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Abstract

Motivation: Gene Set Enrichment Analysis (GSEA) is routinely used to analyze and interpret

coordinate pathway-level changes in transcriptomics experiments. For an experiment where less

than seven samples per condition are compared, GSEA employs a competitive null hypothesis to

test significance. A gene set enrichment score is tested against a null distribution of enrichment

scores generated from permuted gene sets, where genes are randomly selected from the input ex-

periment. Looking across a variety of biological conditions, however, genes are not randomly dis-

tributed with many showing consistent patterns of up- or down-regulation. As a result, common

patterns of positively and negatively enriched gene sets are observed across experiments. Placing

a single experiment into the context of a relevant set of background experiments allows us to iden-

tify both the common and experiment-specific patterns of gene set enrichment.

Results: We compiled a compendium of 442 small molecule transcriptomic experiments and

used GSEA to characterize common patterns of positively and negatively enriched gene sets. To

identify experiment-specific gene set enrichment, we developed the GSEA-InContext method

that accounts for gene expression patterns within a background set of experiments to identify

statistically significantly enriched gene sets. We evaluated GSEA-InContext on experiments

using small molecules with known targets to show that it successfully prioritizes gene sets that

are specific to each experiment, thus providing valuable insights that complement standard

GSEA analysis.

Availability and implementation: GSEA-InContext implemented in Python, Supplementary results

and the background expression compendium are available at: https://github.com/CostelloLab/

GSEA-InContext.

Contact: james.costello@ucdenver.edu

1 Introduction

Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003;

Subramanian et al., 2005) was developed to help with the analysis

and interpretation of the long lists of genes produced from high-

throughput transcriptomic experiments. By summarizing genome-

wide gene expression changes into gene sets—groups of functionally

related genes—a user can gain insight into how biological pathways

and processes are affected under the tested experimental conditions.

Since its initial application to microarray experiments, GSEA has

demonstrated utility across many applications, including RNA-seq

gene expression experiments, genome-wide associations studies (de

Leeuw et al., 2016; Zhang et al., 2010), proteomics (Lavallée-Adam

et al., 2014) and metabolomics studies (Xia and Wishart, 2010).

The power of GSEA lies in its use of gene sets, which provide

a more stable and interpretable measure of biological functions

compared to individual genes that can show greater experimental

and technical variation (Eklund and Szallasi, 2008). Custom gene

sets can be defined, but more commonly, researchers rely on pre-

compiled sets, such as the widely-used Molecular Signatures

Database (MSigDB) (Subramanian et al., 2005). Additional online

resources have become available to provide pre-compiled gene sets

specific to drug response (Yoo et al., 2015), human disease and

pharmacology (Araki, 2012), molecular phenotypes (Huang et al.,

2012) and patient prognosis (Culhane et al., 2012), to name a few.

Similar to other Functional Class Scoring (FCS) methods (Khatri

et al., 2012), the underlying hypothesis of GSEA is that genes
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involved in a similar biological process or pathway (grouped into

gene sets) are coordinately regulated. Thus, if an experimental per-

turbation activates a pathway, the genes in the associated gene set

will be coordinately up-regulated and this pattern can be identified

using statistical tests. The enrichment score, which reflects the de-

gree to which genes in a gene set are over-represented at either end

of a ranked gene list, is a fundamental aspect of FCS methods.

Accordingly, a great deal of effort has been devoted to the develop-

ment and evaluation of statistical models, from simple mean/median

gene level statistics (Jiang and Gentleman, 2007) or maxmean

statistics (Efron and Tibshirani, 2007) to the Wilcoxon rank sum

tests (Barry et al., 2005) and a modified version of the Kolmogorov-

Smirnov test that is used in GSEA (Mootha et al., 2003;

Subramanian et al., 2005). Finally, the significance of the enrich-

ment score is estimated against the null hypothesis. Two categories

of null hypotheses are used across FCS methods: i) self-contained or

ii) competitive null hypothesis. When running GSEA (Mootha et al.,

2003; Subramanian et al., 2005), these options can be found under

the ‘Permutation type’ field with options, phenotype (self-

contained) or gene_set (competitive).

The self-contained null hypothesis states that no genes in a given

gene set are differentially expressed. To test this hypothesis for any

given gene set, the phenotype labels defining the experimental condi-

tion of individual samples are permuted. This approach focuses on

the genes in a given gene set and ignores genes outside the set, pro-

viding strong statistical power and rejecting more null hypotheses

(Goeman and Bühlmann, 2007; Khatri et al., 2012; Tian et al.,

2005). However, this approach has several drawbacks. For experi-

ments with a high number of differentially expressed genes, this

approach will produce many significantly enriched gene sets.

Conversely, if few genes are differentially expressed, corresponding-

ly few gene sets will be significantly enriched. Because phenotype

labels are permuted under this null hypothesis, the statistical power

of the test is determined by the number of samples in the experi-

ment. As a result, the GSEA documentation recommends providing

at least seven samples per phenotype label when running GSEA with

the phenotype option selected in the ‘Permutation type’ field

(GSEA User Guide, 2018). Experiments with fewer than three sam-

ples per phenotype cannot be run, and tens to hundreds of samples

per experimental condition are needed to achieve robust statistics.

For the large number of experiments generating less than seven

samples per condition, the alternative to the self-contained null hy-

pothesis is the competitive null hypothesis. The null hypothesis for

this approach states that genes in a given gene set are at most as

often differentially expressed as the genes not in the set. To test this,

random sets of genes of equal size to a given gene set are scored.

Thus, this approach compares genes within a set to genes outside the

set. When sample sizes are numerous and the data follow the

assumptions of the underlying statistical models, then the self-

contained null hypothesis is preferred as it offers greater statistical

power than the competitive null hypothesis to reject the null hypoth-

esis (Goeman and Bühlmann, 2007; Khatri et al., 2012; Tian et al.,

2005). However, when these assumptions are not met or the focus

of an analysis is on an individual sample, the competitive hypothesis

is needed. When running GSEA (Mootha et al., 2003; Subramanian

et al., 2005), the competitive hypothesis can be selected using

the gene_set option under the ‘Permutation type’ field (GSEA

User Guide, 2018). It is also the only option when running the

‘GSEAPreranked’ mode, where the user supplies a pre-ranked list of

genes based on whatever method they choose, most often this is a

list of differentially expressed genes.

There are many experiments that require the use of the competi-

tive null hypothesis for proper comparison. Accordingly, this re-

quirement motivated a series of methods to address the statistical

challenges in single-sample analysis of ranked gene lists (Barbie

et al., 2009; Hänzelmann et al., 2013; Lee et al., 2008; Tomfohr

et al., 2005). By selecting random sets of genes outside the set being

tested, the competitive null hypothesis approach breaks the inherent

correlation structure of genes in the tested set. Methods like GSVA

(Hänzelmann et al., 2013) nicely address this challenge by incorpo-

rating gene-specific variation directly in the calculation of a sample-

wise gene set enrichment score within a given input dataset.

Here we take a different approach to analyze and adjust for pat-

terns in differentially enriched gene sets produced using GSEA with

the competitive null hypothesis. Specifically, we account for gene-

specific variation estimated from a set of background experiments.

Our approach is motivated by the fact that there are no methods

available for a user to easily compare their GSEA results to GSEA

results obtained from other experiments to discern similar and/or

distinct patterns affected across experiments. Overall, the goal of

this research is to address two questions: i) which gene sets are com-

monly enriched across a compendium of experiments, and ii) which

gene sets are uniquely enriched in a single experiment compared to

many other, independent experiments? By addressing these ques-

tions, we intend to complement and enrich the results generated by

GSEA (Mootha et al., 2003; Subramanian et al., 2005).

To accomplish these goals, we first curated a compendium of

gene expression experiments encompassing a variety of experimental

conditions and identified patterns of positive and negative enrich-

ment by applying GSEA. We then leverage these patterns to help

place single experiments into context. Accordingly, we developed an

extension for GSEA that uses these context-specific patterns to in-

form the statistical testing procedure. Specifically, while GSEA tests

for the significance of an enrichment score against a null distribution

of enrichment scores calculated for random permuted gene sets, our

algorithm generates permuted gene lists based on a set of back-

ground experiments. Because we allow the user to define the context

of the background set of experiments, we have termed our method,

GSEA-InContext, which stands for GSEA—Identifying novel and

Common patterns in expression experiments.

We applied GSEA-InContext to a compendium of gene expres-

sion experiments testing small molecule treatments in human cell

lines. Small molecules remain the gold standard of treatment for nu-

merous diseases, and in the context of cancer, human cell lines have

been widely used to study mechanisms of drug action and present a

robust pharmacogenomic platform (Barretina et al., 2012; Garnett

et al., 2012; Goodspeed et al., 2016; Shoemaker, 2006). Gene ex-

pression experiments are regularly performed to study the direct ef-

fect of a small molecule, but expression profiles will capture both

on- and off-target effects of the small molecule and disentangling

these effects remains a challenge. At the same time, patterns of posi-

tive or negative enrichment can provide insights into common (i.e.

not tissue- or drug-related) responses to small molecule treatment.

In this article, we demonstrate how GSEA-InContext can be used to

gain insights into both aspects of small molecule treatment. We pro-

ceed by first describing our curated background compendium of

small molecule gene expression experiments. We present an analysis

of this compendium and identify commonalities in differentially

expressed genes and significantly enriched gene sets, motivating the

development of the GSEA-InContext method. Finally, we demon-

strate GSEA-InContext on two example applications: Notch inhib-

ition in T-cell acute lymphoblastic leukemia and investigating gene
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expression changes in response to dexamethasone and estradiol

treatment in breast cancer cell lines.

2 Materials and methods

2.1 Data collection and normalization
We queried the Gene Expression Omnibus (GEO) database (Edgar

et al., 2002) for human gene expression studies performed on the

Affymetrix Human Genome U133 Plus 2.0 Array that tested small

molecules. We excluded studies that had fewer than two replicates

per condition, or that did not have an appropriate vehicle control

condition, which was needed to calculate differentially expressed

gene lists across all experiments. We proceeded with a total of 128

studies comprised of 2812 individual microarrays that met the

search criteria. Meta-data for each study was parsed from GEO in

order to annotate tissue type, cell line and small molecule. The CEL

files for each study were downloaded with the GEOQuery R pack-

age (Davis and Meltzer, 2007). Within each study, the expression

data was background corrected, quantile normalized and probe sets

were summarized using RMA (Bolstad et al., 2003) with the affy R

package (Gautier et al., 2004). For each study, control and treat-

ment conditions were identified and differential expression between

all control/treatment pairs was calculated with the limma package

(Ritchie et al., 2015). Probe sets were annotated to genes using the

hgu133plus2.db R package (Carlson, 2016), keeping one probe set

per gene with the highest average expression across all samples. For

each experimental comparison, genes were ranked according to their

log2 fold change and saved as a ranked list L (Fig. 1A) for input into

GSEAPreranked and GSEA-InContext. In total, we generated a

compendium of 442 ranked lists.

All gene set collections were downloaded from MSigDB, v6.1

(Liberzon et al., 2015; Mootha et al., 2003; Subramanian et al.,

2005). The Hallmarks collection (Liberzon et al., 2015) was selected

to be used for all analyses because it is comprised of 50 gene sets,

thus full results can be reported and displayed through this manu-

script. Analyses performed with additional gene sets are supplied as

described in Section 2.4.

To annotate mechanisms of action for the small molecules, we

grouped them based on their targets using the Drug Repurposing

Hub (Corsello et al., 2017) and DSigDB (Yoo et al., 2015).

2.2 Application of GSEAPreranked
To ensure consistency between implementations of GSEA, we ran

each of the 442 ranked lists through the GSEAPreranked algorithm

using both the javaGSEA Desktop program (Mootha et al., 2003;

Subramanian et al., 2005) and the GSEApy Python package (https://

github.com/BioNinja/gseapy); both implementations produced

equivalent results. For all analyses shown here, we applied GSEApy

(pypi package version 0.9.3, Python3.6) using a weighted

enrichment scoring statistic and 100 permutations. GSEAPreranked

requires the use of the competitive null hypothesis, the gene_set

permutation type. Default settings were used for all other

parameters.

2.3 Implementation of GSEA-InContext
According to the GSEA documentation (GSEA User Guide, 2018),

the GSEAPreranked algorithm takes as input a user-supplied ranked

gene list L and a collection of gene sets C ¼ fS1 . . . Skg, where Sk is

an a priori defined gene set (Fig. 1A). An enrichment score (ES) is

calculated for each gene set ESðSkÞ using a weighted Kolmogorov-

Smirnov-like statistic (Mootha et al., 2003; Subramanian et al.,

2005). The ES reflects the degree to which genes in Sk are positively

or negatively enriched at either end of the ranked gene list L.

To estimate the significance level of ESðSkÞ, GSEAPreranked

tests ESðSkÞ against an empirically defined null distribution,

ESPreranked
null . To illustrate how this distribution is created, we use the

example of S1 in Figure 1. GSEAPreranked generates m permuted

gene sets of the same length as S1 by randomly selecting genes from

L (Fig. 1B). We use the notation S01;j to represent the jth permutation

of the randomized gene set S01. The nominal P-value for S1 is calcu-

lated by comparing ESðS1Þ to the ESPreranked
null distribution. Note that

the modified Kolmogorov-Smirnov test applied by GSEA creates a

bimodal ESPreranked
null .

Our method applies the same approach as GSEA to calculate

the nominal P-value (GSEA User Guide, 2018; Mootha et al.,

2003; Subramanian et al., 2005). However, in contrast to

GSEAPreranked, GSEA-InContext employs an alternative procedure

to generate the null distribution, in which the m permuted gene sets

are generated using the gene ranks estimated from a set of pre-

compiled background experiments (Fig. 1C). The background

experiments are defined by the user, either by compiling their own

A

B

C

Fig. 1. Overview of the statistical test for GSEAPreranked and GSEA-InContext. (A) A workflow for using GSEA to identify significantly enriched gene sets in a ve-

hicle control vs drug-treated experiment. Calculating the expression fold change between the two conditions produces a ranked gene list L. This list is input into

GSEA along with a collection of gene sets C. (B) To test whether a gene set S1 is significantly enriched in L, the enrichment score, ESðS1Þ, is tested against a null

distribution ESnull. GSEAPreranked creates ESPreranked
null by calculating the ES for m gene sets the same size as S1, which are created by randomly selecting from

teh full range of L. (C) The GSEA-InContext approach takes as input L, C, and a user-defined set of background experiments. Instead of randomly generating gene

sets, ESInContext
null is created by selecting genes based on how they are distributed in the background set of experiments. The ES for each of m informed gene sets is

calculated and used to evaluate the significance of ESðS1Þ
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experiments or leveraging a subset or the full set of the 442 pre-

compiled ranked list supplied here. For a gene present in gene list L,

let random discrete variable X ¼ fx1 . . . xng represent the set of gene

ranks across all n background experiments where xr is the gene’s

rank in the rth background experiment. Using the background

experiments, we calculate the mean rank, li, and variance, r2
i , where

we set the default r2
i to be the median of the distances between all

pairwise ranks of gene i over the n background experiments. The

distance is simply the difference in ranks between xr and xr þ 1.

Using this information we estimate PðX ¼ rÞ, or the probability of

any gene having a given rank using the beta-binomial distribution as

follows:

PðX ¼ rja;bÞ ¼
n

r

 !
Bðrþ a;n� rþ bÞ

Bða; bÞ

Bða; bÞ is the beta distribution with shape parameters a and b, which

we calculate as follows:

a ¼ 1� l
r2
� 1

l

� �
l2; b ¼ a

1

l
� 1

� �

To calculate a and b, l and r2 are bounded, l 2 ð0;1Þ
and r2 2 ð0; 0:52Þ. Thus, we scale the gene ranks, and subsequent-

ly l and r2, to be in the range ð0; 1Þ. After PðX ¼ rÞ is estimated

over all the ranks for a given gene i, the values are scaled back

to the original rankings. As shown in Figure 1C, this procedure

is applied independently for all genes in a given gene set, such

as S1.

To create the permuted gene set S01;1, GSEA-InContext draws

rank indices according to PðX ¼ rja;bÞ for each gene in S1. This

index is then used to select the gene at that rank in L. This procedure

is repeated to create m permutations of S1 to generate the informed

ESInContext
null . Should the same index be drawn randomly, we resample

according to the same procedure to create a non-overlapping

ESInContext
null . As in GSEAPreranked, the nominal P-value for S1 is cal-

culated by comparing ESðS1Þ to the ESInContext
null distribution

(Fig. 1C). Also following GSEAPreranked, the false discovery rate

(FDR) is calculated as the ratio of the actual ES compared to the ESs

for C against all permutations over the distribution of the actual ES

compared to the ESs for C in the dataset being tested (GSEA User

Guide, 2018).

Outside of the changes to the way GSEA-InContext generates

the null distribution of enrichment scores, all other components of

GSEA are the same for GSEAPreranked and GSEA-InContext.

When run using our Python implementation, GSEA-InContext

returns a table of nominal P-values, FDR-adjusted P-values,

enrichment scores and normalized enrichment scores for every

gene set tested. Enrichment plots can also be generated. We also

return the table of GSEAPreranked results for all of the

experiments used in the background set, allowing researchers to

explore common patterns in the background experiments. Finally,

GSEAPreranked results are output for comparison to the GSEA-

InContext results.

2.4 Code availability
To leverage the multi-threading capabilities of GSEApy, we imple-

mented GSEA-InContext as a new class within the existing Python

package. The code, documentation and Supplementary results

for all gene set collections are available at: https://github.com/

CostelloLab/GSEA-InContext.

The background gene expression compendium of 442 ranked

lists is available at: https://www.synapse.org/GSEA_InContext.

3 Results

3.1 Overview of gene expression datasets
We curated a gene expression compendium of 442 gene lists ranked

by log2 fold change between treatment versus control conditions.

We required that all comparisons have at least three replicates per

condition, where the conditions were either small molecule treat-

ments or the appropriate vehicle control treatment. Raw data were

processed according to the procedures outlined in Section 2.1. The

tissues and small molecules included in the compendium are sum-

marized in Figure 2. A total of 21 tissues are represented in the data-

set (202 unique immortalized or primary cell lines), with the most

common tissue type being breast. We captured a range of 129 small

molecules that we grouped into 69 drug classes based on mechanism

of action. The most commonly used small molecules were eribulin

and paclitaxel, which inhibit microtubule dynamics.

3.2 Common patterns of genes and pathways across

small molecule treatments
To evaluate general gene- and pathway-level patterns, we first cre-

ated a distribution of the mean ranks for each gene across the 442

experiments. We compared these results to a null distribution gener-

ated by randomizing the genes in each of the 442 experiments. We

found that roughly 25% of genes fell at least 3 standard deviations

outside the mean rank of the null distribution, compared to the

expected frequency of 0.3% (Fig. 3A). Of the 25%, 12.6% of genes

ranked higher and 13.9% ranked lower than the mean rank. These

results demonstrate that roughly a quarter of the genes being studied

across 442 experiments are more consistently differentially regulated

than expected at random.

To illustrate this effect on a per gene basis, Figure 3B displays

the two genes with the highest and lowest mean rank across all 442

experiments. The gene with the highest mean rank was MAF bZIP

transcription factor F (MAFF), which encodes a transcription factor

of the MAF family and has been shown to be essential for activation

of genes involved in detoxification and the response to oxidative

stress (Katsuoka et al., 2005). This gene is also up-regulated in re-

sponse to hypoxia (Chen et al., 2006). The most lowly ranked gene

was cyclin E2 (CCNE2), an activating regulatory subunit of CDK2,

most highly expressed during the G1/S cell cycle transition (Gudas

et al., 1999). Intuitively, the rankings of these genes are consistent

with small molecule treatment, given that CCNE2 is frequently

down-regulated in response to drugs that arrest cell growth, and

MAFF is up-regulated in response to cellular stress. However, the

non-random ranking of genes does suggest there would be common-

alities across enriched gene sets identified by GSEA. To investigate

this, we ran GSEAPreranked on each of the 442 experiments and

evaluated global gene set patterns using the Hallmarks collection

(Liberzon et al., 2015). We performed our analyses using all gene

sets available in MSigDB (Mootha et al., 2003; Subramanian et al.,

2005) and found similar patterns as those reported for the

Hallmarks collection; these results are available as described in

Section 2.4.

In Figure 4A, we report the fraction of experiments that showed

an FDR < 0.05 for each of the gene sets in the Hallmarks collection,

where we found clear patterns of positive and negative enrichment.

For example, proliferation and cell cycle related processes were

consistently down-regulated, including E2_TARGETS, which

was significantly down-regulated in over 45% of the experiments.

Other gene sets were consistently up-regulated, such as

TNFA_SIGNALING_VIA_NFKB, which was significantly positively

enriched in approximately 53% of the experiments. These results
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are consistent with the trends we identified for CCNE2 and MAFF

(Fig. 3B). CCNE2 is a member of many of the down-regulated cell

cycle-related gene sets and MAFF is a member of the most up-

regulated gene set, TNFA_SIGNALING_VIA_NFKB. In comparison,

analyzing 442 randomly permuted gene lists with GSEAPreranked

produced significant results in few experiments, less than 3% for

any gene set in the Hallmarks collection.

To investigate the potential effects of the large number of experi-

ments coming from a limited number of studies in our dataset that

use breast cells or treat with tubulin polymerization inhibitors, we

repeated our GSEAPreranked analysis including and excluding these

experiments (Fig. 4B). Comparing the GSEA results for 126 experi-

ments using tubulin polymerization inhibitors to the remaining 317

experiments, we observed instances where certain gene sets

increased in frequency of significance in experiments with the inhibi-

tors and other gene sets increased under all other drugs. However,

many of the general patterns shown in Figure 4A remain, demon-

strating that the over-representation of tubulin polymerization

inhibitors is not soley responsible for the results in Figure 4A.

Similarly, we compared 107 experiments using breast cell lines to

336 experiments using cells from other tissues and, again, found

gene sets such as TNFA_SIGNALING_VIA_NFKB were commonly

significantly enriched regardless of experimental tissue type

(Fig. 4C).

3.3 Global adjustment of common patterns of

gene set enrichment
Our meta-analysis of GSEA results across a compendium of 442

small molecule gene expression experiments highlighted common

patterns of gene set enrichment. To complement this analysis, we

next asked, which gene sets are uniquely enriched in a given experi-

ment? We addressed this question by assuming the competitive null

hypothesis as in GSEAPreranked, but adjusting the empirical null

distribution used in the statistical test (Fig. 1). The method we

Fig. 2. Overview of gene expression datasets by tissues and small molecules. Heatmap shows the fraction of small molecules used across 442 experiments

(treatment vs. control comparisons). All experiments were performed in human immortalized or primary cell lines

A

B

Fig. 3. Ranking of genes across 442 small molecule gene expression profiles.

(A) Distribution of the mean rank for all genes measured across 442 small mol-

ecule experiments (blue) compared to the mean rank of genes from 442

randomized gene lists (pink). Roughly 25% of genes in the experiments fall out-

side 3 standard deviations from the randomly ranked genes. (B) The ranks of

MAFF and CCNE2 across all 442 experiments. These two genes are the highest

and lowest ranked genes in (A) by mean rank across all 442 experiments
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propose leverages a background set of experiments to define an

informed null distribution, rather than creating one with completely

random permutations. As the goal of this approach is to place a sin-

gle experiment in the context of a background set of user-defined

experiments, we call the method GSEA-InContext. Full details of

the method are described in Section 2.3.

First, we compared the results produced by GSEAPreranked on the

442 experiments to the corresponding results from GSEA-InContext.

We ran GSEA-InContext on each individual experiment using the

background set of the 441 other experiments and the Hallmarks collec-

tion (Liberzon et al., 2015) (Fig. 5). As expected, GSEA-InContext

broadly reduced the number of significantly reported gene sets per

experiment. More specifically, the commonly enriched pathway

TNFA_SIGNALING_VIA_NFKB was reduced from 53% up-regulated

in GSEAPreranked to 14% in GSEA-InContext. Similarly, the

most down-regulated gene set E2F_TARGETS was enriched in only

19% of experiments using GSEA-InContext compared to 42% in

GSEAPreranked. Two gene sets, OXIDATIVE_PHOSPHORYLATION

and PEROXISOME, that are uncommon in the 442 experiments become

enriched at a slightly higher frequency in GSEA-InContext compared

to GSEAPreranked.

To confirm that the GSEA-InContext method did not introduce

any systematic biases, we ran GSEA-InContext on randomized rank

lists for all of the 442 experiments and found that gene sets were sig-

nificantly positively or negatively enriched in a small fraction

(<4%) of the random experiments, which was equivalent to results

produced by running the same randomized experiment with

GSEAPreranked.

Finally, we performed experiments to analyze the impact of the

size of the background set. We randomly sampled 100 background

ranked lists of size 300, 200 and 100 from our 442 ranked lists. We

compared the result using 10 randomly selected experiments from

the 442 and found that even at a sample size of 300, significance

tended to be less stringent, resulting in greater number of lower

FDRs being reported, though these findings varied across gene sets.

This trend continued with background sets of 200 and 100, though

the results were similar to that of the background set of 300. We re-

port the full Supplementary results as described in Section 2.4.

A B C

Fig. 4. Commonly enriched gene sets across 442 small molecule gene expression experiments. (A) The gene sets in the Hallmarks collection (Liberzon et al.,

2015) were tested against all 442 experiments using GSEAPreranked (competitive null hypothesis). Significant gene sets are defined as an FDR < 0.05. Gene sets

are ranked by the difference in the fraction of experiments with significant positive and negative enrichment. The most frequently down-regulated pathway is

E2F_TARGETS (blue text) and most commonly up-regulated pathway is TNFA_SIGNALING_VIA_NFKB (red text). (B) The fraction of positively and negatively

enriched gene sets are shown for 126 experiments that tested response to eribulin or paclitaxel (dark bars), compared to 317 experiments that tested another

compound (light bars). (C) The fraction of positively and negatively enriched gene sets within 107 experiments using breast cancer cell lines (dark bars), com-

pared to 336 experiments that used non-breast cells (light bars)

Fig. 5. Adjusting for positively and negatively enriched pathways. The points

represent the fraction of gene sets that are significantly up- or down-regulated

(FDR < 0.05) across all 442 experiments in GSEAPreranked (dark red, dark blue)

or GSEA-InContext (light red, light blue). The bars show the difference between

the fraction of significantly enriched gene sets between the analyses
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3.4 Applications of GSEA-InContext
We demonstrate the application of GSEA-InContext using two

biologically relevant examples. The first example illustrates that

GSEA-InContext successfully removed non-specific gene set enrich-

ment patterns in order to identify the on-target effects of a small

molecule compound. The second example demonstrates how GSEA-

InContext can be used to disentangle the effects of a single drug in

cells treated with a drug combination.

3.4.1 Re-scoring Notch pathway inhibition in a T-ALL cell line to

down-weight non-specific gene sets

Any small molecule drug will have direct (e.g. signaling) and indirect

(e.g. stress) effects, whether it is due to drug promiscuity or the in-

herent interconnectedness of biological systems. Thus, a perennial

challenge in pharmacology is to functionally characterize the on-

and off-target effects of a drug treatment. Accordingly, we demon-

strate how GSEA-InContext can be used to identify gene sets that

are specific to a small molecule treatment by selecting an appropri-

ate background set of experiments. One well-represented tissue type

in our compendium of 442 experiments is blood, in particular leuke-

mia cell lines, which we stratified into the lymphoblastoid (n¼44)

and myeloid (n¼48) lineages. We selected a single experiment in

which HBP-ALL cells treated with SAHM1, a Notch signaling in-

hibitor, were compared to cells treated with a vehicle control

(GSE18198; Moellering et al., 2009). Activation of Notch signaling

has been associated with the development of T-cell acute

lymphoblastic leukemia (T-ALL), with direct inhibition of Notch

pathway members in tissue culture and mouse models decreasing

proliferation of T-ALL cells. We found 17 gene sets significantly

enriched at an FDR < 0.05 (Fig. 6A) using GSEAPreranked with the

Hallmarks collection. Interestingly, while NOTCH_SIGNALING was

down-regulated, it remained above the significance threshold

(FDR¼0.097).

We next ran the same experiment through GSEA-InContext,

using a set of 44 lymphoblastoid experiments as the background set.

Using the Hallmarks collection, GSEA-InContext identified a total

of 10 significantly enriched gene sets (FDR < 0.05). Notably,

GSEA-InContext reported NOTCH_SIGNALING to be significantly

down-regulated (FDR¼0.037) (Fig. 6A), supporting the direct in-

hibition of the Notch signaling pathway by SAHM1. We confirmed

that the direction of enrichment (positive/negative) for all gene sets

was the same in both analyses. We additionally performed a down-

sampling experiment to evaluate the impact of this targeted back-

ground set and found that NOTCH_SIGNALING remained significant

even when the background set was reduced to 10 ranked lists,

though, as we saw in Section 3.3 the decreased background size

correlated with overall lower FDRs across all tested gene sets

(Supplementary analysis as reported in Section 2.4).

We compared the results of GSEAPreranked to GSEA-InContext

and used these patterns to help interpret the results. A gene set that

was significant in GSEAPreranked but was raised above an FDR of

0.05 in GSEA-InContext was likely commonly enriched across the

background experiments. Conversely, a gene set being significant in

both GSEAPreranked and GSEA-InContext suggests that the set is

uniquely enriched in the experiment being tested compared to

the background experiments. We found gene sets that meet both

criteria. Cell cycle related gene sets (G2M_CHECKPOINT and

E2F_TARGETS) were significant in GSEAPreranked, but not in

GSEA-InContext (Fig. 6A), supporting the finding of Moellering,

et al. that the SAHM1 inhibits cell proliferation (Moellering et al.,

2009). Although down-regulation of cell cycle processes is a

biologically relevant result that supports the authors experimental

results, GSEA-InContext indicates that this result is a common re-

sponse in lymphoblastoid cells treated with an array of drugs. This

is supported by the fact that approximately 70% of the 44 back-

ground experiments showed enrichment of cell cycle related

processes.

The most significantly down-regulated genes sets in

GSEA-InContext are REACTIVE_OXYGEN_SPECIES_PATHWAY,

GLYCOLYSIS and HYPOXIA. All three gene sets are also highly sig-

nificant in GSEAPreranked, suggesting that these processes are

uniquely significant when HBP-ALL cells are treated with SAHM1.

The link between hypoxia and Notch signaling has been shown to

play key roles in cell differentiation (Gustafsson et al., 2005) and

key cancer related processes of migration and invasion (Sahlgren

et al., 2008). Hypoxia has long been know to play a key role in

A

B

Fig. 6. Two illustrative examples using GSEA-InContext. (A) GSEAPreranked

was run on a ranked list of differentially expressed genes from T-cell acute

lymphoblastic leukaemia cells (HBP-ALL) treated with SAHM1, a Notch

pathway inhibitor. GSEA-InContext was run on the same experiment using a

background set of 44 lymphoblastoid cell line experiments. The plot shows

the -log10 FDR of each analysis, with the grey lines signifying FDR < 0.05.

Yellow points represent gene sets significant only in GSEAPreranked; green

points were significant in both analyses; the red point (NOTCH_SIGNALING)

is only significant in GSEA-InContext; grey points fell below significance

in both analyses. Gene set names are listed to the right of the plot.

(B) GSEAPreranked significant results (purple) on an MCF7 breast cancer cell

line treated with a combination of dexamethasone and estradiol. GSEA-

InContext results (orange) on the same experiment as in (A) using a back-

ground set of 22 experiments in which MCF7 breast cancer cell lines were

treated with estradiol only. The intersection and set differences between the

two analyses are shown. All analyses used the Hallmarks gene set collection

(Liberzon et al., 2015)
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controlling glycolytic metabolism, particularly in cancer cells (Lu

et al., 2002), and hypoxic conditions stimulate the production of re-

active oxygen species (Chandel et al., 2000). The tight link between

these process and their regulatory link with Notch suggests that

Notch inhibition could be directly down-regulating key cancer pro-

gression processes, another potential positive effect of SAHM1

treatment.

Taken together, the GSEAPreranked and GSEA-InContext

results provide a more complete picture of the processes that are dif-

ferentially regulated in HBP-ALL cell treated with SAHM1. By plac-

ing enriched gene sets in context of a lymphoblastoid experimental

background, we identified both common and experiment-specific

gene sets. Notably, GSEA-InContext identified NOTCH_SIGNALING

as being significantly down-regulated, whereas GSEAPreranked did

not (Fig. 6A).

3.4.2 Disentangling the effects of dexamethasone from estradiol

response in breast cancer cell lines

As a second example, we sought to demonstrate how GSEA-

InContext can be used to prioritize gene sets that are specific to a

small molecule treatment by down-weighting gene sets that are

enriched in the background set of experiments. In this case, we per-

formed GSEAPreranked on an experiment in which MCF7 breast

cancer cells were treated with estradiol, an estrogen receptor agonist

and dexamethasone, a corticosteroid (GSE79761) (West et al.,

2016). We then applied GSEA-InContext to this same experiment

using a background set of 22 estradiol-only treated MCF7 experi-

ments. By defining the background this way, we aimed to down-

weight gene sets related to breast cancer cells or estradiol treatment

while identifying gene sets that are more specifically related to dexa-

methasone treatment.

We compared the results for the Hallmarks collection (Liberzon

et al., 2015) between each enrichment method (Fig. 6B). Gene sets

shown in the purple box in Figure 6B were significantly enriched using

GSEAPreranked. The gene sets in the purple box only represent path-

ways and processes that were commonly altered across the background

experiments. In this group, we found gene sets that were expected

to be enriched in MCF7 cells treated with estradiol, such as

ESTROGEN_RESPONSE_EARLY and LATE. Several gene sets that we

previously identified as being significantly enriched across a wide var-

iety of cell lines and drug treatments in our compendium (Fig. 4), such

as E2F_TARGETS and TNFA_SIGNALING_VIA_NFKB, were also iden-

tified as significant by GSEAPreranked. In contrast, these sets were not

significantly enriched in GSEA-InContext (orange box), demonstrating

that these sets were down-weighted to prioritize gene sets related to

dexamethasone treatment while adjusting for the effects of estradiol.

The gene sets in the overlapping section between the purple and

orange boxes were identified as significantly enriched in both

GSEAPreranked and GSEA-InContext. We confirmed that the

direction of enrichment (positive/negative) for these gene sets

was the same in both methods. The four gene sets identified in

both analyses were ANGIOGENESIS, IL2_STAT5_SIGNALING,

ANDROGEN_RESPONSE and PANCREAS_BETA_CELLS. Because

these gene sets are also significant in the GSEA-InContext analysis,

we expect the enrichment of these gene sets to be the result of the

added dexamethasone treatment in these cells.

The link between dexamethasone and the androgen signaling

pathway has been investigated in several studies. Dexamethasone is

a glucocorticoid receptor (GR) agonist and GR shares several tran-

scriptional targets with the androgen receptor (AR), including

SGK1, MKP1 and DUSP1 (Arora et al., 2013). Indeed, SGK1 is

in the ANDROGEN_RESPONSE gene set. Dexamethasone has

also been linked to IL2 signaling, which we see in the

IL2_STAT5_SIGNALING gene set. The ANGIOGENESIS gene set is

also negatively enriched in this experiment, supporting previous

results showing that dexamethasone inhibits angiogenesis (Yano

et al., 2006). Finally, we note that COMPLEMENT is uniquely

enriched in GSEA-InContext. Interestingly, dexamethosone has

been shown to be a transcriptional regulator of components in the

complement pathway (Lappin and Whaley, 1991). While those

results are in immune cells, this presents the potential research topic

of dexamethosone regulation of complement in breast cells stimu-

lated by estradiol.

Once again, we demonstrated that the GSEAPreranked and

GSEA-InContext results taken together provide complementary per-

spectives into altered pathways and processes in this experiment to

identify both common and experiment-specific gene sets.

4 Discussion

Extracting biological insights from the long lists of genes produced

by differential expression experiments still remains a challenge. FCS

methods, such as GSEA, are designed to aide in the interpretation of

gene lists by identifying differentially up- and down-regulated path-

ways and processes. Although GSEA succeeds at summarizing the

original list of genes into gene sets and identifying enrichment, the

results are provided only in the context of the tested experiment.

This is by design, but placing a single experiment in the context of a

biologically relevant background can provide insight into the

common and experiment-specific gene set patterns. In fact, common

patterns of positively and negatively enriched gene sets can be

observed across a variety of experimental conditions. We applied

GSEAPreranked to 442 different experiments in which human cells

were treated with small molecules and we identified gene sets that

were commonly up- and down-regulated across a number of con-

texts (e.g. drugs and tissues).

The majority of drugs that we evaluated were inhibitors (most

being cancer drugs). These small molecules are designed to inhibit

the growth of cells. Consistent with what we expected, the gene

sets representing cell cycle processes were the most down-regulated

pathways, while gene sets associated with cellular damage and

stress were commonly up-regulated. Interestingly, TNFA_

SIGNALING_VIA_NFKB was significantly up-regulated in over

50% of the 442 experiments and NF-jB signaling downstream of

TNFa has been shown to be pro-survival (Rath and Aggarwal,

1999). This suggests that inhibiting NF-jB signaling with the other

small molecule could potentially be an effective drug combination

treatment representing a common mechanism of drug synergy. This

is one example of a testable hypothesis that can be generated from

exploring commonly enriched gene sets.

Conversely, these common patterns motivate a new type of

analysis: specifically, that researchers can place their own

experimental results into a relevant context in order to identify

uniquely enriched gene sets for their experiment compared to

others. Accordingly, we introduced GSEA-InContext to perform

such an analysis. By running GSEA-InContext on our compiled

set of 442 expression experiments, we showed that the

algorithm successfully down-weighted the gene sets such as

TNFA_SIGNALING_VIA_NFKB that are commonly enriched in

many experiments. Additionally, we applied GSEA-InContext to

two example experiments, showing that in each case our method

highlighted biological pathways relevant to the small molecule

compound in each experiment.
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GSEA-InContext uses the competitive null hypothesis for statis-

tically evaluating gene set enrichment. While the self-contained null

hypothesis is preferred because it offers greater statistical power

than the competitive null hypothesis (Goeman and Bühlmann, 2007;

Khatri et al., 2012; Tian et al., 2005), there are many instances

when the self-contained null hypothesis cannot be used, particularly

when the number of samples per condition are low. The majority of

experiments that aim to test two conditions generate far less than

seven samples per condition, which requires the competitive null hy-

pothesis to be used. Thus, while GSEA-InContext is not applicable

using the self-contained hypothesis, it is is readily usable for the ma-

jority of gene expression experiments that require the use of the

competitive null hypothesis.

For the purposes of this analysis, we focused our efforts on small

molecule treatments of human cell lines. With over a million expres-

sion datasets currently in the GEO database (Baker, 2012), compiling

a properly defined background set can be a daunting task, as each

dataset requires manual curation of the control and treatment groups.

However, the 442 treatment-control comparisons that we compiled

and made available present a robust set of data to begin exploring

common and experiment-specific gene set patterns. The results from

GSEA-InContext are fully dependent on the compendium of back-

ground experiments, and as such, the approach will become more ro-

bust as the background compendium is expanded to include other

drugs and cell line experiments, such as ref. (Subramanian et al.,

2017). Future work will also include compiling background sets to

study other biological contexts and other organisms. Leveraging

efforts such as CREEDS (CRowd Extracted Expression of Differential

Signatures) will also rapidly expand the potential user-defined back-

ground sets (Wang et al., 2016). Additionally, we reported that the

background set influences statistical tests, in particular the FDR esti-

mates; thus, future work is needed to fully characterize the effect of

the background set on the results. Finally, comparing results across

platforms (e.g. microarray, RNAseq) will help identify which com-

monly enriched gene sets can be attributed to technical differences be-

tween platforms and which patterns are robust across platforms

reflecting true biological results.

We would like to close by stating that the goal of GSEA-

InContext is not to replace GSEA, but to complement the original im-

plementation of GSEA. Comparing the results obtained from GSEA

and the contextualized results from GSEA-InContext, we were able to

gain insights into not only the pathway-level changes in an experi-

ment, but also the common and experiment-specific patterns.
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