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Use of the relative release index for 
histamine in LAD2 cells to evaluate 
the potential anaphylactoid effects 
of drugs
Shengli Han   1,3, Yanni Lv1, Liyun Kong1, Delu Che1, Rui Liu1, Jia Fu1, Jiao Cao1, Jue Wang1, 
Cheng Wang1, Huaizhen He1, Tao Zhang1, Xinzhong Dong2 & Langchong He1

Anaphylactoid reactions are common clinical acute adverse drug reactions that can exacerbate a 
patient’s condition and produce effects that may become life-threatening. Therefore, it is important to 
establish a novel method to evaluate drugs for anaphylactoid reactions. In this study, we developed a 
sensitive and rapid method to detect histamine release from LAD2 cells using liquid chromatography-
tandem mass spectrometry (LC-MS/MS) and constructed a relative release index based on various 
release curve parameters, including allergen release time and sudden change rate, to evaluate the 
potential and strength of allergen-induced anaphylactoid reactions. This LAD2 release model was used 
to evaluate anaphylactoid reactions induced by ciprofloxacin, norfloxacin, lomefloxacin, moxifloxacin, 
and baicalin. The results positively correlated with those obtained with an Evans blue ear test and 
negatively correlated with the Ca2+ influx EC50. In summary, the current study established a novel 
in vitro method to analyze the properties of histamine release from LAD2 cells and characterize the 
sensitization and strength of sensitization of drugs or components that may induce anaphylactoid 
reactions.

Anaphylactoid reactions are common clinical acute adverse drug reactions that can exacerbate a patient’s condi-
tion and produce effects that may become life-threatening1–3. According to early studies, unlike in the usual type 
I hypersensitivity reaction, in anaphylactoid reactions, the main mechanism involves the direct stimulation of 
IgE-R on mast cells or basophils or the activation of complement by allergens via an alternative pathway4,5. These 
reactions lead to the release of anaphylactic mediators such as histamine and β-hexosaminidase6. A recent study 
by Dong et al. reported that MrgprX2, a specific membrane receptor on human mast cells, induces anaphylactoid 
reactions. Some medications, such as ciprofloxacin and rocuronium, induce MrgprX2-mediated degranulation, 
thereby causing anaphylactoid reactions7.

Specific receptors that are overexpressed on mast cells, such as IgE-R and MrgprX2, are direct targets for trig-
gering anaphylactoid reactions. LAD2, Ku812, and HMC-1 are three human mast cell lines commonly employed 
to study anaphylactic and anaphylactoid reactions8–11. In particular, LAD2 is often used because its biological 
properties are identical to those of primary human mast cells, including an abundance of IgE-R and overex-
pression of the MrgprX2 receptor12. Despite the availability of these cell lines, allergen screening and evaluation 
remains a serious clinical problem. In general, type I hypersensitivity reactions are assessed using active sys-
temic allergy tests and passive cutaneous anaphylaxis models13,14. However, the mouse ear (Evans blue) and local 
toe swelling tests are the most common evaluation methods because enhanced vascular permeability is a major 
pathological characteristic of anaphylactoid reactions15,16. The release of anaphylactic mediators, including hista-
mine and β-hexosaminidase, is commonly assessed by ELISA17,18, although there are difficulties associated with 
the detection of histamine and β-hexosaminidase, including but not limited to low sensitivity, poor reproducibil-
ity, and a complicated protocol.
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In this study, we established a sensitive and rapid method to detect histamine release from LAD2 cells using 
liquid chromatography-tandem mass spectrometry (LC-MS/MS) and constructed a relative release index (RRI) 
based on various release curve parameters, including allergen release time and sudden change rate, to evaluate the 
potential and strength of allergen-induced anaphylactoid reactions. Our strategy for the evaluation of anaphylac-
toid reactions via this LAD2 cell release model is presented in Fig. 1.

Results and Discussion
We established an LC-MS/MS method to simultaneously detect 13 anaphylactic mediators, specifically eight 
small molecules and five macromolecules (Fig. 2a and b). In addition, a system suitability test that examined 
the linearity, specificity, detection limit, reproducibility, and precision of the methods used to analyze the 13 

Figure 1.  Schematic of the histamine release curve used to evaluate anaphylactoid reactions.  Allergy 
mediators detected by LC-MS/MS to obtain the histamine release curve to evaluate anaphylactoid reactions; 

 Anaphylactoid substances that act on MrgprX2 or IgE-R on mast cells, induce the release of allergy 
mediators, and eventually cause anaphylactoid reactions via endothelial cells or smooth muscle cells.

Figure 2.  Typical LC-MS/MS chromatograms of allergy mediators. (a) Eight allergy mediators with low  
molecular weights (1: serotonin (5-HT), 2: thromboxane B2 (TXB2), 3: prostaglandin E2 (PGE2), 4: 
prostaglandin D2 (PGD2), 5: methylhistamine (MHA), 6: histamine (HA), 7: leukotriene E4 (LTE4), 8: platelet 
activating factor (PAF)); (b) Five allergy mediators with high molecular weights (9: interleukin 4 (IL-4), 10: 
interleukin 6 (IL-6), 11: interleukin 8 (IL-8), 12: β-hexosaminidase, 13: tumor necrosis factor-α (TNF-α));  
(c). Allergy mediators released by three types of human mast cells (LAD2, Ku812, and HMC-1 cells).
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anaphylactic mediators indicated that the results met the quantitative analysis requirements. The system suit-
ability results are detailed in Supplementary Table 1. Using the aforementioned method to detect anaphylactic 
mediator release from three human mast cell lines (LAD2, Ku812 and HMC-1), five anaphylactic mediators were 
identified within the effective release time (<30 min) (Fig. 2c). Among these mediators, histamine, serotonin, and 
β-hexosaminidase release was significantly higher than that of PGE2 and TNF-α. Moreover, the five anaphylactic 
mediators were released in significantly greater amounts by LAD2 cells than by Ku812 and HMC-1 cells, which 
recapitulated the more sensitive properties of anaphylactic mediator release from LAD2 cells following allergen 
stimulation. The amounts of anaphylactic mediators released are shown in Supplementary Table 1.

The time-effect release curves of the five anaphylactic mediators were determined by stimulating the three cell 
lines with the model drug compound 48/80. Histamine was released at a significantly higher concentration than 
the other four mediators between 0–60 min (Fig. 3a and Supplementary Table 2). Of the three cell types, LAD2 
cells released the highest concentration of histamine (Fig. 3a). In addition, mediator release was measured at five 
different time points for all three cell lines, and the total mediator concentration from LAD2 cells was greater 
than that from Ku812 cells and markedly greater than HMC-1 cells (Fig. 3b), demonstrating a positive correlation 
between the subtypes of anaphylactoid reaction-inducing receptors on the three cell lines and receptor numbers 
(Supplementary Table 3). These findings also indicated that LAD2 cells were not only enriched in anaphylactoid 
reaction-related receptor subtypes but also released large amounts of histamine. Recently, the LAD2 cell line has 
been widely used in anaphylaxis and anaphylactoid reaction studies and is a promising tool for measuring the 
ligand/receptor-induced (e.g., MrgprX2, IgE-R) mast cell release of inflammatory mediators. Therefore, LAD2 
was used as a model cell line to ascertain the potential and the extent of drug-induced anaphylactoid reactions via 
the construction of a histamine release curve.

Degranulation is a basic function of mast cells following activation by certain drugs, particularly fluoroquinolo-
nes. Histamine is the key mediator in mast cell granules. Histamine release induces vascular permeability and 
inflammatory infiltrates following local or systemic pseudo-allergic reactions. A local tissue swelling assay (paw 
swelling) in mice at 0, 5, 10, 15, 20, 25, and 30 min post-stimulation with compound 48/80 showed that maximum 
swelling occurred at 15 min post-stimulation and then reduced gradually (Fig. 4a and b). The detection of local his-
tamine release in the paw at each time point indicated that the degree of paw swelling and the Evans blue exudation 
rate were both associated with the amount of local histamine release (Fig. 4b and c). Therefore, there are close rela-
tionships between tissue histamine release and anaphylactoid reaction. Furthermore, we compared histamine release 
from tissue and from LAD2 cells. The histamine release curve for LAD2 cells indicated a release time of 14.6 min, 
with a sharp increase between 9 and 20.5 min (Fig. 4d). Similarly, the peak of local tissue histamine release was 
15 min, with an increase similar to that observed for LAD2 cells (Fig. 4d). Based on these results, there was a positive 
correlation between the maximum interval of tissue histamine release and histamine release in exponentially grow-
ing LAD2 cells. Thus, the in vitro properties of histamine reflect in vivo anaphylactoid reactions.

Figure 3.  Characteristics of allergy mediators released from LAD2, Ku812, and HMC-1 cells. (a) Release curves 
(Cx-t) for five allergy mediators, including the release time (t). Cx: the release concentrations of histamine 
(HA), serotonin (5-HT), prostaglandin E2 (PGE2), β-hexosaminidase and tumor necrosis factor-α (TNF-α)); 
(b) Total release concentrations (Ct) of five allergy mediators, including the release time (t).
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The results of the expression of MrgprX2 and the knockdown efficiency of MrgprX2 were investigated 
(Supplementary Figure 1). The knockdown efficiency was good. Therefore, in the present study 11 substances 
were screened at a concentration of 100 μg/mL by performing calcium imaging using MrgprX2-HEK293 cells and 
HEK293 cells (Supplementary Figure 2). Six substances (compound 48/80, ciprofloxacin, moxifloxacin, lome-
floxacin, norfloxacin and baicalin) representing 3 different classes of molecules that induce intracellular calcium 
influx via MrgprX2 were selected for further evaluation (Fig. 5a–f). Next, calcium imaging was performed for 
these six substances in LAD2 cells and MrgprX2 knockdown LAD2 cells. Silencing of MrgprX2 expression in 
LAD2 cells caused intracellular calcium influx to disappear. We concluded that the induction of mast cell acti-
vation by compound 48/80, ciprofloxacin, moxifloxacin, lomefloxacin, norfloxacin and baicalin was mediated 
by MrgprX2. Thus, we applied the in vitro LC-MS/MS method to analyze the MrgprX2-mediated anaphylactoid 
reactions triggered by these substances.

Anaphylactoid reactions induced by ciprofloxacin, norfloxacin, lomefloxacin, moxifloxacin, and baicalin 
are mediated through MrgprX2. Therefore, this study sought to use the histamine release curve for LAD2 cells 
(release time, release breakthrough velocity, release index (RI) and RRI to characterize drug-induced anaphylac-
toid reactions. First, LAD2 cells were stimulated with the five drugs and compound 48/80, and histamine release 
was assessed at different time points to obtain time-effect curves, designated histamine release curves (Fig. 6a), 
which were used to determine the corresponding histamine release time, release breakthrough velocity, RI and 
RRI of each drug. To clarify the function of the RRI value we obtained, we subsequently investigated the rela-
tionships between RRI values and anaphylactoid effects both in vitro and in vivo. Correlation analysis showed 
a strong negative relationship (r2 = 0.9919) between RRI and the EC50 of Ca2+ influx in LAD2 cells induced by 
these substances (Fig. 6b). The higher the EC50 value of a compound, the better effect it induces, and in this study, 
a higher EC50 value indicated the easier induction of an anaphylactoid reaction. The drug with the highest RRI 
tended to release the highest amount of histamine and thus induced an anaphylactoid reaction with a lower dose. 
Additionally, the anaphylactoid reaction-inducing effects of compound 48/80 and the five antibiotics were exam-
ined in vivo using the Evans blue ear test. Low, intermediate, and high concentrations of all six drugs significantly 
induced anaphylactoid reactions in mice in a dose-dependent manner (Fig. 6c). Furthermore, the RRI value of 
each drug was calculated according to equations (1–3), outlined in the Methods section. To clarify the function of 
the RRI value we obtained, we subsequently investigated the relationships between RRI values and anaphylactoid 

Figure 4.  LAD2 cell histamine release correlates with anaphylactoid reactions in C57 mice. (a) Paw thickness 
and Evans blue exudation in C57 mice after compound 48/80 injection at different time points (0, 5, 10, 15, 20, 
25 and 30 min); (b) The correlation between the paw thickness rate and local histamine released in C57 mice 
after compound 48/80 injection at different time points (0, 5, 10, 15, 20, 25 and 30 min); (c) The correlation 
between the Evans blue exudation rate and local histamine released in C57 mice after compound 48/80 injection 
at different time points (0, 5, 10, 15, 20, 25 and 30 min); (d) The correlation between local histamine released in 
C57 mice and LAD2 cell histamine release.
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effects. Evans blue exudation induced by the tested substances was positively correlated with the RRI (r2 = 0.9689, 
0.9773, and 0.9868, respectively) (Fig. 6d and Supplementary Table 4). Although rodents are relatively insensitive 
to histamine19, histamine was the best mediator for characterizing degranulation in vitro. Therefore, we used the 
RRI of the LAD2 cell release model established in vitro to evaluate anaphylactoid reactions in vivo.

Conclusion
In this study, an LC-MS/MS method was established and used to analyze the anaphylactoid reaction mediators 
released by mast cells. Release curves were established for the anaphylactoid reaction mediators, and the release 
time, release breakthrough velocity, RI, and RRI of the anaphylactoid reaction mediators were defined to evaluate 
anaphylactoid reactions. The LAD2 release model was then employed to evaluate the anaphylactoid reactions 
induced by ciprofloxacin, norfloxacin, lomefloxacin, moxifloxacin, and baicalin. The results positively correlated 
with the Evans blue ear test and negatively correlated with Ca2+ influx EC50 values. In summary, the current study 
established a novel in vitro method to analyze the properties of histamine release from LAD2 cells and character-
ize the sensitization and strength of sensitization of drugs or components that induce anaphylactoid reactions. 
The RRI of histamine in LAD2 cells was used to evaluate the potential anaphylactoid effects of various drugs.

Methods
Reagents and chemicals.  The LAD2 cell line was supplied by the American Type Culture Collection 
(ATCC, USA). The Ku812 cell line was supplied by the American Type Culture Collection (ATCC, USA). The 
HMC-1 cell line was supplied by the American Type Culture Collection (ATCC, USA). HPLC-grade methanol 
and acetonitrile were obtained from SK Chemicals Co., Inc. (Ulsan, Korea). All aqueous solutions were prepared 
using ultrapure water, which was produced using an MK-459 Millipore Milli-Q Plus ultra-pure water system. 
Compound 48/80, which is a condensation product of N-methyl-p-methoxyphenethylamine with formaldehyde, 
was used as a positive control to investigate histamine release.

LC-MS/MS methods.  Two Nexera LC-20ADXR pumps, a SPD-20A UV/VIS detector, a CBM-20A com-
munication bus module, an LCMS-8040 triple quadruple mass spectrometer, and a Lab Solutions work sta-
tion (Shimadzu Corporation, Kyoto, Japan) were employed in the UPLC-ESI-MS/MS system. A UPLC column 

Figure 5.  The mechanism of anaphylactoid substances acting on LAD2 cells. The Ca2+ influx of compound 
48/80 (a), ciprofloxacin (b), moxifloxacin (c), norfloxacin (d), lomefloxacin (e), and baicalin (f) in LAD2 cells 
and MrgprX2-knockdown LAD2 cells.
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(Shim-pack XR-ODS II, 75 × 2.0 mm I.D., 3 μm, Shimadzu Corporation, Kyoto, Japan) was maintained at 37 °C 
in a CTO-20AC column oven. The following UPLC-ESI-MS/MS system conditions were used: a mobile phase 
of acetonitrile-water (0.5% acetic acid) (40:60, v/v) with a 0.4 mL min−1 flow rate and UV detection. The MS/MS 
conditions were: nebulizer gas (N2, purity > 99.999%), flow rate of 3.0 L min−1; drying gas (N2, purity > 99.999%), 
flow rate of 15.0 L min−1; interface, ESI source; desolvation line (DL) temperature, 250 °C; heat block tem-
perature, 400 °C; interface voltage, 4.5 kV, interface current, 4.7 μA; detector voltage, 1.72 kV; CID gas (Ar, 
purity > 99.999%), pressure, 230 kPa; multiple reaction monitoring (MRM) mode. The detailed MRM method of 
histamine serotonin and PGE2 was shown in Supplementary Table 5. The detailed multiple reaction monitoring 
method of β-hexosaminidase and TNF-α after trypsin digestion was shown in Supplementary Table 6.

Construction of release curves for five anaphylactic mediators.  Time-effect release curves for five 
anaphylactic mediators were obtained using the LAD2, Ku812, and HMC-1 cell lines. Anaphylactic mediator 
release was induced by stimulating the cell lines with compound 48/80 as a model drug at different time points.

In vitro histamine release curve.  Histamine, the mediator released in the highest amounts, was confirmed 
to be the optimal mediator. Histamine release from LAD2 cells was selected to further evaluate anaphylactoid 
effects. Several new terms were defined as follows:

Release time (t): the time when the concentration of released histamine increased to 50% of the maximal 
concentration.

Release breakthrough velocity (v): the rate of histamine release speed after stimulation, calculated by equation (1):

=
−
−

V c c
t t (1)

2 1

2 1

Figure 6.  The RRI of histamine for LAD2 cells correlates with the anaphylactoid effects of drugs in C57 mice. 
(a) The histamine release curves (Cx-t) of six potential anaphylactoid drugs in LAD2 cells, including the release 
time (t). Cx: the released concentrations of compound 48/80 (as a positive control), ciprofloxacin, norfloxacin, 
lomefloxacin, moxifloxacin and baicalin; (b) The correlation between the histamine RRI and the EC50 values 
(concentrations giving half-maximal effect) of six drugs (compound 48/80, ciprofloxacin, norfloxacin, 
lomefloxacin, moxifloxacin and baicalin); (c) Evans blue ear extravasation results following stimulation by six 
potential allergic components; (d) The correlation between the histamine RRI and the OD values from the 
Evans blue ear extravasation experiment.
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where c2 is the final concentration of histamine after release, c1 is the initial concentration of histamine before 
release, t2 is the time the histamine concentration reached its maximum concentration, and t1 is the time that 
histamine release began.

RI is the acceleration speed of histamine release, calculated by equation (2):

=RI v
t (2)

RRI is the RI of the ingredients compared with that of compound 48/80, calculated by equation (3):

=RRI
RI
RI (3)

other ingredients

compound 48/80

Mouse model.  Mice were purchased from the Experimental Animal Center of Xi’an Jiaotong University 
(Xi’an, China). Adult male mice weighing 25–30 g were included in the study. All mice were housed in the 
Experimental Animal Center of Xi’an Jiaotong University. The mice were housed in individual cages in a large 
colony room with free access to water and were fed standard dry food twice per day. The breeding environment 
was maintained at 20–25 °C with a relative humidity of 40% and a day-night cycle of 12/12 h. All experiments 
involving equivalent treatments in animals were conducted by an experimenter blind to the conditions.

Ethics statement.  This study was carried out in strict accordance with the recommendations of the Guide 
for the Care and Use of Laboratory Animals from the National Institutes of Health. The experimental protocols 
for the mice were approved by the Animal Ethics Committee at Xi’an Jiaotong University, Xi’an, China (Permit 
Number: XJTU 2011-0045). All animals were operated on under chloral hydrate anesthesia.

Hind paw swelling and histamine release assay.  Experiments were carried out on adult male mice 
weighing 25–30 g that were anesthetized with an intraperitoneal injection of 0.08 mL of 10% chloral hydrate. 
Fifteen minutes after the induction of anesthesia, the thickness of the paw was measured with a Vernier caliper. 
After measurement, 5 µL of compound 48/80 (10 µg mL−1) was administered by a micro-injector in the left paw; 
saline was administered in the right paw as a negative control. Paw thickness was measured and recorded at 
specific time points (0, 5, 10, 15, 20, 25, and 30 min). For the histamine release assay, the mice were randomly 
assigned into 6 groups (5, 10, 15, 20, 25, and 30 min for the six groups) after anesthesia was administered. Fifteen 
minutes later, compound 48/80 (10 µg mL−1, 5 µL) was injected into the left paw and saline (5 µL) into the right 
paw; the mice were then sacrificed in sequence at specific time points, and all paw tissues were weighed and col-
lected into 1.5-mL tubes. One milliliter of saline was added to each tube and allowed to stand on ice for 30 min; 
paw tissues were then cut into pieces, treated supersonically for 30 min, and centrifuged for 10 min at 10000 rpm 
and 4 °C. Fifty microliters of supernatant from each sample was collected into a clean 1.5-mL tube, mixed with 
100 µL of d4-HA, and centrifuged for 10 min at 10000 rpm, 4 °C. Finally, 50 µL of supernatant was collected for 
histamine determination according to the previously described MRM method.

Hind paw Evans blue extravasation studies.  Evans blue extravasation studies were performed on adult 
male mice weighing 25–30 g that were anesthetized with an intraperitoneal injection of 0.08 mL of 10% chloral 
hydrate. Fifteen minutes later, each mouse was injected intravenously (i.v.) with 0.2 mL of 0.15% Evans blue in 
saline. The mice were randomly classified into 6 groups and placed back in separate cages (5, 10, 15, 20, 25, and 
30 min for the six groups), after which the mice were administered 5 μL of compound 48/80 (10 µg mL−1) by 
a micro-injector in one paw and saline (5 µL) in the other paw. At specified time points (5, 10, 15, 20, 25, and 
30 min), the mice were killed by decapitation, and a photo of each paw was taken; tissues were then collected into 
tubes, dried and weighed.

The dried paw tissues were soaked in 500 µL of acetone-saline (7:3, v/v) and cut into pieces; the total Evans 
blue content was obtained by sonicating for 30 min and incubating overnight at 37 °C. Each tissue solution was 
centrifuged at 10000 rpm for 10 min; 200 µL of the supernatant was transferred into a 96-well plate in sequence, 
and the OD values were read at 620 nm using a spectrophotometer.

Histamine release during systemic anaphylaxis reactions.  Adult male mice weighing 25–30 g were 
employed to carry out a systemic histamine release assay. Animals were randomly assigned to 6 groups and 
maintained in separate cages. Mice were given an i.v. injection of compound 48/80 (400 µL per 20 g of weight) 
in saline (0.125 mg mL−1), and saline was used as the negative control. At specific time points (5, 10, 15, 20, 25, 
and 30 min), blood was collected after removing the eye, and the blood samples were left to stand at 4 °C for 1 h; 
then, 50 µL of supernatant (serum) was obtained after centrifugation at 12000 rpm for 20 min. Each serum sample 
collected was mixed with 100 µL of d4-HA and centrifuged for 10 min at 10000 rpm, 4 °C; 50 µL of supernatant was 
collected for HA analysis according the previously described MRM method.

Intracellular Ca2+ mobilization assay.  MrgprX2-HEK293 cells or NC-HEK293 cells were plated at 
1 × 104 cells per well in 96-well plates and incubated overnight at 37 °C with 5% CO2. All drug substances were 
diluted to the required concentration in calcium imaging buffer (CIB). The incubation buffer consisted of 0.8 µL 
of Fluo-3, 3 µL of pluronic F-127 and 996.2 µL of CIB. Cells were washed twice in 100 µL of CIB, and then 100 µL 
of incubation buffer was added for 40 min. The cells were washed twice and then used immediately for imaging. 
For calcium imaging, the cells were magnified 200 times, and one photo per second was taken under blue light. 
The cells were identified as responsive if the [Ca2+]i rose by at least 50% after injection.
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siRNA transfection of LAD2 cells.  Specific knockdown was achieved using small interfering siRNAs  
targeting MrgprX2 or a control siRNA. A smart pool of double-stranded siRNAs targeting MrgprX2, as well as 
non-specific siRNAs, was obtained from Shanghai Gene Pharma Co., Ltd. The siRNA sequences were as follows: for-
ward, 5′-GUACAACAGUGAAUGGAAATT-′, and reverse, 5′-UUCCAUUCACUGUUGUACTT-′ for MrgprX2; 
and forward, 5′-UCUCCGAACGUGUCACGUTT-′, and reverse, 5′-CGUGACACGUUCGGAGAATT-′ for the 
control. For transfection, siRNA was delivered at a final concentration of 1 μmol L−1 using Lipofectamine® 2000 
reagent according to the manufacturer’s instructions. The 1.5 × 105 cells were incubated for 48 h to allow knock-
down of MrgprX2. These cells were then used for calcium imaging.

Evans blue ear extravasation studies.  Ciprofloxacin hydrochloride, moxifloxacin, norfloxacin, and 
lomefloxacin were prepared in Evans blue saline solution at concentrations of 0.65, 1.30, and 2.60 mg mL−1; com-
pound 48/80 was prepared at concentrations of 0.0625, 0.1250, and 0.25 mg mL−1; and baicalin was dissolved in 
Evans blue sodium bicarbonate solution at concentrations of 0.65, 1.30, and 2.60 mg mL−1.

Adult male mice weighing 25–30 g were used to perform the extravasation studies. Animals were randomly 
assigned to the control group (saline group and sodium bicarbonate group) and drug groups. All tested drugs at 
different concentrations (200 µL) and the negative control solutions (200 µL) were administered intravenously. 
One hour later, the mice were sacrificed by decapitation, and a photo of each ear was taken. Both ears from each 
mouse were placed in one tube, and the tissues of all mice were collected for Evans blue extraction using 300 µL of 
acetone-saline (7:3, v/v), consistent with hind paw Evans blue extravasation studies.
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