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Abstract: In this study, rice bran oil bodies (RBOBs) were filled with varying concentrations of
flaxseed gum (FG) to construct an RBOB-FG emulsion-filled gel system. The particle size distribution,
zeta potential, physical stability, and microstructure were measured and observed. The molecular
interaction of RBOBs and FG was studied by Fourier transform infrared spectroscopy (FTIR). In
addition, the rheological and the tribology properties of the RBOB-FG emulsion-filled gels were
evaluated. We found that the dispersibility and stability of the RBOB droplets was improved by FG
hydrogel, and the electrostatic repulsion of the system was enhanced. FTIR analysis indicated that the
hydrogen bonds and intermolecular forces were the major driving forces in the formation of RBOB-FG
emulsion-filled gel. An emulsion-filled gel-like structure was formed, which further improved the
rheological properties, with increased firmness, storage modulus values, and viscoelasticity, forming
thermally stable networks. In the tribological test, with increased FG concentration, the friction
coefficient (µ) decreased. The elasticity of RBOB-FG emulsion-filled gels and the ball-bearing effect
led to a minimum boundary friction coefficient (µ). These results might contribute to the development
of oil-body-based functional ingredients for applications in plant-based foods as fat replacements
and delivery systems.

Keywords: rice bran oil body; emulsion-filled gel; physical characterization; structure; rheological
properties; tribology

1. Introduction

Oil bodies (OBs), also known as oleosomes, are micron- or submicron-sized natural oil
droplets [1]. OBs are mainly composed of triglycerides (TAG) covered by phospholipids
and proteins, including oleosins (15–26 kDa), caleosins (25–35 kDa), and steroleosins
(40–55 kDa) [2,3]. The hydrophobic domains of these endogenous and exogenous proteins
are embedded inside the TAG core, and their hydrophilic ends face towards the aqueous
phase in the cytoplasm. The phospholipid–protein layer can improve the physicochemical
stability of OBs [4]. At present, the extraction methods of oil bodies mainly include aqueous
extraction and enzyme-assisted extraction. The aqueous extraction of OBs requires seeds to
be soaked in an aqueous medium, followed by blending or pressing to disrupt cell walls
and release intracellular materials. Urea, sucrose, deionized water, salt, alkali, and buffer
solution (including Tris–HCl and PBS) are often used as the grinding medium for aqueous
extraction [5]. For enzyme assisted extraction, because plant cell walls are composed of
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cellulose, hemicelluloses, lignin, and pectin, cellulase, hemicellulose, pectinase, xylanase,
and β-glucanase could also destroy the cell wall. However, the high specificity of enzymes
considerably limits the degree of hydrolysis, and OB-associated proteins may be destroyed
into small peptides through hydrolysis [6].

Rice bran oil bodies (RBOBs) are natural pre-emulsified emulsions composed of a
triacylglycerol core surrounded by a phosphate layer embedded with various kinds of
oleosins and some minor proteins of higher molecular mass [7]. Extracted RBOBs contain
most of the bioactive substances in rice bran. Among them, the contents of tocotrienol,
tocopherol, and oryzanol were reported to be 77%, 73%, and 91%, respectively [8]. Few
studies on RBOBs have been conducted to date, but the processing and reuse of rice bran
as a byproduct has a considerable influence on oil production [9]. Due to their nutritional
value and natural emulsifying properties, OBs can replace oil or emulsion droplets [10].
Flaxseed gum (FG) is composed of 75% polysaccharides and 25% acid polysaccharides [11].
Owing to its functional properties, FG has been widely used for thickening and swelling
and as an emulsifier [12]. However, reports on changes in gel properties and mechanisms
of FG gel matrices induced by RBOBs used as filler are still extremely limited.

Emulsion gel contains both emulsion droplets and gels [13]. Emulsion-filled gel is a
kind of emulsion gel, with oil droplets in the gel matrix as filler particles [14]. According to
their effect on gel properties, droplets can be classified as either active or inactive fillers.
Active filters are bounded to the gel network and contribute to gel strength, whereas inactive
fillers are difficult to bind with the gel matrix and do not effect gel viscoelasticity [15,16]. The
gel properties of emulsion gels are strongly influenced by the structure, molecular weight,
and concentration of the polymer, as well as the interaction between the gel matrix and the
number of padding droplets, droplet size, and stiffness [17]. Owing to its multifunctional
structure and composition, emulsion gel has considerable potential for applications in
the food industry. Several applications have been proposed for emulsion-filled gels as
fat/saturated fat replacements.

In this study, RBOBs in rice bran were extracted by the aqueous method. Two types
of RBOB-FG emulsion-filled gels system (fluid emulsion gels/bulk emulsion gels) were
constructed using three concentrations of FG (0.2, 0.8, and 2.0 wt.%). The particle size
distribution, zeta potential, physical stability, and microstructure of the RBOB-FG emulsion-
filled gels were measured and observed. The molecular interaction of RBOBs was studied by
Fourier infrared spectroscopy. The rheological properties and the tribology of the RBOB-FG
emulsion-filled gels were also evaluated. This research may contribute to the development
of a new and simple strategy to determine the structure of RBOBs, which can be used in
the development of fat replacements and edible soft solid materials.

2. Materials and Methods
2.1. Materials

Rice bran was purchased from Shuyang Runyi Agricultural Technology Co., Ltd.
(Shuyang, China). FG was obtained from Yuanye Biological Company (Shanghai, China)
and used without further treatment. The FG contained 70.92% polysaccharide, 12.67%
protein, and 16.31% ash, as supplied by the manufacture. Nile blue A and Nile red were
provided by Sigma-Aldrich Co. (St. Louis, MO, USA). All other chemicals were of analytical
grade. All solutions and emulsions were prepared using ultrapure water (SMART-N,
HealForce, Shanghai, China).

2.2. Extraction of Rice Bran Oil Bodies

Coarse OBs were physically isolated from a homogenate of rice bran according to the
method described in [18], with a slight modification. Briefly, unexpanded rice bran was
passed through a 20 mesh screen to obtain a more uniform raw material. The rice bran was
soaked in 10.0 mmol/L phosphate buffer solution at pH 7.0 with a solid–liquid ratio of
1:5 and stored overnight at 4 ◦C. The raw material was stirred and sheared at 10,000 rpm
high speed for 3 min by a high-speed mixer (ULTRA TURRAX T25 digital, IKA, Staufen,
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Germany) and magnetically stirred in a water bath at 50 ◦C for 3 h. Then, it was centrifuged
by centrifuge (Avanti JXN-26, Beckman, Indianapolis, USA) at 10,000 rpm at 4 ◦C for 20 min.
A spoon was used to obtain the upper layer of the centrifuged samples containing the
RBOB cream.

2.3. Preparation of RBOB-FG Emulsion-Filled Gel and FG Hydrogel

An RBOB emulsion was prepared by dispersing extracted oil body creams into
phosphate-buffered solution (10 mM, pH 7.0) under magnetic stirring. Varying contents
of FG were mixed into RBOB emulsion, heated at 50 ◦C in a water bath, and magnetically
stirred for 1.5 h. The final oil concentration was 5.0 wt.%, and the concentration of FG
was 0.2, 0.8, and 2.0 wt.% for each of the mixtures, respectively. The pH of the RBOB-FG
emulsion-filled gels was determined to be 6.5. Then, all samples were stored in refrigerator
(4 ◦C, 12 h) for gelation to obtain RBOB-FG emulsion-filled gel. For comparison, FG hy-
drogel without RBOBs was prepared as a control at pH 6.5, using NaOH (1.0 M) and HCl
(1.0 M). Concentrations of 0.2, 0.8, and 2.0% FG were used for the gel matrix because we
expected to obtain liquid and solid-like gel samples for food applications.

2.4. Particle Size and ζ-Potential Measurements

For analysis of particle size and ζ-potential, average particle size and distribution were
measured using SDC-Microtrac S3500 laser diffraction equipment (Microtrac, Montgomery
Ville, PA, USA) with 3 readings for each sample. Zeta potentials of the droplets were
measured with a Nano-ZS90 zetasizer (Malvern Instruments, Worcestershire, UK) through
the assessment of droplet velocity and the direction in the electrical field. Phosphate-
buffered solution (10.0 mmol/L) was used to dilute the measured samples with the same
pH as the samples to avoid multiple scattering effects. All samples were equilibrated for
120 s before obtaining data.

2.5. Physical Stability Measurements

A LUMiSizer (LUM GmbH, Berlin, Germany) was used to measure the physical
stabilities of RBOB-FG emulsion-filled gel, RBOB emulsion, and FG hydrogel. After storage
at 4 ◦C storage for 12 h, samples were accelerated to test their instability (25 ◦C; 0.4 mL;
4000 rpm; 4.25 h; 60 s time interval) according to the method described in [19].

2.6. Fourier Transform Infrared (FTIR) Spectroscopy

A Bruker Tensor II instrument (Waltham, MA, USA) was used to acquire infrared
spectra of RBOB-FG emulsion-filled gel, FG hydrogel, and RBOBs at 25 ◦C. PBS was used
as the blank. All samples were freeze-dried with KBr and pressed into thin sheets. Samples
were tested in the scanning range of 500–4000 cm−1 in absorption mode, with 32 scans and
a resolution of 4 cm−1.

2.7. Microstructural Analysis
2.7.1. Scanning Electron Microscopy (SEM)

The microstructure of dried and structured RBOB-FG emulsion-filled gel samples were
analyzed using scanning electron microscopy (S4800, Hitachi, Tokyo, Japan). The accelerat-
ing voltage was 1.2 kV during the measurements. A small portion of sample was placed
on an aluminum holder using a double-adhesive conductive pad. Loose particles were
removed by spraying dry air on the stent surface. RBOBs, RBOB-FG emulsion-filled gel,
and FG hydrogel were observed with an IX81 light microscope (Olympus, Tokyo, Japan).

2.7.2. Confocal Laser Scanning Microscopy (CLSM)

A CLSM (FV3000, Olympus, Tokyo, Japan) was used to observe the microstructure of
samples. The TAG cores of RBOBs were stained with Nile red, and RBOB proteins were stained
with Nile blue A [20]. All samples were observed using a 10× eyepiece under 60× objective
lenses (oil immersion). Digital image files were obtained in 1024 × 1024 pixel resolution.
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2.8. Microrheological Behavior

The microrheological properties of samples were measured by Rheolaser Master
(Formulation, l’Union, France) based on the diffusing wave spectroscopy theory. A 3 h
microrheology test was carried out on RBOBs, RBOB-FG emulsion-filled gel, and FG
hydrogel.

2.9. Rheological Properties

After the gelation (4 ◦C, 12 h), the rheological properties of the FG hydrogel/RBOB-FG
emulsion-filled gels were characterized at 25 ◦C on a Haake 6000 RheoStress rheometer
(Thermo Scientific, Waltham, MA, USA). A 35 mm diameter parallel plate with waterproof
sandpaper was used for measurement [21]. The viscoelastic properties of the RBOB-FG
emulsion-filled gel/hydrogels were determined using a 1.0% fixed strain and frequency
scanning in the range of 0.1 to 100 rad/s. The apparent shear viscosity of the RBOB-FG
emulsion-filled gel/hydrogels was measured at shear rates ranging from 0.1 to 100 s−1.
The experimental curve was fitted using the Herschel–Bulkley model represented by
τ = τ0 + kγn, where τ is the shear stress (Pa), τ0 is the yield stress (Pa), γ is the shear rate
(s−1), K is the consistency index (Pa sn), and n is the flow behavior index.

Before starting the experiment, low-viscosity silicone oil was used to prevent the water
from evaporating. Samples were loaded onto the rheometer, which was preheated to 90 ◦C.
After an equilibration time of 5 min, a temperature sweep was processed. A cooling step
from 90 to 20 ◦C and a heating step from 20 ◦C to 90 ◦C were performed at a constant rate
of 1 ◦C/min. The process was examined by monitoring the G′ (storage modulus) and G′′

(loss modulus) change under a fixed frequency (1 Hz) and 1.0% strain.

2.10. Tribology Measurement

A TA-DHR friction rheometer was used with a full-ring stainless steel probe, and the
surface of the oral cavity was simulated with polydimethylsiloxane (PDMS) to measure the
lubricity of the particles. The rotating sphere automatically adjusted with a normal force
(3 N) evenly distributed on the lower plate at 37 ◦C. As the sliding speed increased from
0.1 to 450 mm/s, the friction force between the stainless ball and the plates was recorded.
The coefficient of friction was derived using the following formula: coefficient of friction =
friction force/set normal force.

PDMS (Sylgard184) production method: mix base fluid and cross-linking agent
(10:1 w/w) to prepare PDMS (Sylgard184) with a surface roughness (Ra) < 50 nm, vacuum
to remove bubbles generated during mixing, and smooth container stainless steel mold;
cure overnight at 70 ◦C. A rotational rheometer mounted with an accessory based on 3-ball
plate tribology geometry was used for tribological tests [22].

2.11. Statistical Analysis

The rheology and tribology measurements were repeated twice, and other measure-
ments were repeated in triplicate. The plots were drawn using Origin 8.5 software (Origin-
Lab Co., Northampton, MA, USA).

The average values and the standard deviation (SD) were reported using descriptive
statistical analysis, which was performed through SPSS statistics, version 25 (IBM Inc.,
Armonk, NY, USA).

3. Results and Discussion
3.1. Effect of FG Concentrations on the Particle Size and Zeta Potential of RBOBs

The particle size distributions of RBOB-FG emulsion-filled gel formed by RBOB emul-
sions mixed with varying FG concentrations (0.2, 0.8, and 2.0 wt.%) at pH 6.5 are shown
in Figure 1a. At pH 6.5, the particle size of the RBOB emulsions without FG was around
10 µm, which is much larger than the RBOBs in the FG hydrogel matrix, indicating that
the RBOBs were aggregated, possibly because the ion dipole changed leads to the interac-
tions to overcome repulsions [23]. Electrostatic repulsion between RBOBs is insufficient
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to overcome various attractive interactions, e.g., van der Waals forces and hydrophobic
interactions between OB proteins [24]. However, after FG was added to the RBOB emulsion,
the droplet size of the RBOB emulsion decreased to around 2–6 µm. A non-uniform particle
size distribution was observed when 2.0% FG was added to the RBOB emulsion, possibly
due to the excessive FG concentration as a continuous phase, leading to high viscosity and
steric hindrance effect in the emulsion droplet-filled gel system.
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Figure 1. Particle size distribution (a), ζ-potential (b), and stability analysis (c) of the RBOB-FG
emulsion-filled gels with varying FG concentrations dispersed in 5.0 wt.% RBOB emulsion.

The ζ-potentials of RBOB-FG emulsion-filled gels are displayed in Figure 1b. As
shown, the ζ-potential decreased from about −27 mV to −47 mV for RBOB-FG emulsion-
filled gel with increased FG concentration. After the FG concentration reached 0.8 wt.%, the
ζ-potential did not differ significantly, indicating that about 0.8 wt.% FG-stabilized RBOBs
droplets had sufficiently negative charges, increasing the electrostatic repulsion between
droplets, as proven by physical stability (Figure 1c). After all samples were processed by a
LUMiSizer, obvious stratification and sedimentation were observed in RBOB emulsions.
Profiles lay at the bottom, indicated as red, and the final profiles lay at the top, indicated
as green [25]. Emulsion particles move individually at different speeds. The profiles were
closely spaced with considerably shorter distances. A diffuse sedimentation front moves
with considerably slower velocity, indicating a swarm or polydisperse sedimentation
occurrences. When the FG concentration decreased to 0.2 wt.%, the droplets movement of
RBOBs was suppressed. As with increased FG concentration, no movement of the droplets
was observed during centrifugation. Therefore, the dispersibility and stability of RBOB
droplets could be improved by appropriate concentration of FG hydrogel, enhancing the
electrostatic repulsion between RBOB droplets. Additionally, FG as gel matrix provided a
sufficiently high electrostatic repulsion and steric repulsion between the RBOB droplets,
inhibiting aggregation [26]. Varying concentrations of polysaccharides in emulsion-filled
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gel exhibited varying textural behaviors. Fluid RBOB-FG emulsion-filled gel can be formed
by adding 0.2 wt.% FG after homogenization and shearing, with the potential to form a
microgel. Solid-like emulsion-filled gel can be formed by adding a concentration of 0.8 wt.%
FG or higher to develop low-fat salad dressings or meat fat substitutes.

3.2. FTIR Analysis

The molecular interaction between RBOB emulsion and FG was studied by FTIR
(Figure 2). FG exhibited an absorption peak characteristic of polysaccharides, with the FTIR
spectrum indicating O-H stretching at 3600–3200 cm−1 and C-H stretching at 3200–2800 cm−1,
as well as peaks characteristic of polysaccharides at 1644–1630 cm−1 and 1036 cm−1. The
characteristic absorption peaks near 849 and 831 cm−1 in the spectrum indicated that there
were glycosidic bonds [27]. With respect to the RBOB emulsion, the most intense peaks were
located at 3050–2800 cm−1 and 1738 cm−1 (C-H and C=O stretch vibrations, respectively),
1454 cm−1(C-H deformation), and 1200–1100 cm−1(C–O bonding) [28]. RBOB-FG emulsion-
filled gels showed several bands attributed to the presence of the RBOB emulsion, with
the most intense peaks located at 2918 cm−1, 2851 cm−1, and 1744 cm−1. As portrayed
in Figure 2, the successful blending of oil droplets and the FG matrix of the RBOB-FG
emulsion-filled gels was confirmed by the characteristic peak at 1744 cm−1(C=O). A new
peak appeared at 1711 cm−1, with the amide I and II bands of RBOB proteins shifted from
1644.07 to 1650.56 cm−1 and from 1548.34 to 1544.53 cm−1, possibly due to the hydrogen
bonding interaction between RBOB emulsion and FG [29]. The above results demonstrate
that FG and RBOB emulsion showed different interactions. Hydrogen bonds were the
major driving forces in the formation of RBOB-FG emulsion-filled gel, improving the
gel properties.
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3.3. SEM Microstructure

The microstructures of RBOB emulsion, FG hydrogel, and RBOB-FG emulsion-filled
gel microparticles were investigated by SEM, as shown in Figure 3. The freeze-dried SEM
images indicate that the RBOBs were dispersed and tightly packed in droplet forms, re-
flecting a highly concentrated emulsion structure (Figure 3a). As the concentration of FG
increased, the gel network formed by FG became denser (Figure 3b,d,f) due to the increased
viscosity of FG in the solution [30]. After hydration, swelling, and rearrangement, an in-
creased chance of collision and entanglement was observed between the FG molecules [31].
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When the FG hydrogel was filled with RBOB emulsion, the RBOB droplets were tightly
bound to the entangled chains and network nodes of FG (Figure 3c,e,g). The addition of
RBOBs also resulted in an emulsion-filled gel structure as a result of the gelation of the
water continuous phase containing FG, with RBOB droplets physically entrapped in the
FG hydrogel matrix.
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Figure 3. SEM of RBOB-FG emulsion-filled gel samples: RBOB emulsion (a), FG hydrogel (0.2 % FG)
(b), RBOB-FG emulsion-filled gel (0.2 % FG) (c), FG hydrogel (0.8 % FG) (d), RBOB-FG emulsion-filled
gel (0.8 % FG) (e), FG hydrogel (2.0 % FG) (f), and RBOB-FG emulsion-filled gel (2.0 % FG) (g).

3.4. CLSM Microstructure

CLSM micrographs of RBOB-FG emulsion-filled gels/FG hydrogels with varying FG
concentrations and neutral pH are shown in Figure 4. The RBOB emulsions were extracted
under natural conditions [26]. After aqueous phase extraction, obvious aggregation was
observed. The weak electrostatic repulsion and bridging effect between endogenous and
exogenous RBOBs proteins led to considerable aggregation as an instable RBOB emulsion
system. Generally, the RBOBs dispersed evenly in the hydrogel matrix, and a suitable
concentration FG, as an anionic polysaccharide, could provide a sufficient electrostatic
repulsive interaction and steric hindrance effect to disperse oil droplets; similar results
were obtained with respect to particle size. Compared to samples with relatively low FG
concentrations, small portions of oil droplet reaggregates were observed at 2.0 wt.% FG,
which may be attributed to the fact that the increase in FG concentration in the continuous
phase caused the gel network containing oil droplets to form a three-dimensional structure
so that the oil droplets existed in different network layers; furthermore, RBOB-depleted
flocculation may have been cause by additional unabsorbed FG molecules.
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3.5. Microrheological Analysis

The microrheological properties of RBOB-FG emulsion-filled gels/FG hydrogels with
varying FG concentrations were investigated (Figure 5). In the Rheolaser test, the Brow-
nian motion was monitored, and no damage was caused to the structure of emulsion
samples [32]. The mean square displacement (MSD) curves of RBOB emulsion droplets
(Figure 5a) was nonlinear, indicating that the emulsion was viscoelastic, exhibiting liquid-
like behavior. Furthermore, the MSD curves of RBOB-FG emulsion-filled gel (Figure 5c,e,g)
and FG hydrogel (Figure 5b,d,f) were nonlinear, with platform areas appearing over time
and MSD curves gradually widening with time due to the migration of particles, indicat-
ing viscoelastic behavior. However, more viscous behavior was observed in the MSD of
RBOB-FG emulsion-filled gel, indicating that the movements of RBOB emulsion droplets
in emulsion-filled gel were restricted. Owing to the interaction between polysaccharides
and RBOB droplets, the range of particle movements of RBOB-FG emulsion-filled gels
was reduced during the decorrelation time (tdec). The elasticity of the sample with shorter
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decorrelation time (0 < tdec < 1.5 s) was represented by the height of the MSD curves.
With a short decorrelation time, a downward movement of RBOB-FG emulsion-filled gel
and FG hydrogel MSD curves was observed, indicating that collision between particles,
viscoelasticity, and interactions in the gel network were gradually enhanced in the system.
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Figure 5. Microrheological properties of RBOB-FG emulsion-filled gel samples: mean square displace-
ment (MSD) vs. time curves: RBOB emulsion (a), FG hydrogel (0.2% FG) (b), RBOB-FG emulsion-filled
gel (0.2% FG) (c), FG hydrogel (0.8% FG) (d), RBOB-FG emulsion-filled gel (0.8% FG) (e), FG hydrogel
(2% FG) (f), and RBOB-FG emulsion-filled gel (2.0% FG) (g).

The MSD curves show that a stronger elastic system of RBOB-FG emulsion-filled gel
was formed. Compared to FG hydrogels, the droplet movements were limited within
RBOB-FG emulsion-filled gel due to the high viscosity.

3.6. Rheological Properties

To study the effect of RBOB emulsion on the rheological properties of varying FG
concentrations, a frequency sweep and temperature sweep were performed on the RBOB-
FG emulsion-filled gels and FG hydrogels. Storage modulus (G′) and loss modulus (G′′)
are commonly used indicators to characterize the gel properties [33]. G′ refers to the elastic
characteristics of a gel system, and G′′ reflects the viscosity of the material; with a smaller
loss modulus and smaller damping loss factor, the material approaches an ideal elastic
material [34]. Figure 6a displays the results of frequency sweep experiments performed
on the RBOB-FG emulsion-filled gel and FG hydrogel with varying concentrations of FG.
All the gel samples with varying FG concentrations exhibited dominant elastic behavior,
showing G′ > G′′. The G′ value increased with increased FG concentration due to the more
extensive crosslinking of the gel network. The storage moduli values (G′) of RBOB-FG
emulsion-filled gel were higher than those of the FG hydrogel, suggesting that RBOBs
led to stronger gels with a stiffer structure. The G′ of the samples filled with RBOBs was
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significantly higher than the G′′, indicating that RBOBs can function as an active filler and
reinforce the elastic gel structure. Figure 6b shows the G′′/G′ values of the FG hydrogels
and RBOB-FG emulsion-filled gels. Except for the 0.2% FG hydrogel, the G′′/G′ values
of which were close to 1, the rest of the samples were elastic rather than fluid. Emulsion-
filled gels were structurally more stable than hydrogels, with higher G′ values, which
can be attributed to the fact that the emulsion acts as an active filler in the gel to enhance
gel stiffness.
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emulsion-filled gel (solid markers), FG hydrogels (open markers) (a), G′′/G′ values (b), and shear
viscosity curves (c).

According to flow measurements, the viscosity decreased as the shear rate increased
from 0.1 to 100 s−1, reflecting progressive shear-induced breakdown of structure in RBOB-
FG emulsion-filled gel (Figure 6c). Compared with FG hydrogel, the increased viscosity
of RBOB-FG emulsion-filled gels became increasingly obvious with increased FG concen-
tration. The flow curve was described by the Herschel–Bulkley model; the parameters
are shown in Table 1. Both RBOB-FG emulsion-filled gels and FG hydrogel exhibited
shear-thinning behavior. The apparent viscosity decreased as the shear rate increased,
which can be described as shear thinning due to droplet flocculation [35]. The consistency
index and flow behavior index were both influenced by the hydrocolloid concentration and
molecular weights; elevated FG concentration or molecular weights increased the viscosity
and therefore the consistency index of RBOB-FG emulsion-filled gel and FG hydrogel. Sim-
ilar non-Newtonian mechanical behavior was previously demonstrated for other protein-
and polysaccharide-stabilized emulsions [36]. As the concentration of FG increased, the
yield stress of FG hydrogel increased significantly. The addition of RBOBs to FG hydrogel
resulted in an RBOB-FG emulsion-filled gel with an higher yield stress compared to FG
hydrogel. The fluidity of the sample decreased due to the increased viscosity. This phe-
nomenon may have occurred because RBOB emulsion, as an active filler, increased the
viscosity of the system, which is consistent with the microrheological results.

Table 1. Rheological parameters of the Herschel–Bulkley model for RBOB-FG emulsion-filled gels
and FG hydrogel.

Sample τ0 K (Pa Sn) n R2

FG hydrogel (0.2% FG) 0.2442 0.2784 0.4365 0.9962
RBOB-FG emulsion-filled gel (0.2% FG) 0.2667 0.3066 0.3952 0.9940

FG hydrogel (0.8% FG) 11.81 4.858 0.4633 0.9521
RBOB-FG emulsion-filled gel (0.8% FG) 12.41 6.401 0.2633 0.9604

FG hydrogel (2.0% FG) 34.68 21.83 0.4804 0.9735
RBOB-FG emulsion-filled gel (2.0% FG) 78.26 21.93 0.5351 0.9581

G′ and G′′ were recorded during the temperature sweep process; results are shown in
Figure 7. As observed, RBOB-FG emulsion-filled gels/FG hydrogels with FG concentrations
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of 0.2 and 0.8 wt.% presented with a sol–gel transition, exhibiting a temperature-dominated
increase in both moduli and producing a crossover between G′ and G′′ (gelling point) when
the temperature was below 30 ◦C (G′ > G′′) and reaching a plateau or continuing to slowly
increase. The corresponding gelling temperatures (Tgel), as well as the G′ and G′′ values of
the RBOB-FG emulsion-filled gel and the FG hydrogels, were determined. Compared to FG
hydrogel (Figure 7a,c), in RBOB-FG emulsion-filled gels with the same FG concentration
(Figure 7b,d), a gelling point delay was observed, with a higher Tgel value than that of
the corresponding hydrogels, indicating increased collision and entanglement between
the molecules in the emulsion-filled gel. Crossover between G′ and G′′ (gelling point)
was not observed with 2.0 wt.% FG content in RBOB-FG emulsion-filled gels (Figure 7f)
and hydrogels (Figure 7e), possibly due to the high viscosity of the system. After 5 min
equilibration cooling at 20 ◦C of the RBOB-FG emulsion-filled gel and FG hydrogel, the
samples were heated up to 90 ◦C. Decreases in G′ and G′′ of the RBOB-FG emulsion-filled
gel and FG hydrogels were observed with increased temperature, except for the sample
set with 2.0 wt.% FG concentration, followed by the moduli crossover G′′ > G′, indicating
a gel–sol transition due to the disruption of the FG-entangled chains and network. The
melting temperatures (Tm) of RBOB-FG emulsion-filled gels (Figure 7b,d) were higher
than those of the hydrogel formulations with the same FG concentration (Figure 7a,c); the
RBOB-FG emulsion-filled gel samples exhibited better gel properties with relatively higher
recovery G′ values throughout the cooling and heating process, once again indicating that
stronger networks were created in the case of the RBOB-FG emulsion-filled gel, with a gel
network with higher thermal stability.
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Figure 7. Temperature dependence of G′ and G′′ moduli of RBOB-FG emulsion-filled gel during
cooling (solid markers) and heating (open markers) ramps. FG hydrogel (0.2% FG) (a); RBOB-FG
emulsion-filled gel (0.2% FG) (b); FG hydrogel (0.8% FG) (c); RBOB-FG emulsion-filled gel (0.8% FG)
(d); FG hydrogel (2.0% FG) (e); RBOB-FG emulsion-filled gel (2.0% FG) (f).

3.7. Tribology of RBOB-FG Emulsion-Filled Gels

The functional relationship between friction coefficient (µ) and sliding speed (S) for
FG gel (0.2%, 0.8%, 2.0%) and pure water is shown in Figure 8a, and that for RBOBs and
RBOB-FG emulsion-filled gel is exhibited in Figure 8b. As the results show, both pure water
and FG hydrogel as hydrophilic substances exhibited typical Stribeck curves between the
interface (stainless ball and the PDMS film) [37]. In the boundary lubrication regime, pure
water with a µ plateau up to S = 60 mm/s and a maximum value of friction coefficient (µ)
of between 1.42 and 1.93. Since PDMS films are hydrophobic, so water is unable to form
a continuous lubricating interface. With a boundary lubrication regime up to 3.8 mm/s,
µ values of 0.2%, 0.8%, and 2.0% FG hydrogels were 0.82–0.86, 0.42–0.47, and 0.30–0.37,
respectively, suggesting that the fragments generated by the FG hydrogel were entrained
into the contact surface during frictional sliding, reducing surface roughness and thus
improving the lubrication.
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gels (b), lubrication mechanism for RBOB cream in a mixed regime, and lubrication mechanism for
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the continuous phase is represented by blue color, balls and disks are represented in grey, and the FG
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With increased sliding speed (S), the µ value of the FG hydrogels (0.2%, 0.8%, and
2.0%) decreased to around 0.024–0.045, and those of pure water decreased to about 0.02
at a rate of 450 mm/s. In the examined sliding speed range, neither pure water nor the
FG hydrogel showed a hydrodynamic lubrication regime. During the mixed lubrication
regime, a reduction in the µ value of the FG hydrogels was observed, possibly due to
the FG breaking into more fragments with increased S values, resulting in large amounts
of FG fragments being entrained to the friction interface [38]. The emulsion-filled gel
with the same FG concentration had a lower µ value in this regime than the FG gel due
to the relatively higher G′ of the RBOB-FG emulsion-filled gel. Because the RBOB-FG
emulsion-filled gel had a higher gel strength and a more stable network structure, it was
not easily deformed when extruded by a perpendicular load between two contact surfaces,
which increased rough surface separation and reduced friction. As shown in Figure 8b,
the µ of the RBOBs increased from 0.04 at S = 150 mm/s to 0.088 at S = 150 mm/s during
the boundary lubrication regime. According to the plate-out theory explained in [39],
the emulsion droplets deformed and fractured with increasing shear force, resulting in
disruption of emulsion droplets with oil spreading and the minimum µ value. However,
no obvious oil leakage was observed after the tribology test. Because the viscoelastic RBOB
droplets easily entrained, filling between the two surfaces reduced the friction at a slow
sliding speed.

The “bearing balls” theory considers RBOBs as pre-emulsion droplets with a similar
spherical shape and small particle size [40]. Therefore, RBOBs can act as relatively tough
bearing balls and reduce friction by reducing the contact area between the tribo-pair
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surfaces and changing local relative motion from sliding to scrolling. The FG hydrogel
matrix also reduced friction. The RBOB-FG emulsion-filled gel broke down into small
pieces with increased S (4 < S < 10 mm/s), and fragments of FG matrix containing RBOBs
were entrained into the contact surfaces, reducing the µ value. First, the leaked RBOB
droplets acted as small, spherical bearings that can scroll and bear loads [41]. Then, the
droplets inside the FG fragments increased the G′ of the RBOB-FG emulsion-filled gel
because active filler can interact with the FG gel matrix. The lubrication mechanism for
RBOB in a mixed regime and the lubrication mechanism for RBOB-FG emulsion-filled gel in
a boundary regime are illustrated in Figure 8c. The lubrication mechanism of the RBOB-FG
emulsion-filled gels in the boundary lubrication regime resulted in entrainment of the
sample fragments and a ball-bearing effect of the oil bodies. In the regime of S > 90 mm/s,
more fragments were entrained into the contact surfaces, and parts of the gel fragments
may have squeezed and flipped over each other between the gaps, resulting in an increase
in µ.

3.8. Schematic Diagram of RBOB-FG Emulsion-Filled Gels

A schematic diagram is presented to illustrate the formation of RBOB-FG emulsion-
filled gels (Figure 9). Due to the dipole moment changes, the droplets of RBOBs were
adsorbed around the FG molecule during the emulsion preparation, and FG transformed
into an outer water phase of the RBOB emulsion [42]. RBOB droplets were filed in FG in a
gel state with a network after heating and cooling, and the RBOB-FG emulsion-filled gel
was formed [43]. RBOBs behaved as active filler in the matrix, promoting the integration
of RBOB droplets into the gel matrix and strengthening the gel structure, as proven by its
appearance, microstructural observation, and rheological properties. There was a relatively
even distribution of RBOB droplets in RBOB-FG emulsion-filled gel, as shown in the CLSM
micrographs. There was a low degree of aggregation in RBOB-FG emulsion-filled gel with
2 wt.% FG concentration, although not affecting the increased gel strength of the RBOB-FG
emulsion-filled gel, as supported by their appearance and rheological results. This indicates
that RBOB-FG emulsion-filled gel prepared with RBOBs and FG hydrogel exhibited active
filling behavior as part of the network and induced a tighter network structure, as revealed
by SEM observation.
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4. Conclusions

RBOB-FG emulsion-filled gel was produced with FG as the gel matrix and filled with
RBOB droplets. The result show that negatively charged FG enhanced electrostatic repul-
sion, and steric hindrance facilitated the physical stability of the droplets, changing the
structure of RBOB protein through the formation of hydrogen bonds. The microstructure
of RBOB droplets in the FG hydrogel gel matrix showed good distribution and formed an
RBOB-FG emulsion-filled gel structure. RBOBs improved the storage modulus, viscoelastic-
ity, melting, and solidification temperature, indicating that RBOBs can function as an active
filler, strengthening networks. The ball-bearing effect of RBOBs and higher storage moduli
values of RBOB-FG emulsion-filled gel are believed to contribute to improved lubricating
properties relative to FG gels. The present work provides insights on the behaviors of
RBOB emulsion-filled gel, which can be applied to design strategies for practical processes
to obtain OB emulsion gels in food structuring and as fat replacements in fresh sausages,
salad dressings, and bakery products.
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