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Abstract: Hemiparesis is one of the common sequelae of neurological diseases such as strokes,
which can significantly change the gait behavior of patients and restrict their activities in daily
life. The results of gait characteristic analysis can provide a reference for disease diagnosis and
rehabilitation; however, gait correlation as a gait characteristic is less utilized currently. In this study,
a new non-contact electrostatic field sensing method was used to obtain the electrostatic gait signals
of hemiplegic patients and healthy control subjects, and an improved Detrended Cross-Correlation
Analysis cross-correlation coefficient method was proposed to analyze the obtained electrostatic gait
signals. The results show that the improved method can better obtain the dynamic changes of the
scaling index under the multi-scale structure, which makes up for the shortcomings of the traditional
Detrended Cross-Correlation Analysis cross-correlation coefficient method when calculating the
electrostatic gait signal of the same kind of subjects, such as random and incomplete similarity in
the trend of the scaling index spectrum change. At the same time, it can effectively quantify the
correlation of electrostatic gait signals in subjects. The proposed method has the potential to be
a powerful tool for extracting the gait correlation features and identifying the electrostatic gait of
hemiplegic patients.

Keywords: gait analysis; gait correction; electrostatic gait signal; improved Detrended
Cross-Correlation Analysis cross-correlation coefficient

1. Introduction

With the aging of the global population, strokes and other neurological diseases are occurring more
frequently. Hemiparesis is one of the common sequelae of these diseases. Hemiplegic patients with
body motor dysfunction often show a hemiplegic gait, among other symptoms. Assessing and restoring
the walking ability of patients is the main objective of rehabilitation treatment for hemiplegic patients.
The literature shows that the use of a variety of sensing methods to obtain hemiplegic gait information
in clinical manifestations of hemiparesis [1,2], in order to study the kinematics and mechanics of gait
signals and to objectively and quantitatively evaluate the pathological gait characteristics of hemiplegic
patients, can provide effective support for the diagnosis and rehabilitation of hemiplegic patients [3,4].

At present, there are two main methods of gait measurement; one is the contact measurement
method, which is usually obtained through the subject wearing an inertial unit sensor [5,6] or
photoelectric sensor [7,8]; the other is the non-contact method, in which a video analysis system is
used [9]. However, these common methods have some limitations. For example, wearing a sensor will
affect the natural gait of the subject, while a video system compromises the privacy of the subject and
is associated with data processing difficulties. Because of its non-contact, non-intrusive, and long-term
continuous monitoring of gait signals, electrostatic detection has gradually become a research focus in
the field of gait measurement [10,11]. In Chen’s work [12], the equivalent capacitance model of the
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human body was established by theoretical deduction, and the correctness of the model was verified by
simulations and measured signals. In the paper by Li [13], the gait parameters of the “gold standard”
plantar pressure system were compared with the electrostatic measurement system, and this proved
that the gait time parameters can be effectively measured by the electrostatic field sensing method.
The electrostatic gait signal is a non-stationary time series, which contains various motion parameters
of the human body, including time, frequency and nonlinear parameters, among others. The related
research on feature extraction of the gait signal not only helps explain gait signal fluctuations, obtaining
more gait parameters, but also helps to analyze the physiological health status of the human body.

Correlation is an important feature of the non-stationary time series. Correlation analysis of the
electrostatic gait signal can demonstrate the inherent characteristics of the signal, and the implicit
correlation between the signals. Detrended fluctuation analysis (DFA), first proposed by Peng, is used
to study the long-range fluctuation of DNA sequences [14]. After that, DFA was widely used in
financial time series [15], meteorological time series [16], and physiological signal series [17,18].
However, the traditional DFA cannot describe a complex biological signal sequence accurately because
of its single scale index. In order to better describe the correlation of non-stationary time series,
the bi-index analysis method and local index derivation method are studied in the works by Peng and
Castiglioni [19,20]; however, there is a limitation in that they cannot describe in detail the dynamic
correlation of the signal. Xia Jianan et al. [21] proposed a local moving window combined multiscale
detrended fluctuation analysis (MSDFA) method in order to study the dynamics of the correlation of
signals, wherein the scale index spectrum is obtained by fitting logF(n) and log(n) in a local moving
window to distinguish the ECG signals of healthy and pathological groups, and effectively avoid
the influence of extreme values with this method. The correlation expansion of a non-stationary
time series can obtain the cross-correlation between two non-stationary time series. The Detrended
Cross-Correlation Analysis (DCCA) method proposed by Podobnik and Stanley [22] was first used
to calculate the cross-correlation between two non-stationary time series. It has been widely used in
financial [23,24], atmospheric [25], physiological, and other fields [26]. However, the single scaling
index in the DCCA results still has similar inadequacies to DFA; that is, only a single parameter is used
to describe the sequence characteristics. In order to solve this problem, Yin Yi et al. [27] applied the
improved multiscale detrended cross-correlation analysis (MSDCCA) method in order to obtain the
scaling index spectrum. This method can better show the dynamic changes of the scaling index in
different scaling windows, and effectively avoid the influence of outliers, so it has good robustness.

In order to quantitatively analyze the correlation of non-stationary signals, Zebende proposed a
DCCA cross-correlation coefficient method based on DFA and DCCA [28]. However, we found that
when this method was used to calculate electrostatic gait signals, the results would fluctuate abnormally
near the crossover point [29,30]. Further, the traditional DCCA cross-correlation coefficient spectrum
of electrostatic gait signals of the same type of subjects has random and incomplete similarity, so it was
difficult to distinguish hemiplegic patients from healthy control subjects by the DCCA cross-correlation
coefficient. In order to solve this problem, an improved DCCA cross-correlation coefficient method
is proposed in this paper. Local moving windows are used instead of the fixed scales in the original
algorithm. The results of the improved algorithm show a uniform and regular single peak structure at
the crossover points, and have a stable curve structure; moreover, the results of different electrostatic
gait signals for hemiplegic patients showed a relatively consistent trend. This method can effectively
improve the stability of the DCCA cross-correlation coefficient, and quantify the correlation level of
electrostatic gait signals under different scales.

The rest of this paper is arranged as follows: The second part will introduce the principle of
electrostatic sensing method and the experimental process of electrostatic gait signal acquisition, as well
as how to obtain electrostatic gait signals of hemiplegic patients and healthy control subjects; the third
part will introduce in detail the improvement of the traditional DCCA cross-correlation coefficient
method; and the fourth part uses the traditional method to analyze the electrostatic gait signals of
subjects, from which we find that the traditional method has some shortcomings in the analysis of



Sensors 2019, 19, 2529 3 of 12

electrostatic gait signals. Then, we use the improved method to analyze the electrostatic gait signals.
Through a comparison between the traditional method and the improved method, it can be concluded
that the improved method is more suitable for the correlation analysis of electrostatic gait signals.
This method can be better applied to the correlation analysis of human electrostatic gait signals.

2. Methods

2.1. Principle of Electrostatic Field Induction in the Human Foot

The electrostatic phenomenon is a ubiquitous physical phenomenon. The human body is charged
with electrostatic energy during movement due to friction between the body and the clothes, as well as
friction between the sole and the ground [31,32]. Therefore, with the movement of the foot during
walking, the electric field around the human body will change [33]. In Chen’s research [12], based on
the principle of the electrostatic field, the equivalent model of the human body was established. Because
the human body has a certain charge, it will produce equivalent capacitance with the surrounding
environment, including the direct coupling capacitance Cf generated by human feet contacting the
ground through the sole, and other capacitance Cr (i = 1, 2 ...). The two capacitors are connected in
parallel to form the total capacitance of the human body (Formula (1)). The equivalent capacitance
model of the human body is shown in Figure 1.

Ch = C f +
∞∑

i = 1

Cri (1)
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Figure 1. Sketch of the human body equivalent capacitance model. 

The left and right feet alternately leave the ground when walking. The capacitance between the 
foot and the ground is equivalent to a variable capacitance which connected to the height of the foot 
from the ground in series with Cf. The capacitance value becomes C, resulting in dynamic changes of 
electrostatic field around the human body. As in the literature [12], assuming that the charge of the 
human body is QB, the induced current I placed on the sensing electrode at a certain distance from 
the subject is shown in Formula (2). 
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ground height. The first item in Formula (2) represents the current generated by the foot movement 
before the foot leaves the ground, and the second item in Formula (2) represents the current caused 
by the foot and leg movement after the foot leaves the ground completely. Therefore, when the tester 

Figure 1. Sketch of the human body equivalent capacitance model.

The left and right feet alternately leave the ground when walking. The capacitance between the
foot and the ground is equivalent to a variable capacitance which connected to the height of the foot
from the ground in series with Cf. The capacitance value becomes C, resulting in dynamic changes of
electrostatic field around the human body. As in the literature [12], assuming that the charge of the
human body is QB, the induced current I placed on the sensing electrode at a certain distance from the
subject is shown in Formula (2).

I =
dQB

dt
= C

dUB

dt
∝

1
Ss

d
dt
(h(t)) −

h(t)
Ss2

dSs

dt
(2)

UB is the induced potential generated during human walking, h(t) is the height function of human
feet leaving the ground when walking, and Ss is the effective bottom area of h(t) from the ground
height. The first item in Formula (2) represents the current generated by the foot movement before
the foot leaves the ground, and the second item in Formula (2) represents the current caused by the
foot and leg movement after the foot leaves the ground completely. Therefore, when the tester moves



Sensors 2019, 19, 2529 4 of 12

near the electrodes, we can obtain the electrostatic induction current caused by human motion under
non-contact conditions, and then obtain the relevant parameters of the gait by analyzing the current
waveform obtained.

2.2. Human Electrostatic Gait Measurement System

The electrostatic signal sensing system includes the induction electrode, electrostatic sensing
circuit, signal acquisition and processing circuit. The system schematic diagram is shown in Figure 2.
In this system, a copper foil planar electrode is used as the electrode material. The shape of the
electrode is a circle with a diameter of 90 mm. The electrostatic sensing circuit allows the amplification
and filtering of the electrostatic signal, and realizes the conversion and amplification from the induced
charge to the current to the voltage, thereby converting the weak induced charge amount into a voltage
signal that can be processed. A low-pass filter with a cut-off frequency of 20 Hz was added before
A/D conversion in order to prevent the measured signal from being disturbed by the power frequency
signal of the power grid. The signal acquisition and processing circuit converts the amplified and
filtered analog signals into digital signals using an A/D conversion with high precision and a wide
voltage input, and then processes the collected signals using a microcontroller unit. The sampling
frequency of the system is 1 kHz, and the sampled data is sent to a personal computer for storage and
processing. According to [13], the current intensity of the induced current is inversely proportional to
the distance between the human body and the induction electrode, and the maximum induced current
can be generated when the human body directly faces the induction electrode. Therefore, in order to
obtain a better gait electrostatic signal, the subject is required to tread 1 m in front of the electrostatic
induction electrode.
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Figure 2. Schematic of the electrostatic sensing system.

2.3. Gait Measurement Experiment

In this experiment, 10 hemiparetic patients and 10 healthy control subjects participated in data
collection. The experiment recruited 10 hemiparetic patients (six males and four females) from the
Zhongshan People’s Hospital of Guangdong Province, China, as the pathological group. Their average
height was 1.68 m (height range: 1.58~1.76 m), the average weight was 68.7 kg (56~78 kg), and the
average age was 46 years (age range: 31~60 years old). The selection criteria for the hemiparetic
patients was: (1) Unilateral hemiparesis after their first stroke, and the condition has been confirmed
by computed tomography (CT) or nuclear magnetic resonance (MRI) imaging; (2) able to continuously
step or walk for at least three minutes without any help or auxiliary equipment; (3) understands the
external orders and follows the experimental procedures; (4) suffers no other diseases known to affect
the gait [34]. This research was approved by the Ethics Committee of Zhongshan People’s Hospital,
and an informed consent form was signed by each subject.
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The healthy control group had no neurological damage (six males and four females). Their average
height was 1.73 m (height range: 1.58~1.81 m) and the average weight was 61.7 kg (45~78 kg).
The average age was 28 years (age range: 24–33 years old).

All subjects gave their informed consent for inclusion before they participated in the study.
The study was conducted in accordance with the Declaration of Helsinki, and the protocol was
approved by the Ethics Committee of Zhongshan People’s Hospital.

In the experiment, the electrostatic testing equipment was placed on a triangle stand at a height of
1 m from the ground. The healthy control group and the hemiplegic patients wore ordinary rubber
sole shoes, and they were required to tread at a distance of 1 m in front of the electrostatic induction
electrode. The subjects were required to tread in situ at a normal pace. Two groups of signals from the
hemiplegic patients and healthy controls were obtained; that is, a total of 40 groups of electrostatic gait
signals were collected, each of which was about 60 s in length. The ambient temperature and humidity
ranged from 20 to 25 ◦C, and from 50% to 60%, respectively.

2.4. Preprocessing of the Experimental Data

Figure 3a,b shows the original gait signals of a healthy control person and a hemiplegic patient.
The signals are digitally filtered and normalized to intercept 50 s of data from the complete signals.
From the figure, we can see that the amplitude of the healthy control is more stable than that of the
hemiplegic patient, and the gait cycle of the healthy control is shorter than that of the hemiplegic patient.
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2.5. Improved DCCA Cross-Correlation Coefficient Method

The DCCA cross-correlation coefficient method has the characteristic of quantifying the
cross-correlation level between two non-stationary time series. The DCCA cross-correlation coefficients
of two non-stationary time series x(i) and y(i) are defined as:

ρDCCA(n) =
f 2
DCCA(n)

fDFAx(n)· fDFAy(n)
(3)

The DCCA cross-correlation coefficient is calculated from the DFA and DCCA of the sequence.
When dealing with electrostatic gait signals, this method is sensitive to the fluctuations of fDFA and
fDCCA; it cannot accurately and quantitatively reflect the correlation level. The local moving window
can display the details of physiological signal dynamic change and has good robustness. This paper
proposes an improved DCCA cross-correlation coefficient algorithm based on the local moving window.
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The improved DCCA cross-correlation coefficient method is described as follows: calculate the
sample sequence to get the detrended variance function fDFAx(n) and fDFAy(n), and detrended covariance
function fDCCA(n), where n is the scale. The fluctuation function curves are divided by the local moving
window, then the data in each window is fitted. The expression of the fitted line can be expressed
as (α·n + b), where α is the slope of the line, which can also be regarded as the scale index in each
local window, while b is the only parameter of the currently fitted straight line in the correlation
analysis [21,27]. We are only focused on using the scale index to quantify the correlation, so parameter
b is not discussed. Therefore, every window DCCA cross-correlation coefficient can be represented as:

ρDCCA(n) =
(αDCCA·n)

2

(αDFAx·n)·
(
αDFAy·n

) , (n ∈ wi = [c, d], i = 1, 2, . . . , m) (4)

The method for dividing the local moving window is described as follows: For the sample data
with the data length N, set the range of n as (5 < n < N/10), then the partial moving window is divided.
wi = [c, d] (i = 1, 2, . . . , m) is expressed as each local moving window, c is the starting value, d is the
ending value, the starting value interval is 5, and the ending value is five times the starting value,
m is the number of local moving window. swi indicates the scaled median value of each window,
αwi indicates the scale index in the corresponding window, and αw = {αw1, αw2, . . . , αwm} is the scale
index spectrum.

After calculating all the window data, the above formula can be improved to Formula (5):

ρMSDCCA(swi) =
(αwi,DCCA)

2

(αwi,DFA)·(αwi,DFA)
, (i = 1, 2, . . . , m) (5)

We call ρMSDCCA the multi-scale detrended cross-correlation coefficient. In the results,
ρMSDCCA > 0 indicates that there is positive cross-correlation between sequences, while ρMSDCCA
< 0 indicates that there is an anti-cross-correlation between sequences. The dynamics of the sequence
and the inherent complex structure of the sequence can be observed from the curve of ρMSDCCA
changing with swi.

3. Results

In this part, we analyzed the electrostatic gait signal of the hemiplegic patients and the healthy
control subjects with the traditional method. We found that the traditional method had some
deficiencies in the analysis of the electrostatic gait signal correlation. Then, the electrostatic gait signal
was analyzed by the improved method proposed in this paper. The results showed that the improved
method improved the stability and accuracy of the data results compared with the traditional method,
and helped to better identify the electrostatic gait signal of hemiparesis.

3.1. Analysis of the Electrostatic Gait Signal with the Traditional Method

DCCA is used to analyze the correlation between two non-stationary time series, and has been
widely used in finance, atmosphere, physiology, and other fields [23–26]. In this paper, the electrostatic
gait signals of hemiplegic patients and healthy control subjects are analyzed with the DCCA method,
and the logarithmic curve of the cross-correlation fluctuation function and the scale of the electrostatic
gait signals are obtained, as shown in Figure 4. From graph (a), we can see that all the cross-correlation
wave functions of healthy controls have good consistency, and the curves have a crossover point (n = 500).
The cross-correlation index spectrum of the electrostatic gait signals of the healthy controls is obviously
divided into two sections, with a single index (αDCCA = 1.84). From graph (b), we can see that the
cross-correlation wave function curves of all hemiplegic patients are scattered. There are two crossover
points (n1 = 60, n2 = 1200). The cross-correlation index spectrum of the electrostatic gait signals of
hemiplegic patients is obviously divided into three segments. There are two indices for the electrostatic
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gait signals of hemiplegic patients (αDCCA1 = 1.22, αDCCA2 = 1.54). In Figure 4b, the waveform functions
of different samples of hemiplegic patients show chaotic waveform characteristics after the first
crossover point. This phenomenon is related to the difference of walking ability between hemiplegic
patients, but the waveform characteristics cannot be explained by a single index.
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Although the cross-correlation wave function spectrogram of the electrostatic gait signals of
subjects calculated by the DCCA method can show the difference between them, the long-range
cross-correlation of the electrostatic gait signals of hemiplegic patients can be seen from a single
index that is weaker than that of the healthy controls. However, this difference is small, and the
cross-correlation index cannot quantify the strength of cross-correlation between signals.

DCCA cannot quantify the correlation of electrostatic gait signals. In this paper, the DCCA
cross-correlation coefficient method is used to analyze the electrostatic gait signals quantitatively.
This method is also widely used in physiological signals [35]. The DCCA cross-correlation coefficient
method is defined by DFA and DCCA to quantitatively study the cross-correlation between
non-stationary time series. The electrostatic gait signals of hemiplegic patients and healthy controls
were calculated and analyzed by the DCCA cross-correlation coefficient method. Figure 5 shows
the analyzed electrostatic gait signals of hemiplegic patient 5 (hemi 5) and healthy control 1 (control
1). We can see from the graph that the spectrum of ρDCCA in hemiplegic patient 5 fluctuates greatly.
The first peak (ρDCCA = 0.69) appears at the scale n1 = 54, and then the curve shows a downward
trend and a disorderly fluctuation trend. The second peak (ρDCCA = 0.68) appears at the scale n2 = 967,
and then the curve decreases and produces two small peaks. The scales corresponding to wave peaks
are similar to those of crossover points in DCCA, and on all scales, ρDCCA = 0.54 ± 0.06. For healthy
control 1, the fluctuation of the spectrogram of ρDCCA was relatively stable, but there was a peak
fluctuation on scale n = 540 (ρDCCA = 0.83) and ρDCCA = 0.69 ± 0.06 on all scales.

The DCCA cross-correlation coefficient can quantify the correlation of the electrostatic gait signals
in hemiplegic patients and healthy controls. After DCCA cross-correlation coefficient analysis of data
from all hemiplegic patients and healthy controls, we found that the fluctuation of ρDCCA near the
crossover point was a common phenomenon, showing a chaotic fluctuation of one main peak and
several sub-peaks. The trend of the DCCA cross-correlation coefficient spectrum of electrostatic gait
signals of the same type of test population was random and similar.
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Due to the different fluctuation characteristics of time series on different time scales, the crossover
point phenomenon appears in the DFA and DCCA results, and the complex fluctuation phenomenon
appears near the crossover point of the cross-correlation index spectrum, which will affect the
quantitative judgment of the cross-correlation. The traditional method has some limitations in the
analysis of electrostatic gait signals, so we need to improve the traditional method for better analysis
of electrostatic gait signals.

3.2. Improved DCCA Cross-Correlation Coefficient Method for Electrostatic Gait Signal Analysis

Because the traditional DCCA cross-correlation coefficient method has some limitations,
the improved method is used to analyze hemiplegic patient 5 and healthy control 1. As shown
in Figure 6, we can see from the graph that the spectrum of ρMSDCCA in hemiplegic patient 5 first
decreases, then rises, and finally tends to be stable. The scale window sw1 = 160 has a trough,
the correlation coefficient spectrum in the 160 < sw < 589 interval shows an increasing trend, the scale
window sw2 = 589 has a peak, and the correlation coefficient of sw > 589 first decreases to a stable trend.
The correlation coefficients near the peak and trough did not fluctuate significantly in the results of
ρMSDCCA. In contrast, the spectral line of healthy control 1 was relatively stable and showed no obvious
fluctuation in the whole scale window, and the range of healthy control 1 was ρMSDCCA = [1.4, 1.6].
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Finally, the improved method was used to analyze the electrostatic gait signals of all subjects,
and the correlation coefficient spectra of ρMSDCCA of hemiplegic patients and healthy controls were
obtained, as shown in Figure 7. The red bold line in the figure represents the average of all data changes.
Figure 7a is a spectrogram of the coefficients of ρMSDCCA of the healthy control group. The curve tends
to be stable in the window scale range. The range of ρMSDCCA is [1.3, 1.8], and the mean and standard
deviation are 1.45 ± 0.12. The gait signals of the healthy control group have a better correlation.
The coefficient curve of ρMSDCCA in the hemiplegic patient group is shown in Figure 7b. From the
graph, we can see that the curve first has a downward trend and then an upward trend, and tends to be
stable. The fluctuation of the ρMSDCCA curve in the hemiplegic patients is closely related to the crossing
point. The stability range of ρMSDCCA is [0.6, 1.6], and the mean and standard deviation are 0.93 ± 0.26.
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From the spectrum of hemiplegic patients and healthy controls calculated by the improved
method, we can clearly see the difference between them, meaning it is possible to effectively distinguish
the hemiplegic patient from the healthy control easily. In addition, it can be seen from the spectrum of
ρMSDCCA that the local variation trend of correlation coefficients near the crossover point is identical,
with many similarities and good stability. Moreover, the improved method can quantitatively show
the difference between the correlation of the gait signals of two groups of subjects, and it can also
reflect the differences of walking ability between individual hemiplegic patients.

4. Conclusions

This study analyzes the correlation between the electrostatic gait signals of hemiparetic patients
and healthy controls by using an improved method which combines the local moving window method
and traditional DCCA cross-correlation coefficient method. Using the improved method to analyze the
electrostatic gait signal can mitigate the weaknesses of the traditional method, such as the random trend
changes and incomplete similarity. In this paper, the electrostatic gait signals of hemiparetic patients
and healthy controls were collected, and the improved method was used for gait analysis. Compared
with the ρMSDCCA coefficient of the healthy control group, the mean value of the ρMSDCCA coefficient of
the hemiparetic patients was smaller, and the trend of change was more complicated, reflecting that
the gait stability of the hemiparetic patients was weaker than that of the healthy controls, additionally,
a poor correlation was obtained. The improved method can obtain the dynamic changes of the scale
index under the multi-scale structure, and quantify the gait difference between the hemiparetic patients
and the healthy controls.
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We only collected one minute of the patients’ gait signal data due to their weakened mobility.
This paper does not consider the difference in the gait signal between individual patients due to different
rehabilitation stages, which can be considered a limitation. In future research, we will obtain more
abundant experimental data, and conduct more in-depth research based on the different rehabilitation
stages of hemiparetic patients, and then obtain more accurate and effective characteristic parameters.
In the future, multiple characteristic parameters could be used to analyze various abnormal gaits,
such as the hemiparesis and Parkinson gaits.
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