Þ. The all-cause sur-

vival is thus given as

S tjZ ¼ zið Þ ¼ S� tjZ1 ¼ z1ið ÞR tjZ2 ¼ z2ið Þ (1)

Relative survival accounts for different background mor-

tality rates in patients with different characteristics, with-

out having to rely on the cause of death information and

under assumptions is interpreted as net survival.7,19 Net

survival has the interpretation of the probability of survival

in a hypothetical world where the only possible cause of

death is the cancer of interest. In order for this interpreta-

tion to be valid certain assumptions need to hold. These

are (i) appropriate expected mortality rate that represents

mortality due to other causes for the cancer population

and (ii) the potential times to death from cancer and other

causes are conditionally independent. When important var-

iables that affect both cancer and other causes of deaths

are not included in the available life tables for the expected

mortality rates, then comparability between populations is

lost and relative survival cannot be interpreted as net

survival.19

There are several models for relative survival and the

following sections in theory can be applied to any of

these.20–23 We choose flexible parametric survival models,

which use splines to model the effect of time and are pref-

erable in our setting as they incorporate time-dependent

effects (non-proportional hazards) easily.24,25

For the illustrative example, we fitted a flexible para-

metric model with 5 degrees of freedom for the baseline ex-

cess hazard. The model included deprivation status, gender

and age. Age was included as a continuous non-linear vari-

able using restricted cubic splines with 3 degrees of free-

dom. We also included time-dependent effects for age and

deprivation. We then derived various predictions based on

the fitted model. More details on Stata code are available

in Supplementary Appendix A, available as Supplementary

data at IJE online.

Marginal measures

Marginal measures provide population summaries with a

simple interpretation.16 In the following subsections, we

define the marginal relative survival function and describe

how to obtain the marginal all-cause survival and marginal

crude probabilities within the relative survival framework.

Contrasts between subgroups are described in the section

headed ‘Forming contrasts between population groups’.

Marginal relative survival

Let R tð jZ2Þ denote the conditional relative survival given

covariates Z2. The marginal relative survival is:

h tð Þ ¼ E½R tð jZ2Þ� (2)

with the expectation over the marginal distribution of Z2.

After fitting a survival model, h tð Þ can be estimated by

obtaining predictions of relative survival for each

Table 1. Number of colon cancer patients (with proportions)

for gender and age-groups by deprivation group

Deprivation group

Least deprived Most deprived

Gender

Male 2136 (52.37%) 1772 (52.24%)

Female 1943 (47.63%) 1495 (45.76%)

Age group, years

18–44 102 (2.50%) 116 (3.55%)

45–54 210 (5.15%) 209 (6.40%)

55–64 769 (18.85%) 521 (15.95%)

65–74 1149 (28.17%) 972 (29.75%)

75–84 1332 (32.66%) 1045 (31.99%)

85þ 517 (12.67%) 404 (12.37%)
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individual in the study population and taking an average of

these predictions,

ĥ tð Þ ¼ 1

N

XN
i¼1

R̂ tjZ2 ¼ z2ið Þ

where N is the number of patients in the population.

If interest is on the mortality scale, the standardized net

probability of death can be obtained instead by 1� ĥ tð Þ.
Standardizing to an external population might also be

applied and is particularly common when comparing rela-

tive survival across different countries.26 For instance, the

externally age-standardized relative survival is calculated as

ĥ tð Þ ¼ 1

N

XN
i¼1

wiR̂ðtjZ2¼ z2iÞ

where wi is the ratio of the proportion within an age group

in the reference population to the corresponding group in

the study population. Weights higher than 1 are applied to

groups that are underrepresented in the study population

compared with the standard population.7

Marginal all-cause survival

To quantify survival in the presence of both cancer and

other causes, the marginal all-cause survival function can

be obtained. The estimand of interest in now defined as:

h tð Þ ¼ E½S tð jZÞ� ¼ E½S� tð jZ1ÞRðtjZ2Þ� (3)

and is estimated by the standardized all-cause survival

ĥ tð Þ ¼ 1

N

XN
i¼1

S� tjZ1 ¼ z1ið ÞR̂ tjZ2 ¼ z2ið Þ

The standardized all-cause probability of death can also be

estimated as 1� ĥ tð Þ.

Marginal crude probabilities of death

Let the crude probability of dying from the cancer of inter-

est by time t in the presence of a competing risk of death

due to other causes be Fc tð jZÞ and the probability of dying

of causes other than the cancer of interest in the presence

of cancer be Fo tð jZÞ:27 The marginal crude probability of

dying from cancer is defined as

hc tð Þ ¼ E½Fc tð jZÞ� ¼ E

ðt

0

S� ujZ1ð ÞR ujZ2ð Þk ujZ2ð Þdu

� �

and is estimated by the standardized crude-probability of

death due to cancer

ĥc tð Þ ¼ 1

N

XN
i¼1

F̂c tð jZ ¼ ziÞ

¼ 1

N

XN
i¼1

ðt

0

S� ujZ1 ¼ z1ið ÞR̂ ujZ2 ¼ z2ið Þk̂ðujZ2 ¼ z2iÞdu

Similarly, the marginal crude probability of dying of causes

other than the cancer of interest is estimated by

ĥo tð Þ ¼ 1

N

XN
i¼1

F̂o tð jZ ¼ ziÞ

¼ 1

N

XN
i¼1

ðt

0

S� ujZ1 ¼ z1ið ÞR̂ ujZ2 ¼ z2ið Þh�ðujZ1 ¼ z1iÞdu

Example

The marginal 5-year expected probability of death for a

population without colon cancer is 20%. For the colon

cancer population, the 5-year standardized net and all-

cause probability of death was 46 and 55% respectively

(Fig. 1). The net probability of death is lower as it is esti-

mated in a hypothetical world where it is not possible to

die from other causes. The all-cause probability of death

can also be partitioned to that due to cancer and that due

to other causes. The 5-year crude probability of death due

to cancer in the presence of other risks was 44% and the

crude probability of death due to other causes in the pres-

ence of cancer was 11% (Fig. 1).

Forming contrasts between population
groups

Let’s assume that we want to estimate the effect of expo-

sure, X, on the time-to-event outcome, while

allowing for confounding Z. For simplicity, X will be a

binary variable with X ¼ 1 for the exposed patients and

X ¼ 0 for the unexposed. Let h tjX ¼ x;Zð Þ be the coun-

terfactual survival function that we would have ob-

served, had everybody in the population been exposed to

level X ¼ x.

To form contrasts between the exposure groups the

difference can be estimated and it has the advantage of be-

ing collapsible.28,29 The difference between levels X ¼ 1

and X ¼ 0 is defined as h tjX ¼ 1;Zð Þ � h tjX ¼ 0;Zð Þ. The

first term is the counterfactual survival function if every-

one in our population had X ¼ 1 and the second term is

the counterfactual survival function if everyone had

X ¼ 0.

Contrasts between the counterfactual outcomes can be

estimated using the observed outcomes, under some

assumptions.8,30 These are (i) conditional exchangeability

meaning that the outcome and the exposure are

622 International Journal of Epidemiology, 2020, Vol. 49, No. 2



independent given covariates, (ii) consistency i.e. an indi-

vidual’s potential outcome under a specific exposure cor-

responds to the actual outcome of this person under this

exposure level and (iii) positivity so that the probability

of being in every level of the exposure group is positive

for all levels of Z. Notice that the assumptions are now

extended to both outcomes (death due to cancer and

death due to other causes). The conditional exchangeabil-

ity assumption for the other cause mortality can only be

achieved by adjusting the available life tables of the gen-

eral population for sufficient variables (see Discussion for

further details).

Relative survival differences

The difference in marginal relative survival functions, com-

paring X ¼ 1 and X ¼ 0, is defined as

E R tjX ¼ 1;Z2ð Þ½ � � E R tjX ¼ 0;Z2ð Þ½ � (4)

and gives the difference in the hypothetical situation where

the cancer of interest is the only possible cause of death. It

is estimated by

1

N

XN
i¼1

R̂ tjX ¼ 1;Z2 ¼ z2ið Þ � 1

N

XN
i¼1

R̂ tjX ¼ 0;Z2 ¼ z2ið Þ:

Here everyone is first forced to be exposed (X ¼ 1) and

then unexposed (X ¼ 0). A key point is that the average

over confounders, Z2, is the same when estimating both

marginal effects.

All-cause survival differences

The difference in marginal all-cause survival can also be

defined by incorporating the expected survival in equation

(4):

E S� tjX ¼ 1;Z1ð ÞR tjX ¼ 1;Z2ð Þ½ �
� E S� tjX ¼ 0;Z1ð ÞR tjX ¼ 0;Z2ð Þ½ � (5)

and is estimated by

1

N

XN
i¼1

S� tjX ¼ 1;Z1 ¼ z1ið ÞR̂ tjX ¼ 1;Z2 ¼ z2ið Þ

� 1

N

XN
i¼1

S� tjX ¼ 0;Z1 ¼ z1ið ÞR̂ tjX ¼ 0;Z2 ¼ z2ið Þ:

All-cause survival differences move away from the hypo-

thetical world of relative survival and take into account

both cancer-related and other-causes-related survival.

Equation (5) has also the interpretation of the potential im-

pact of removing all-cause differences between exposed

and unexposed.

Example

Figure 2 shows the standardized net and all-cause proba-

bilities of death by deprivation. These are standardized

over the combined age and sex distribution. The 5-year

standardized net probability of death of the least and

most deprived group was 43 and 50% respectively. The

5-year standardized all-cause probability of death was

51 and 60% for the least and most deprived. However,

Figure 1. (A) Standardized all-cause and net probability of death, with 95% confidence intervals, as well as expected probability of death, and

(B) stacked plot for the standardized crude probabilities for cancer and other causes, for the whole study population.

International Journal of Epidemiology, 2020, Vol. 49, No. 2 623



such a comparison does not distinguish whether the dif-

ference is due to cancer mortality, other cause mortality

or both.

Forming contrasts within subsets of the
population

It might also be of interest to estimate the measures and

contrasts described earlier, within subsets of the whole

population. For instance, the all-cause survival difference

in the whole population, defined in equation (5), could

also be defined among the exposed:

E S� tjX ¼ 1;ZX¼1
1

� �
R tjX ¼ 1;ZX¼1

2

� �� �
� E S� tjX ¼ 0;ZX¼1

1

� �
R tjX ¼ 0;ZX¼1

2

� �� �
(6)

with ZX¼1
1 and ZX¼1

2 denoting the covariates for the ex-

posed, for the expected and relative survival respectively. It

can be estimated by standardizing only to patients of the

exposed group, NX¼1,

1

NX¼1

XNX¼1

i¼1

S� tjX ¼ 1;ZX¼1
1 ¼ z1i

� �
R̂ tjX ¼ 1;ZX¼1

2 ¼ z2i

� �

� 1

NX¼1

XNX¼1

i¼1

S� tjX ¼ 0;ZX¼1
1 ¼ z1i

� �
R̂ tjX ¼ 0;ZX¼1

2 ¼ z2i

� �
:

Forming contrasts within subsets of the population is use-

ful when estimating the potential impact of removing

differences for groups with worse survival, under hypothet-

ical scenarios.

Eliminating cancer-related differences

In practice, it might be difficult to remove all-cause sur-

vival differences as they are the result of complex mecha-

nisms that involve both cancer-related and other cause

mortality. A hypothetical scenario under which we elimi-

nate cancer-related differences only may be easier to de-

fine. Contrasts of all-cause survival in which we only

eliminate cancer-related survival differences between

groups can be obtained using relative survival. For exam-

ple, instead of equation (6), we could vary only relative

survival between the two terms:

E S� tjX ¼ 1;ZX¼1
1

� �
R tjX ¼ 1;ZX¼1

2

� �� �
� E S� tjX ¼ 1;ZX¼1

1

� �
R tjX ¼ 0;ZX¼1

2

� �� �
(7)

which is estimated as

1

NX¼1

XNX¼1

i¼1

S� tjX ¼ 1;ZX¼1
1 ¼ z1i

� �
R̂ tjX ¼ 1;ZX¼1

2 ¼ z2i

� �

� 1

NX¼1

XNX¼1

i¼1

S� tjX ¼ 1;ZX¼1
1 ¼ z1i

� �
R̂ tjX ¼ 0;ZX¼1

2 ¼ z2i

� �
:

In equation (7), we assume that under the hypothetical sce-

nario, the other cause mortality rate remains unchanged.

Avoidable deaths

The impact of the hypothetical scenario described in the

section ‘Eliminating cancer-related differences’ can also be

estimated using avoidable deaths.31 Firstly, we need the

Figure 2. (A) Standardized net probability of death, and (B) standardized all-cause probability of death, for the least and most deprived patients with

95% confidence intervals.
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predicted number of deaths for the exposed, which is given

by multiplying the number of exposed patients diagnosed

in a typical calendar year, N�, with the probability of

death:

D1 tjX ¼ 1ð Þ ¼ N� 1� E S� tjX ¼ 1;ZX¼1
1

� �
R tjX ¼ 1;ZX¼1

2

� �� �� �

Secondly, we need the expected number of deaths under

the hypothetical scenario that is derived by replacing the

relative survival of the exposed with that of the unexposed:

DR0
tjX ¼ 1ð Þ ¼ N� 1� E S� tjX ¼ 1;ZX¼1

1

� �
R tjX ¼ 0;ZX¼1

2

� �� �� �

The avoidable deaths are then estimated by:

ADR0
¼ D1 tjX ¼ 1ð Þ �DR0

ðtjX ¼ 1Þ (8)

Each of the terms is estimated by

N� 1� 1

NX¼1

XNX¼1

i¼1

S� tjX ¼ 1;ZX¼1
1 ¼ z1i

� �
R̂ tjX ¼ x;ZX¼1

2 ¼ z2i

� �2
4

3
5

(9)

The number of exposed patients in a typical year, N�; may

be different from the patients we standardize over, NX¼1.

For instance, N�can be calculated by the number of ex-

posed patients diagnosed in the most recent year or by the

total number of exposed patients divided by the number of

years.

Equation (8) yields the all-cause avoidable deaths

among the exposed and can be partitioned to cancer or

other causes deaths. This can be estimated by multiplying

the marginal crude probabilities of death by the number of

patients, N�.

Example

We estimated the impact on the standardized all-cause

probability of death of the most deprived group under a

hypothetical scenario of removing differences in relative

survival between deprivation groups. To do so, we applied

the relative survival of the least deprived, i.e. the most

advantaged group, to the most deprived, but kept their

expected survival unchanged. In such a scenario the 5-year

standardized all-cause probability of death of the most de-

prived would decrease from 60 to 55% (Fig. 3).

We also estimated the avoidable deaths for the most de-

prived patients under the same scenario. Five years after di-

agnosis 168 deaths could be avoided out of 3267 patients

from the most deprived group diagnosed in 2008 (Fig. 4).

In this example, N� and NX¼1 of equation (9) coincide

(3267 patients) but this will not always be the case. Fig. 5

breaks down the all-cause avoidable deaths to cancer and

other causes deaths. Even though the cancer avoidable

deaths increase and finally stay constant with time, the all-

cause avoidable deaths will decrease after the initial in-

crease, as some patients that would die from the cancer

will now die of other causes. That is why we observe an in-

crease in other cause deaths.

Discussion

We outlined marginal measures in a relative survival

framework that can summarize the prognosis of a popula-

tion. We also defined contrasts of these measures between

subgroups of the population that under assumptions can

be interpreted as causal effects. Most of these methods are

used in practice, however in this paper we are formalizing

them into a causal framework and providing software for

their estimation. We also defined marginal crude

Figure 3. Standardized all-cause probabilities of death for the most de-

prived patients before and after the hypothetical scenario of removing

differences in relative survival, with 95% confidence intervals.

Figure 4. All-cause avoidable deaths under the hypothetical scenario of

removing differences in relative survival between deprivation groups,

with 95% confidence intervals.

International Journal of Epidemiology, 2020, Vol. 49, No. 2 625



probabilities as an additional useful measure. Marginal

estimates were estimated using regression standardization.

An advantage of these measures is that even after fitting a

complex statistical model with interactions and time-

dependent effects, a single number can be used to summa-

rize the exposure effect at a given time point.16

In order to relate the counterfactual and the observed

outcomes, some assumptions need to hold:8,30 conditional

exchangeability, consistency and positivity. These have

similar interpretation to that of an all-cause setting but

here they are extended for both competing outcomes.

Another assumption is that of well-defined interventions

that would allow us to compute the causal effect in an ideal

randomized experiment.14 As we evaluated the impact of

an intervention that aims to eliminate deprivation differen-

ces one could argue that this is an ambiguous causal ques-

tion. However, as others have argued, understanding the

magnitude of disparities across deprivation groups in a for-

malized causal framework gives a firm basis to further un-

pick the reasons for the differences, even if the ideal

randomized experiment would be difficult to precisely de-

fine.12,32–35 Our approaches can be extended to a media-

tion analysis setting to quantify measurable aspects that

drive these inequalities, which will form part of future

work.

In addition to standard causal inference assumptions,

assumptions relevant to the relative survival need to hold.

Information on expected mortality rates should be appro-

priate for the cancer population. Previous studies have

assessed potential bias from including cancer patients in

the general population. Bias was found to be negligible for

individual cancers.36–38 Another assumption requires that

the competing risks are conditionally independent.19 This

means that there are no other factors to affect both com-

peting events than the factors we have adjusted for. An

example would be a strong effect of comorbidity that is

likely to affect both cancer and other cause mortality

rates.39 As the ability to adjust for confounders for other

cause mortality depends on the available life tables, meth-

ods have been developed to do so when that information is

not available.40–42 We appreciate that the estimates can

only be interpreted as causal if this assumption is valid but,

in principle, life tables can be constructed for any number

of risk factors if there is available data to do so.

The interpretation of net survival in a hypothetical

world where the only possible cause of death is the cancer

of interest has received some criticism. Some proponents

have argued that one should always ‘stick to this world’

for quantities of interest.43 Historically, relative survival

has been used to account for differential mortality of com-

peting events in population-based cancer survival.2,44 A

hypothetical scenario of eliminating all-cause survival dif-

ferences between exposures may not be straightforward in

practice as many factors, which relate both to cancer and

other causes, account for the differences. Relative survival

allows to focus on cancer-related differences that may be

easier to identify. Furthermore, we develop approaches for

equalizing the excess mortality across population groups

and then convert to ‘real’ world probabilities in the avoid-

able deaths measures we propose.

Avoidable deaths can be obtained to estimate the im-

pact of eliminating survival differences between sub-

groups.31,45 The avoidable deaths depend on both the

survival differences and the number of patients diagnosed

with cancer and has the interpretation of postponable

deaths as eventually all deaths will be observed. However,

it helps to quantify the impact of removing survival

inequalities for public health stakeholders.

We have demonstrated how to obtain marginal meas-

ures for the whole population or specific subsets as well as

causal effects between exposure groups using the relative

survival framework. Future work will focus on methods

that will allow further investigation of observed differen-

ces. The relative survival framework could also be applied

alongside mediation analysis to investigate the impact of

potential mediators on the relationship between exposure

and outcome.
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