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Abstract: Although DNA degradation might seem an unwanted event, it is essential in many cellular
processes that are key to maintaining genomic stability and cell and organism homeostasis. The
capacity to cut out nucleotides one at a time from the end of a DNA chain is present in enzymes
called exonucleases. Exonuclease activity might come from enzymes with multiple other functions or
specialized enzymes only dedicated to this function. Exonucleases are involved in central pathways
of cell biology such as DNA replication, repair, and death, as well as tuning the immune response.
Of note, malfunctioning of these enzymes is associated with immune disorders and cancer. In this
review, we will dissect the impact of DNA degradation on the DNA damage response and its links
with inflammation and cancer.
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1. Role of Exonucleases

The description by Watson and Crick of the structure of DNA in the early 1950s [1] led
to a revolution in molecular biology. The capacity of DNA to store and replicate the infor-
mation required for cells and organisms to live was later discovered. Nowadays, everyone
knows that DNA is the essential genetic material containing the map and instructions
of who we are. DNA is so important that eukaryotic cells dedicate a whole lipidic fence
(nuclear envelope) and heavy compaction to protect it. It might be difficult to understand
then, why a cell would want to degrade these precious nucleic acids. However, cells have
hundreds of different proteins with the capacity for cutting nucleic acids, and such an
investment in this activity indicates that eliminating DNA is vital.

DNA is made of two chains of polynucleotides. The building bricks of DNA, the
nucleotides, contain three components, a sugar attached to a base containing nitrogen
(adenine (A), thymine (T), guanine (G), or cytosine (C)) and a phosphate group that, through
phosphodiester bonds, interlinks the 5′-phosphate end of one sugar to the 3′-hydroxyl
end of the next sugar, forming the polynucleotide chains. Phosphodiester (P-O) bonds
are among the most versatile and stable biochemical bridges between biomolecules [2].
However, nucleases are able to cleave one of the two phosphodiester bonds that link
adjacent sugars. There are multiple types with multiple functions, but grossly one can
divide nucleases according to the type of substrate they cleave (RNAses [3] or DNAses [4])
and wherein the nucleic acid chain they perform the cut (endo- or exonucleases). While
endonucleases cut the P-O bond from inside the polynucleotide chain generating two
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oligonucleotides and can be sequence- or structure-specific [5], exonucleases hydrolyze
the bonds from the outer ends of the chain. Exonucleases can sequentially cleave P-O
bonds from 3′-OH or from 5′-P of a single or double DNA chain in a nonspecific manner,
generating individual nucleotide monophosphates [6].

The molecular event of a chemical modification of the DNA structure triggers sig-
nalling cascades that ultimately produce a cellular response. To maintain genome integrity,
cells have a DNA damage response (DDR) mechanism, a multiple pathway response that
integrates DNA damage sensing, DNA repair machinery, halting of the cell cycle and if
repair is not possible, cell death [7]. Lesions in DNA are sensed by specialized proteins
such as ATM, DNA-PK, and ATR [8], which act depending on the type of lesion and the
cell cycle phase. While the different factors required to repair a specific DNA lesion are
being activated and recruited to the damaged sites, p53 protein receives the signals to stop
the cell cycle [9], thus preventing the transmission of DNA lesions to the daughter cell.
Exonuclease activity is important in all steps in this process, from DNA sensing and repair
to cell death.

Distinct exonucleases, such as APE1 [10], EXO1 [11], FAN1 [12], and FEN1 [13], are
important components of several DNA repair pathways, including base excision repair
(BER), nucleotide excision repair (NER), mismatch repair (MMR), non-homologous end
joining (NHEJ), homologous recombination (HR), single-strand break repair (SSBR), post-
replication repair (PRR) or DNA damage tolerance (DDT), interstrand cross-link repair
(ICL), stalled replication fork and hairpin structure repair, as well as polymerase proofread-
ing, as detailed below. Their ability to cleave DNA allows the elimination of damaged or
mismatched nucleotides, which facilitates subsequent insertion of the correct base [14].

Some other exonucleases take part in apoptosis. Apoptosis occurs in normal develop-
ment, cell turnover, and lymphocyte maturation but also in response to stress such as infec-
tion or excessive DNA damage. During apoptosis, DNA is condensed and fragmented [15]
to facilitate digestion by engulfing macrophages [16]. For instance, the apoptosis enhancing
nuclease (AEN), an exonuclease [17] transcribed by activated p53, is required for p53-
induced apoptosis [18]. TREX1 expression increases upon genotoxic damage [19] and
contributes to cell death induced by GzmA [20]. GzmA is part of the SET complex, which is
released by cytotoxic cells to degrade DNA, prevent its repair and ensure death [21]. Simi-
larly, the keratinocyte-specific TREX2 exonuclease promotes the passage of UVB-irradiated
keratinocytes to late non-reversible apoptotic stages [22]. Other exonucleases participate in
the degradation of DNA upon apoptosis activation, such as ARTEMIS [23], FEN1 [13] and
APE1 [10].

Foreign and self-nucleic acids pose a threat to the organism, and exonucleases play an
important role in tuning the innate immune response. By degrading DNA from pathogens,
exonucleases control both invader infection and type I interferon (IFN) immune responses
that are driven by DNA-sensing proteins [24]. Because nucleic acid sensors can also
recognize endogenous DNA [25], nucleases are pivotal in removing excessive endogenous
DNA to prevent detection. Exonucleases like TREX1 in the cytosol and PLD3 and PLD4 in
the endolysosomes regulate cytosolic cGAS/STING activation and endosomal TLR nucleic
acid-sensing, respectively [26,27], thereby limiting DNA-driven autoimmune diseases, such
as rheumatoid arthritis and lupus [28,29]. Of note, autoimmunity may also be a risk factor
for cancer [30,31].

Hence, exonuclease activity might come from proteins with single or multiple func-
tional domains, such as apoptotic nucleases and DNA polymerases respectively. As stated
above, nucleotide cleavage by exonucleases is important in many and quite different cell
processes, from DNA synthesis/repair to DNA degradation during cell death, including
DNA-driven inflammatory responses, maintaining genome stability, and ensuring the
viability of the organism (Figure 1) [32–34].
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Figure 1. Exonucleases in DNA damage repair, apoptosis, and inflammation. Key exonuclease pro-
teins in DNA damage repair, apoptosis, and inflammation processes are depicted. Exonuclease ac-
tivity (5′–3′ and 3′–5′) is shown. 

Here, we focus on proteins with robust exonuclease activity and their role in the DDR 
and cancer. Thus, we comment on AEN, APE1, ARTEMIS (DCLRE1C), EXD2, EXO1, 
EXOG, FAN1, FEN1, MRE11A, p53, PLD3, PDL4, POLD1, POLE, RAD9A, TREX1, TREX2, 
and WRN, most of them included in the recently curated list of DNA Damage Repair 
genes in cancer [35]. 

To ascertain functional interactions, we performed an analysis of the 18 above-men-
tioned exonucleases using the STRING database of known and predicted protein–protein 
interactions (Figure 2). Ten exonucleases (EXO1, WRN, p53, MRE11, RAD9A, DCLRE1C, 
FEN1, APEX1, POLE y POLD1) were interconnected, indicating that interactions between 

Figure 1. Exonucleases in DNA damage repair, apoptosis, and inflammation. Key exonuclease
proteins in DNA damage repair, apoptosis, and inflammation processes are depicted. Exonuclease
activity (5′–3′ and 3′–5′) is shown.

Here, we focus on proteins with robust exonuclease activity and their role in the DDR
and cancer. Thus, we comment on AEN, APE1, ARTEMIS (DCLRE1C), EXD2, EXO1, EXOG,
FAN1, FEN1, MRE11A, p53, PLD3, PDL4, POLD1, POLE, RAD9A, TREX1, TREX2, and
WRN, most of them included in the recently curated list of DNA Damage Repair genes in
cancer [35].

To ascertain functional interactions, we performed an analysis of the 18 above-mentioned
exonucleases using the STRING database of known and predicted protein–protein interac-
tions (Figure 2). Ten exonucleases (EXO1, WRN, p53, MRE11, RAD9A, DCLRE1C, FEN1,
APEX1, POLE y POLD1) were interconnected, indicating that interactions between them have
been described at least in curated databases, experiments or in the literature, and functionally
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associated. All these exonucleases were significantly associated with the general GO process
“DNA metabolic process” (dark blue) and most of them participate in DNA repair pathways.
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promotes both single- and double-stranded DNA and RNA digestion to amplify apopto-
sis. If absent, cells are resistant to this type of cell death [18]. Importantly, expression of 
AEN not only promotes but is also required for autophagy [36]. 

AEN expression is upregulated in human peripheral blood mononuclear cells upon 
low-energy X-ray exposure during dual-energy computed tomography (DECT) [37] and 
cyclophosphamide treatment, stimulating the proinflammatory cell death of both tumour
and blood cells and thus enhancing the efficacy of immunotherapy [38]. Moreover, bufalin 

Figure 2. Exonuclease protein–protein interaction map. The interaction network of selected ex-
onucleases was generated with STRING database v11.5 using basic settings selecting a physical
subnetwork (the edges indicate that the proteins are part of a physical complex, although they may
not directly interact) and medium confidence of 0.4. Proteins are represented as nodes, and lines
indicate associations based on known functional interactions in humans. The network is significantly
enriched in interactions (PPI enrichment p-value: 1.07e–13, FDR < 0.05). All the proteins are included
in the GO-term DNA metabolic process (in blue) (GO:0006259).

2. Exonucleases and Cancer
2.1. AEN

Apoptosis enhancing nuclease (AEN), also known as ISG20L1, is an exonuclease that
is highly efficient at processing 3′ DNA ends [17]. It is transcribed by activated p53 and
promotes both single- and double-stranded DNA and RNA digestion to amplify apoptosis.
If absent, cells are resistant to this type of cell death [18]. Importantly, expression of AEN
not only promotes but is also required for autophagy [36].

AEN expression is upregulated in human peripheral blood mononuclear cells upon
low-energy X-ray exposure during dual-energy computed tomography (DECT) [37] and
cyclophosphamide treatment, stimulating the proinflammatory cell death of both tumour
and blood cells and thus enhancing the efficacy of immunotherapy [38]. Moreover, bufalin
also induced the expression of AEN in lung cancer cells in vitro [39]. AEN was included in
a marker signature that can identify patients with a high risk of biochemical recurrence in
prostate cancer (Table 1). High levels of gene expression, together with other genes, can
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predict recurrence [40]. Similarly, enhanced expression of AEN was used as a prognostic
marker in an RNA-binding protein signature for colorectal cancer [41]. Given its response
to genotoxins and its links to p53 and apoptosis, it is rather surprising that there is little
existing knowledge on the role of AEN in cancer.

2.2. APE1

Apurinic/apyrimidinic endonuclease 1 (APE1), APEX1 or reduction-oxidation factor
(Ref1), is a multifunctional enzyme, its main function being to incise the phosphodiester
bond immediately 5′ to apurinic/apyrimidinic (AP) sites to generate single-strand breaks
(SSBs). However, this protein also possesses 3′–5′ exonuclease activity [10]. It is involved
in maintaining genome stability, participating in several DNA repair pathways such as tri-
nucleotide repair (TNR) by the removal of hairpin structures and BER, digestion of matched
and mismatched 3′ ends of duplex DNA structures, and the recognition of SSBs to induce
their repair, and in apoptosis by exonucleolytic digestion of chromosomal fragments. It
also prevents the formation of double-strand breaks (DSBs) during the repair of bi-stranded
clustered DNA damage by nucleotide incision repair (NIR), which repairs oxidative damage
in nucleotides, and interacts with POLB [10] to carry out proofreading.

Although as an endonuclease it is highly specific for AP sites, as an exonuclease it
can recognize a wide range of abnormal nucleotides that are generated by oxidative stress,
ionizing radiation (IR), or drug treatments [42], such as anti-cancer and anti-viral therapies.
Therefore, inhibiting APE1 is an attractive approach for killing tumour cells; in fact, some
APE1 inhibitors are already in clinical trials [43–45]. Reducing the levels of APE1 sensitizes
the cells to PARP inhibitor treatment [46], hence combined therapy with PARP and APE1
inhibitors has been suggested to be highly effective in breast cancer.

Cell lines deficient for APE1 accumulate DNA damage and induce stress response
pathways such as senescence [47–49]. Ape1 knockout mice (Table 2) showed embryonic
lethality [50]. However, conditional deletion of the gene early after birth induced im-
paired growth, reduced organ size, and increased cellular senescence in tissues like skin
or colon [49]. These mice also showed an accumulation of replication-blocking lesions
with increased DDR foci at telomeres, which are known to accumulate high levels of
oxidative damage [51]. Hemizygous mice showed normal life expectancy but higher spon-
taneous mutations and elevated risk of tumorigenesis, including lymphomas, sarcomas,
and adenocarcinomas [52–54].

In several cancers (including lung, colorectal, cervical, prostate, bladder, gastric, hep-
atic, glioblastoma, osteosarcoma, head and neck, ovarian, and breast) high APE1 expression
or aberrant cytoplasmic distribution (Table 1) have been associated with tumour aggres-
siveness, poor prognosis or increased resistance to DNA-damaging agents [55,56]. For
instance, in breast cancer, high APE1 expression has been reported in tumor-initiating
cells [57], potentially protecting these cells from irradiation-induced oxidative stress and
consequent senescence. On the other hand, the presence of cells with low/deficient APE1
expression may be linked to a good prognosis because this increases senescence, which acts
as a tumour suppressor. Some somatic mutations have also been found in glioblastoma [58]
and endometrial cancer [59], including the R237C substitution, which leads to reduced
exonuclease activity [60]. Besides, some polymorphisms in the APE1 promoter have been
associated with a decreased risk of lung cancer [61,62].

2.3. ARTEMIS

ARTEMIS, also known as SNM1C/DCLRE1C, is a member of the metallo-b-lactamase
superfamily, characterized by their ability to hydrolyze DNA or RNA. ARTEMIS is es-
sential for the NHEJ pathway, where it removes 5′ and 3′-overhangs to join duplex DNA
ends or hairpin openings [63,64]. It also facilitates early site-specific chromosome break-
age during apoptosis [23]. Although its main nuclease activity acts in a protein kinase C
(PKC)-dependent manner, its 5–3′ exonuclease activity is independent of PKC and allows
it to function more efficiently in 1- or 2-nucleotide 5′ overhangs, which are too short for
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endonucleolytic activity and occur following exposure to IR [63,64]. Hence, cells or pa-
tients lacking ARTEMIS cannot repair damage caused by IR [65,66] or alkylating agents
used in chemotherapy [67]. Moreover, patients with deficiency or mutations (frequently
found among Native Americans [68,69]) in ARTEMIS suffer from severe combined im-
munodeficiency (SCID) (T−B−NK+) [66] owing to the importance of NHEJ during B and T
lymphocyte maturation, where V(D)J recombination is initiated by the creation of DSBs.
ARTEMIS null mice also present SCID (Table 2) but they do not exhibit a higher risk of
cancer [70]. However, when combined with Trp53 loss, accelerated tumorigenesis has been
observed. These mice develop especially aggressive B-cell lymphomas, indicating that
ARTEMIS acts as a tumour suppressor in the absence of p53 [71]. Therefore, the defective
function of ARTEMIS leads to unrepaired DSBs and malignant transformation of cells
that escape apoptosis. ARTEMIS can also act as a negative regulator of p53 in response to
oxidative stress induced by mitochondrial respiration. It can also interact with p53 and
DNA-PK, inhibiting p53 phosphorylation and activation [72].

Downregulation of ARTEMIS occurs in chronic myeloid leukaemia cell lines, which
are characterized by increased levels of reactive oxygen species (ROS) that lead to DNA
damage, including DSBs. In these cells, the low levels of the protein cause abnormal
processing of DSBs with decreased stability of DNA-PK complexes at DNA ends [73].
Hypomorphic mutations, resulting in truncation of the last exon, have been described in
patients with aggressive Epstein-Barr virus-associated B-cell lymphoma (Table 1). Although
these patients did not show SCID, they showed low diversity in V(D)J junctions [74,75].
These findings were confirmed in mouse models [76].

The fact that cells deficient in ARTEMIS are more sensitive to radiation has been used
as a therapeutic approach. A peptide inhibiting the interaction between ARTEMIS and
DNA ligase IV, which is needed for its nuclease activity, has been used as a radiosensitizer
that delays DNA repair and synergizes with irradiation to inhibit cell proliferation and
induce cell cycle arrest and apoptosis [77].

2.4. EXD2

EXD2 (3′–5′ exonuclease domain-containing protein 2) has a conserved exonuclease
domain with high sequence similarity to WRN (explained below). It only functions as
an exonuclease when the protein oligomerizes and it can discriminate substrate (DNA
or RNA) depending on the metal cofactors [78]. EXD2 localizes at the mitochondrial
membrane, where it regulates mitochondrial translation [79], and the nucleus, where it
promotes genome stability by acting on replication forks and DSB repair. EXD2 is recruited
to replication forks upon replication stress to counteract fork reversal by suppressing
the uncontrolled degradation of nascent DNA, allowing efficient fork restart [80]. This
protection of the replicating fork is shared with BRCA1/2. Therefore, in the absence of
both proteins the unprotected replication forks collapse, resulting in genome instability
and compromised cell survival [80]. EXD2 is also essential for the repair of DSBs by HR.
It interacts with the MRN (MRE11-RAD50-NBS1) complex to accelerate 3′ resections of
double-stranded DNA (dsDNA), both short- and long-range [81]. Cells deficient in EXD2
show spontaneous chromosomal instability and are sensitive to DNA damage induced
by anti-cancer agents such as IR and campthotecin [81], thus EXD2 is a good target for
the development of a new anti-tumour treatment. So far, no studies have analysed the
expression or the presence of mutations in human tumours.

2.5. EXO1

Exonuclease 1 (EXO1) is a member of the Rad2/XPG family, which contains DNA
endonuclease, RNase H, and 5′–3′ exonuclease domains [82]. EXO1 (together with FEN1
and POLD) is essential for removing primers and for Okazaki fragment maturation during
replication [11,83]. It is also involved in several DDR pathways such as MMR, where it is
recruited by MutSα, MutSβ, and MutLα to degrade the newly synthesized DNA containing
the replication error [11,83]; and HR, where it resects DNA in DSBs to allow RAD51 loading
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and strand exchange [84–86]. Upon DNA damage, EXO1 is involved in the recruitment of
translesion synthesis (TLS) polymerases to sites of UV damage [87] and in the enlargement
of single-stranded DNA (ssDNA) gaps to activate the ATR checkpoint by NER [85,88].

EXO1 has been associated with different types of tumours and its overexpression
causes an increase in its DNA repair activity and genome instability. Overexpression
of EXO1 occurs in prostate [89,90], breast [91–93], ovarian (cell lines) [94], lung [95],
liver [96,97], bladder [98] and melanoma [99] cancer patients (Table 1). Moreover, mu-
tations in the exonuclease domain resulting in loss of function, such as the A153V and
N279S mutations, are found in colorectal and small intestine tumours [100]. These types
of tumours also present the E109K mutation, which does not disrupt exonuclease activity,
but, as it is localized in the PAR-binding motif, hinders its recruitment to DNA damage
sites. In addition, several EXO1 polymorphisms have been associated with a high risk
of prostate [101], ovarian [102], lung [103–105], oral [106], liver [107], colon [108] and
stomach [109] cancer, whereas other variants have shown protective roles in tissues like
liver [110] and colon [111].

The effects of EXO1 inactivation (E109K mutation) [85] or deletion (Exo1 knockout
(KO)) [112] have been studied in mouse models (Table 2). Both mutant mice showed signif-
icantly reduced survival and accelerated tumorigenesis compared to wt mice. However,
they showed differences in tumour spectrum. While Exo1 KO predominantly develops
lymphomas, mutated mice (Exo1E109K) develop sarcomas and adenomas. The different
patterns of tumorigenesis can be attributed to the DSBR deficiency in mutated mice whereas
in Exo1 KO mice both the DSBR and MMR pathways are disrupted.

EXO1 activates the immune system in mice with an MLH1-deficient background
through the activation of the cGAS-STING pathway [113]. Under normal circumstances,
MutLα regulates the activity of EXO1 to generate the appropriate length of ssDNA. How-
ever, in the absence of this regulation, EXO1 induces excessive DNA degradation, producing
unprotected ssDNA. These events lead to DNA breaks, chromosome abnormalities, and the
release of nuclear DNA into the cytoplasm leading to cGAS-STING pathway activation and
thus a type I IFN innate immune response. Therefore, it has been proposed that combining
radiation and immunotherapy in MLH1-defective patients will be beneficial.

2.6. EXOG

EXOG (Exo/Endonuclease G) is a mitochondrial (mt) endo/5′–3′exonuclease with
a preference for ssDNA [114,115]. It forms a complex with the mt repair proteins to
remove the 5′-blocking oxidized residues of SSBs in the mt genome by BER. Therefore,
depletion of EXOG induces persistent SSBs in the mtDNA, enhances ROS levels, and
induces mt dysfunction, triggering the intrinsic apoptotic pathway [116]. This mechanism
is especially important in tissues with elevated levels of oxidative agents such as human
lung adenocarcinoma tumours, and with high levels of hydrogen sulphide (H2S)-producing
enzymes. Elevated levels of H2S stimulate mtDNA repair through sulfhydration of EXOG,
which increases its interaction with mt repair proteins to enhance DNA repair [117].

EXOG participates in mtDNA replication. In this process, RNase H1 removes all the
RNA primers apart from two nucleotides that remain attached to the 5′end of the nascent
DNA. EXOG removes this dinucleotide of the RNA/DNA hybrid duplex, maintaining
mitochondrial genome integrity [118]. Since the identification of EXOG in 2008, only one
report has associated EXOG with cancer: a missense mutation was found in a familiar
case of appendiceal mucinous tumours, an extremely rare disease with uncertain genetic
aetiology [119].

2.7. FAN1

FANCD2/FANCI-associated nuclease 1 (FAN1) is a 5′ flap structure-specific endonu-
clease and 5′–3′ exonuclease with broad substrate specificity [12]. It is essential to maintain
chromosomal stability and resolve ICLs. Although its exact mechanism of action remains
unclear, it is thought that FAN1 makes 2–6 nucleotide incisions at the sides flanking the
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ICLs, generating a suitable substrate for other nucleases and polymerases. In addition, it
can participate in MMR, interacting with MutLα in the absence of EXO1, or cleave D-loop
structures formed during HR. In response to replication stress, FAN1 also controls the
progression of stalled replication forks, where it is recruited by Ub-FANCD2 (Fanconi
anemia pathway) [12].

A deficiency of FAN1 in humans leads to chromosomal abnormalities (caused by
failure of the replication fork) that can cause rare kidney and neurological diseases such as
schizophrenia, epilepsy, and autism [12,120]. Although the loss of FAN1 function does not
increase the burden of cancer [121], some mutations have been found in tumours, including
mutations abolishing nuclease/exonuclease activity. For example, the p.M50R mutation
occurs as a germline mutation in hereditary pancreatic cancer [122] and it also increases the
risk of colorectal cancer [123] (Table 1). Additional germline mutations have been suggested
to increase susceptibility to colorectal cancer [124] and primary hepatic mucoepidermoid
carcinoma [125]. Moreover, mice defective in the nuclease domain (Table 2) develop
carcinomas and lymphomas [126].

Loss of FAN1 leads to sensitivity to crosslinking agents, especially in BRCA2-deficient
cells [127]. Increased FAN1 expression in tumours refractory to treatment has been observed
in breast and ovarian cancers [128]. Therefore, inhibition of FAN1 could be used to sensitize
cancer cells to conventional chemotherapy. Additionally, FAN1 functional status in cancer
cells might be used as a biomarker to predict response to treatment.

2.8. FEN1

Flap endonuclease 1 (FEN1), also known as DNase IV, belongs to the RAD2 family and
is involved in multiple functions via different catalytic activities [13]. FEN (flap-specific
endonuclease) activity is responsible for RNA primer removal in the maturation of Okazaki
fragments during DNA replication and repairing DNA lesions that have an oxidatively
damaged sugar moiety in a PCNA-dependent BER pathway called long-patch BER. EXO
(5′ exonuclease) and GEN (gap-endonuclease) activities are important for the resolution of
trinucleotide repeat sequence-derived DNA hairpin structures, oligonucleaosomal frag-
mentation of chromosomes in apoptotic cells, and the resolution of stalled replication forks
caused by exogenous insults. In this case, FEN1 forms a complex with WRN to arrest
the replication fork and resolve the chicken foot structure or cleave the fork to start the
break-induced recombination. These multiple functions are regulated protein-protein inter-
actions, post-translation modifications, and cellular compartmentalization, for example,
FEN1 translocates to the nucleus upon DNA damage [13].

FEN1 somatic mutations have been found in non-small cell lung carcinoma, melanoma,
and oesophageal cancers, some of them inactivating its exonuclease activity [129]. To study
the role of FEN1 in cancer, mouse models have been developed (Table 2). Fen1+/− mice
(Fen1 KO is embryonically lethal [130]) have an increased risk of tumour development,
especially lymphomas [131], and tumorigenesis is further increased in combination with
other alterations such as Apc1638N; these mice present reduced survival and increased
intestinal adenocarcinomas compared to Apc1638N alone [131]. Mice expressing the FEN1
E160D mutation (abrogates the EXO and GEN activities but not FEN activity), which
leads to spontaneous mutations and the accumulation of incompletely digested DNA
fragments in apoptotic cells [129], developed autoimmunity, chronic inflammation, and
lung, testis/ovary, liver, kidney, spleen, stomach and lymphoma cancers. This phenotype
is related to higher spontaneous mutation rates and the accumulation of apoptotic DNA in
mutated cells leading to the DNA damage response and inflammation. Another example is
the L209P mutation, found in colorectal cancer patients [132]. This mutated protein has
lost all three activities and acts as a dominant-negative isoform. Mutated cells show high
sensitivity to DNA damage, which causes genomic instability and transformation.

FEN1 is expressed in proliferating cells and is overexpressed in different tumours such
as prostate [133], testis [134], lung [134,135], brain [134], gastric [136] and breast [137,138]
(Table 1). In some cases, its overexpression is correlated with hypomethylation of the
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FEN1 promoter and linked to increased tumour grade and aggressiveness [136,137]. FEN1
polymorphisms have been associated with an elevated risk of lung, ovary, bladder, breast,
glioma, and digestive cancers. In contrast, a protective role was attributed to some other
variants in oesophagus, breast, and leukaemia cancers [139–152].

2.9. MRE11A

MRE11A is an ssDNA endonuclease/dsDNA 3′–5′ exonuclease of the MRN complex
that is involved in DNA repair (HR and alternative NHEJ) following DSBs lesions, meiotic
recombination, cell cycle checkpoints, and maintenance of telomeres. Its exonuclease activ-
ity plays an essential role in DDR, degrading DNA between the endonucleolytic incision
sites, which creates an entry site for the long-range resection nucleases [153]. Mutations
in MRE11A have been found in some types of cancer characterized by chromosomal in-
stabilities such as breast, endometrium, and colon [154–157]. Mutations Y187C and H52S
inactivate MRE11A exonuclease but not endonuclease activity [158]. Some frameshift
mutations generate splicing variants that lead to exon loss. HCT116 cells (colon cancer cell
line) have a mutant protein without exons 5–7, where the exonuclease domain is located,
leading to the accumulation of unrepaired DNA [156]. MRE11A has also demonstrated
potential as a predictive marker for radiotherapy in bladder cancer patients (Table 1), where
high expression of MRE11A has been associated with a good prognosis [159].

2.10. p53

p53 is known to be the “guardian of the genome”, ensuring genetic stability through
several roles that include control of the cell cycle, senescence, apoptosis, and DNA repair in
response to oncogene activation, DNA damage, and other stress signals. Although p53 acts
mainly as a transcriptional factor, it has 3′–5′ exonuclease activity in its core domain, where
the sequence-specific DNA binding domain is located [160–163]. These two activities are
mutually exclusive; therefore, exonuclease activity is mainly cytoplasmic [164–166]. It has
been suggested that its exonuclease function is its most ancient function since this domain is
present even in the ancestral p53 in invertebrates [167]. p53 shows a preference for ssDNA
(although it can also process dsDNA, single-stranded RNA (ssRNA), and double-stranded
RNA (dsRNA)), can remove 3′-terminal miss-pairs, and has a proofreading function when
interacting with exonuclease-deficient polymerases [164,168,169]. Exonuclease activity has
been observed in unstressed cells, but it also responds to exogenous stimuli such as DNA-
damaging agents. In this scenario, exonuclease activity is not involved in cell cycle arrest
but is essential for the induction of apoptosis in DNA-damaged cells [165]. Several core
domain mutations have been found in cancer. However, their specific effect on exonuclease
activity has not been assessed.

2.11. PLD3 and PLD4

PLD3 and PLD4 belong to the phospholipase D (PLD) family [170] and are charac-
terized by their HKD motifs. They are glycosylated transmembrane proteins located in
endolysosomes and surprisingly, in contrast to their family members PLD1/2, do not pos-
sess phospholipase activity. Instead, their different HKD amino acid composition allows
them to process ssDNA from 5′ to 3′ [26], degrading endogenous ssDNA and thereby
preventing autoimmune pathologies like rheumatoid arthritis [29]. In addition, both can
degrade ssRNA, thus limiting autoinflammation triggered by both endosomal TLR and
cytoplasmic STING nucleic acid sensing pathways [27].

PLD family members have a well-established role in promoting tumorigenesis in
multiple types of cancers [171]. Although PLD4 and PLD3 have been linked through
murine models (Table 2) and genome-wide association studies to autoinflammatory dis-
eases [172] and late-onset Alzheimer’s disease [173], respectively, very little evidence
exists regarding their involvement in cancer. PLD3 has been associated with a favourable
prognosis in osteosarcoma and included in a prognostic gene signature of immune cell
infiltration [174,175] (Table 1). Likewise, PLD4 expression has been proposed to predict,
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together with other genes, better survival of HER2-positive breast cancer patients [176] and,
when expressed in M1 macrophages, it might have antitumoral effects in colon cancer [177].
Overall, our knowledge of the role of PLD3/4 in cancer is limited, and thus additional
research is warranted.

2.12. POLD and POLE

Polymerase delta (POLD) and polymerase epsilon (POLE) contain 3′–5′ exonuclease
proofreading domains. Several studies have suggested that this intrinsic proofreading
exonuclease activity plays a critical role in suppressing carcinogenesis. Increased epithe-
lial cancer was observed in mice deficient for Pold proofreading exonuclease (Table 2)
(Pold1D400A/D400A) [178]. Moreover, germline or somatic mutations in the exonuclease
domain of POLE were found to increase the mutation rate and risk of cancer develop-
ment in the colon and endometrium [179]. Although somatic POLD exonuclease domain
mutations are less frequent, they were observed in colon, endometrium, and melanoma
cancers [180,181] (Table 1). Patients with these mutations have an excellent prognosis and
respond well to immunotherapy because the high mutation rate increases the probability
of neoantigens, which are recognized by the immune system [179,181].

2.13. RAD9A

RAD9A is a multifunctional protein that contains a 3′–5′ exonuclease domain in its
N-terminal portion [182], although the exact function of this activity remains unknown.
This protein is involved in several cellular functions such as apoptosis (it contains a BH3
domain), but its main role is to control the cell cycle checkpoint and DNA damage repair
as an early DNA damage sensor of SSBs and DSBs [182]. RAD9A participates in multiple
repair pathways such as BER (interacting and activating APE1), MMR (interacting with
MLH1, MSH2, MSH3, and MSH6), ICL (activating FANCD2 through ATR activation),
and HR (interacting with RAD51) [182]. Consequently, cells deficient in RAD9A show
spontaneous chromosome aberrations and are more sensitive to DNA-damaging agents
such as hydroxyurea, UV light, and IR [183].

Owing to its involvement in multiple and varied cellular functions, RAD9A has a
dual role in cancer, acting as a tumour suppressor or promoter depending on the tissue.
RAD9A is overexpressed and accumulated in the nucleus of samples from non-small
cell lung carcinomas, and is correlated with high proliferation [184,185]. Overexpression
of RAD9 was also observed in thyroid [186], prostate [187,188], and breast cancer [189]
(Table 1). In breast and prostate cancer, overexpression is due to amplification of the 11q13
chromosome (where the RAD9 gene is located) or differential intron methylation in the
RAD9 gene. The introns contain sequences that inhibit RAD9 expression but are suppressed
upon methylation, an event that occurs in childhood leukaemia [190]. Increased levels of
RAD9A were correlated with bigger tumours, local recurrence, and higher aggressiveness.
However, other types of tumours like gastric carcinomas showed decreased expression [191].
The same could be true for skin cancers, since the skin conditional Rad9-deficient mouse
(total KO is lethal [192]) showed enhanced tumour development upon application of
carcinogen [193] (Table 2).

2.14. TREX1

Three-prime repair exonuclease 1 (TREX1 or DNase III) is a non-processive 3′–5′

exonuclease that degrades ssDNA and dsDNA from the 3′-ends [194,195]. TREX1 is
ubiquitously expressed and localized in the endoplasmic reticulum membrane. It plays a
major role in DNA-driven immune responses, where it is involved in self- and non-self-
DNA degradation, limiting the activation of DNA-sensing and -signalling pathways, such
as the cGAS-STING pathway. Thus, it prevents aberrant interferon-mediated inflammatory
responses and autoimmunity [196–200]. Furthermore, TREX1 has been implicated in DNA
degradation during granzyme A-mediated cell death [21].
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Independently of its exonuclease activity, TREX1 reduces glycan-driven immune
responses by interacting with the oligosaccharyltransferase complex, contributing to its
correct function [201]. Consistently, loss of function mutations have been associated with
inflammatory and autoimmune diseases. Of note, mutations located in the exonuclease
domains (N-terminus region) are mostly linked to Aicardi-Goutières syndrome and sys-
temic lupus erythematosus. Mutations in the endoplasmic reticulum localization and
oligosaccharyltransferase interaction domain (C-terminus region) are mainly linked to
retinal vasculopathy with cerebral leukodystrophy [202–205]. In agreement with the major
role of TREX1 as an anti-inflammatory player, Trex1 knockout mice [206] and TREX1D18N

exonuclease defective mice [207,208] develop an inflammatory systemic phenotype, but
they are not tumour prone (Table 2). Nevertheless, TREX1 can influence genomic sta-
bility and DDR in distinct ways. For instance, TREX1 is induced after DNA damage,
favouring DNA repair [19] and interacting and stabilizing PARP1 [209]. Moreover, TREX1-
deficient cells exhibited increased levels of p53 and p21 and ATM-dependent checkpoint
activation [210], which suggests chronic activation of DDR. However, TREX1 can drive
chromosome mis-segregation and error-prone DNA repair in tumoral cells undergoing
telomere crisis, thus fostering genomic instability [211]. Finally, TREX1 locates to micronu-
clei, degrading DNA when their membranes break, preventing its cytoplasmic sensing and
supporting the chromosomal instability of tumours [197].

Depending on the type of tumour, TREX1 expression is upregulated or downregu-
lated (Table 1). TREX1 overexpression is observed in oesophageal [212] and cervical [213]
cancers but is downregulated in melanoma [214] and osteosarcoma [215], where TREX1
expression is only observed in non-metastatic patients. Conflicting results have been
found in breast cancer, with some studies showing overexpression and some downregu-
lation [216,217]. Recently, a potentially pathogenic TREX1 variant was found in a small
cohort of familial colorectal cancer type X (FCCTX), although the functional consequences
of the variant were not assessed [218]. Of note, TREX1 is induced in carcinoma cells by
irradiation [199,219] and in glioma [214], melanoma [220], and nasopharyngeal [221] cells
by anticancer drugs, triggering a pro-survival response. Because preventing TREX1 from
degrading accumulated cytosolic DNA renders the cGAS-STING pathway active with the
consequent production of type I IFNs, TREX1 has attracted great interest as a target to elicit
antitumour immunity [222].

2.15. TREX2

Three-prime repair exonuclease 2 (TREX2) is a 3′–5′ exonuclease that is highly ho-
mologous to TREX1 [223,224], sharing similar biochemical and structural features [225].
However, in contrast to TREX1, TREX2 shows restricted expression in keratinocytes, lo-
calizes in nuclei, and plays a relevant pro-inflammatory role in keratinocytes [22,224,226]
without activating DNA-driven immune responses [227]. TREX2 facilitates nuclear DNA
degradation in stressed keratinocytes, thus promoting cell death [22,224,226,227]. Inter-
estingly, TREX2 has been shown to improve targeted CRISPR/Cas9 efficiency [228–230]
by increasing deletion size and preventing perfect DNA repair, thereby avoiding repeated
Cas9 cleavage and chromosomal translocations [231].

Studies on the role of TREX2 as a tumour suppressor have reported contrasting results.
In artificial settings, chromosomal and genomic instability were reported using Trex2-null
and mutated embryonic stem cells [232,233]; however, TREX2 deficiency in mice (Table 2)
does not lead to a tumour prone phenotype [22,224]. Depending on the DNA repair
status of embryonic stem cells, TREX2 may display a dual function in the DDR pathway,
dependent and independent of its exonuclease activity, facilitating or avoiding replication
fork instability and mutations [234,235]. However, neither genomic nor chromosomal
instability are observed in cells from Trex2 knockout mice or in keratinocytes, where
Trex2 is highly expressed, nor in embryonic stem cells, in which TREX 2 expression is
not detectable [224]. Nevertheless, Trex2 knockout mice show increased susceptibility to
DNA damage-induced skin tumorigenesis. TREX2 interacts with phosphorylated H2AX
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histone, which is a critical player in both DNA repair and cell death and is recruited to
low-density nuclear chromatin and micronuclei. Upon DNA damage, TREX2 participates
in DNA repair but mostly contributes to DNA degradation of fragmented DNA, promoting
cell death of damaged keratinocytes and favouring an antitumoral immune response,
supporting a major role of TREX2 as a proapoptotic tumour suppressor in keratinocyte-
driven tumours [22,224].

TREX2 deregulation and genetic alterations in cancer mostly indicate the role of TREX2
as a tumour suppressor. In cutaneous squamous cell carcinomas (cSCCs) and head and neck
SCCs (HNSCCs) high expression of TREX2 was found in well-differentiated tumours while
its expression was not detected in metastatic samples [22] (Table 1). Moreover, epigenetic
regulation of TREX2 was observed in colorectal and laryngeal cancer [236]. Reduced DNA
methylation in the TREX2 intragenic gene locus is associated with elevated expression and
better overall survival of patients. In contrast, TREX2 missense mutations and upregulation
in colorectal cancer have been associated with reduced survival [237]. In this regard,
SNPs in TREX2 are more frequent in patients with head and neck SCCs than in healthy
individuals [22].

2.16. WRN

Werner Syndrome protein (WRN) (also known as RECQL2) is a multifunctional protein
that contains four functional domains, including a 3′–5′ exonuclease domain that can
recognize a variety of DNA substrates [238]. This protein is crucial for genome stability
through its involvement in DNA replication, recombination, and repair, although the
specific relevance of the exonuclease domain has not yet been determined. Germline
mutations in WRN lead to Werner Syndrome, characterized by premature aging and
higher susceptibility to a broad spectrum of epithelial and mesenchymal tumours like
sarcomas, melanoma, thyroid, and breast cancer [238]. Although no somatic mutations
have been described in sporadic tumours, its expression is downregulated due to epigenetic
inactivation or loss of heterozygosity in several solid tumours such as colorectal cancer
and breast tumours [239,240]. Low expression of nuclear WRN has been associated with a
worse prognosis and promoter hypermethylation as a predictor of good clinical response
to DNA-damaging treatments [239–242].

Table 1. Exonuclease alterations in cancer.

Gene Alteration Type of Cancer Biomarker Ref.

AEN High expression Prostate High-risk recurrence [40]

Colorectal Reduced survival [41]

APE1

Exonuclease mutations Glioblastoma, endometrial [59,60]

High expression

Lung, colorectal, cervical,
prostate, bladder, gastric,

hepatic, glioblastoma,
osteosarcoma, head, and

neck, ovarian, breast

Tumour aggressiveness,
poor prognosis [55,56]

ARTEMIS Hypomorphic mutations Lymphoma High risk [74,75]

EXO1

Exonuclease inactivating
mutations

Colorectal tumours, small
intestine tumours [100]

High expression Prostate, breast, lung, liver,
bladder, melanoma [89–93,95–99]

FAN1
Exonuclease inactivating

mutations Pancreatic, colorectal, hepatic High risk [122–125]

High expression Ovarian Poor prognosis [128]
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Table 1. Cont.

Gene Alteration Type of Cancer Biomarker Ref.

FEN1

High expression Prostate, testis, lung, brain,
gastric, breast

Increased tumour grade
and aggressiveness [133–138]

SNP Lung, ovary, bladder, breast,
glioma, digestive High risk [139–152]

Esophagus, breast, leukemia Protective role [144,146,147]

MRE11A

Exonuclease inactivating
mutations Breast, endometrium, colon [154–157]

High expression Bladder Good prognosis [159]

PLD3 High expression Osteosarcoma Good prognosis [174,175]

PLD4 High expression HER2-positive breast cancer Better survival [176]

POLD Somatic exonuclease
domain mutations

Colon, endometrium, and
melanoma Good prognosis [179–181]

POLE Exo domains mutated Colon, endometrium High risk and increased
mutation rate [179]

RAD9
High expression Lung, thyroid, prostate,

breast

Bigger tumours,
recurrence, and
aggressiveness

[184–189]

Low expression Gastric [191]

TREX1 High expression Esophageal, cervix [212,213]

Low expression Melanoma, osteosarcoma [214,215]

TREX2

High expression Low-grade HNSCC,
laryngeal Good prognosis [22,236]

Colorectal Reduced survival [237]

Low expression Metastatic HNSCC [22]

WRN
Somatic mutations Sarcomas, melanoma,

thyroid, breast [238]

Low expression Colorectal, breast Bad prognosis [239,240]

Table 2. Murine strains modelling exonuclease gene functions.

Exonucl. Mutant Mice Alteration Phenotype Ref.

APE1
Ape1−/− Gene deletion Lethal [50]

Ape1+/− Hemizygous Cancer prone, lymphomas,
sarcomas & adenocarcinomas [52–54]

ARTEMIS

ArtN/N Gene deletion Severe combined
immunodeficiency [70]

ArtN/NTrp53N/N Gene deletion Increased carcinogenesis in Art
vs. p53 null mice [72]

EXO1 Exo−/− Gene deletion Lymphoma; reduced survival;
sterility [112]

FAN1 Fannd/nd Nuclease defective Cancer prone, carcinomas &
lymphomas [126]
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Table 2. Cont.

Exonucl. Mutant Mice Alteration Phenotype Ref.

FEN1

Fen1−/− Gene deletion Lethal [130]

Fen1+/− Hemizygous Tumours, mainly lymphomas [131]

Fen1+/− Apc1368N Hemizygous Mutation
Increased adenocarcinomas &
decreased survival compared

to Apc1268N
[131]

Fen1E160D Inactivation of exo- &
endonuclease activities

Autoimmunity, chronic
inflammation, and tumours.

Spontaneous mutations;
accumulation of non-digested

DNA in apoptotic cells.

[129]

PLD3 and PLD4

Pld3−/− Gene deletion No inflammation [26]

Pld4−/− Gene deletion Inflammation, splenomegaly,
high IFNγ levels [26]

Pld3−/−Pld4−/− Gene deletion

Lethal liver inflammation,
hemophagocytic

lymphohistiocytosis, high
IFNγ levels

[27]

POLD Pold1D400A Exonuclease domain mutated Increased epithelial cancer [178]

RAD9

Rad9−/− Gene deletion Lethal [192]

Rad9K5−/− Gene deletion in keratinocytes
Enhanced tumour

development upon exposure to
carcinogen

[193]

TREX1

Trex1−/− Gene deletion Not cancer-prone.
Inflammatory myocarditis [206]

Trex1D18N Exonuclease defective
Not cancer-prone. Systemic
inflammation. Lupus-like
inflammatory syndrome.

[208]

TREX2 Trex2−/− Gene deletion

Not cancer-prone. Increased
carcinogenesis upon exposure

to genotoxins. Reduced
inflammation.

[22,224,226]

3. Outlook

The DDR encompasses different sensor and effector proteins, including exonucleases,
that work together with the final aim of limiting damage, both for the cell and the organism.
Almost all living organisms have evolved to possess a battery of mechanisms to ensure the
preservation of their hereditary material, demonstrating the ubiquitous urgency to respond
to damaged DNA [243,244]. DNA exonuclease activity is required for basic cell processes,
such as the synthesis and repair of damaged DNA, cell death, and inflammation (Figure 1)
which are important to maintain homeostasis and prevent diseases and cancer. While not
all DNA exonucleases are directly involved in the DDR, their actions can indirectly alter it.
The functional interplay between the exonucleases described in this revision is surprisingly
significant (Figure 2) considering that some of them are highly confined and spatially
separated in different tissues and compartments of the cell. While most exonucleases reside
in the nucleus, EXOG and EXD2 are specifically located in the mitochondria, and TREX1,
PLD3, and PLD4 in the cytosol. Additionally, others have fluctuating levels depending on
the cell cycle (APEX1) or are only expressed in keratinocytes (TREX2). Either interacting
in multiprotein complexes or by their own action, exonucleases contribute in different
manners to execute a proper DDR.
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DNA exonucleases might be required for the survival of some cancer cells that acquire
dependency on normal cellular functions, such as DNA repair, and thus, produce a non-
oncogene addiction [245]. DNA exonucleases may favour the appearance of mutations in
healthy cells, converting them into tumour cells, or may be necessary for certain tumours
to keep the inherent genomic instability of malignancy under control, aiding tumour cells
to avoid cell death, or impact on the immune response. In this manner, aberrant DNAse
activity in tumours have been suggested to be exploited as a molecular whistleblower for
diagnosis [246]. Hence, these types of enzymes are promising targets for cancer treatment
promoting synthetic lethality and early detection of certain types of cancer. For instance,
blocking the function of those exonucleases that degrade cytoplasmic DNA preventing
inflammation, such as TREX1, PLD3 and PLD4, would activate DNA sensors producing an
IFN response and leading to antitumor immunity.

Exonuclease genetic alterations, changes in their activity and abnormal expression
in human tumours together with functional studies with murine models point to a clear
contribution of these proteins to cancer onset and development (Tables 1 and 2). It is
puzzling how, depending on the type of cancer, some exonucleases are overexpressed or
downregulated. It is worth noting the different tissue-specific metabolic requirements
and byproducts as well as the differences in protein expression that might influence the
types of genes being expressed. Moreover, some types of cancers are characterized by a
particularly elevated genomic instability and this itself could influence the expression of
the transcription factors required for exonuclease expression. Nonetheless, each individual
tumour is different and the genetic background of the individual as well as environmental
factors such as diet, temperature, medications, or immune cell infiltration can influence
gene expression, and result in these not surprising differences. On the other hand, the
existing knowledge on some exonucleases, such as AEN, EXD2, EXOG, PDL3/4, TREX1,
and TREX2, is relatively poor and sometimes conflicting. Advance in the understanding of
the mechanisms and functions of each specific exonucleases would strengthen their value
as potential targets for cancer treatment and/or as biomarkers.
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