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Abstract

Loss of muscle mass via protein degradation is an important clinical problem but we know little of how muscle protein
degradation is regulated genetically. To gain insight our labs developed C. elegans into a model for understanding the
regulation of muscle protein degradation. Past studies uncovered novel functional roles for genes affecting muscle and/or
involved in signalling in other cells or tissues. Here we examine most of the genes previously identified as the sites of
mutations affecting muscle for novel roles in regulating degradation. We evaluate genomic (RNAi knockdown) approaches
and combine them with our established genetic (mutant) and pharmacologic (drugs) approaches to examine these 159
genes. We find that RNAi usually recapitulates both organismal and sub-cellular mutant phenotypes but RNAi, unlike
mutants, can frequently be used acutely to study gene function solely in differentiated muscle. In the majority of cases
where RNAi does not produce organismal level phenotypes, sub-cellular defects can be detected; disrupted proteostasis is
most commonly observed. We identify 48 genes in which mutation or RNAi knockdown causes excessive protein
degradation; myofibrillar and/or mitochondrial morphologies are also disrupted in 19 of these 48 cases. These 48 genes
appear to act via at least three sub-networks to control bulk degradation of protein in muscle cytosol. Attachment to the
extracellular matrix regulates degradation via unidentified proteases and affects myofibrillar and mitochondrial
morphology. Growth factor imbalance and calcium overload promote lysosome based degradation whereas calcium
deficit promotes proteasome based degradation, in both cases myofibrillar and mitochondrial morphologies are largely
unaffected. Our results provide a framework for effectively using RNAi to identify and functionally cluster novel regulators of
degradation. This clustering allows prioritization of candidate genes/pathways for future mechanistic studies.
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Introduction

Muscle mass is maintained by the balance of protein synthesis

and degradation [1], termed proteostasis [2]. Global proteostasis

has been postulated to create molecular robustness that underlies

how genetic diversity can be maintained in the absence of strong

selective pressures [3]. In muscle, proteostasis is key to maintaining

contractile ability and therefore locomotion. Additionally, because

muscle is the body’s major reservoir of protein for catabolism in

time of need, the ability to adjust to a different proteostatic state is

important to maintenance of overall physiological homeostasis in

the organism. Numerous clinical conditions are associated with

loss of muscle proteostasis. These are not limited to rare disorders

such as the muscular dystrophies, but include conditions associated

with major healthcare expenditure such as cancer (cachexia), aging

(sarcopenia), heart failure, and diabetes [4,5]. While much work

has been devoted to the problem, it is largely unknown how

extramuscular signals regulate the key proteolytic systems within

muscle. For example, in humans more than a dozen extramuscular

signals are associated with muscle atrophy [1] and four key

proteolytic systems exist [6], yet we know very little of how these

signals regulate the proteases, and in many cases we are uncertain

which proteases they regulate.

To address these gaps in knowledge, the nematode C. elegans, a

convenient organism for systems biology, has been developed as an

experimental model for studying the intramuscular signals that

regulate muscle protein degradation. It has previously been shown

that proteasome based degradation is opposed by signal from

motor neurons [7], as is suspected for human muscle. Additionally,

lysosome based degradation is opposed by a balance between pro-

degradation signal via FGFR-Ras-Raf-MAPK [8,9] and anti-

degradation signal via IGFR-PI3K-Akt-Raf [10]. Both signals are

thought to be important in mammalian muscle, although which

protease(s) they regulate remains an open question. The work to

develop C. elegans into a model for understanding the regulation of

muscle protein degradation has taken more than fifteen years, and

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24686



has uncovered novel functional roles for genes previously identified

as the sites of mutations affecting muscle and/or as involved in

signalling in other cells or tissues.

Much work on C. elegans focuses on the genetic regulation of

behaviour [11]; thus, we currently know mutations in roughly 234

genes that affect muscle development and/or physiology in the

form of altered locomotion (unc) [12], egg laying (egl) [13], feeding

(eat) [14], defecation (exp, pbo, dec, aex) [15], or attachment (mua,

mup, rol) [16]. We anticipated that these classes of previously

identified genes would be enriched for negative regulators of

muscle protein degradation. Testing this prediction by traditional

approaches would have required several hundred genetic

constructions to place the appropriate transgenic reporter(s) of

proteostasis together with the mutation under study. We therefore

chose to use RNAi to interrogate the roles of these genes in

maintaining proteostasis. Here we use a combination of mutants

and RNA interference (RNAi) to analyse a large subset of

previously identified genes regulating muscle development and/or

physiology, with the primary aim of identifying genes regulating

muscle protein degradation. We selected 159 of the 234 genes that

affect muscle development and/or physiology for analysis. These

159 genes were selected because RNAi clones against these genes

were commercially available and past results using these clones

were published. The selection of this set of genes for analysis also

enabled our secondary aims: i) to conduct an assessment of the

accuracy and reproducibility of RNAi; ii) to conduct a compar-

ative assessment of RNAi and traditional genetic approaches for

identifying and studying genes regulating muscle protein degra-

dation. Of the 159 genes studied, 48 were identified as novel

regulators of muscle protein degradation. This finding confirmed

the prediction that the classes of genes studied would be enriched

for negative regulators of degradation. In addition to identifying

novel genes/pathways for future mechanistic work, the compar-

ative studies allowed us to develop a strategy for integrating new

RNAi experiments with the past genetic and pharmacologic

approaches to this problem. Utilizing this strategy we have

clustered the 48 genes into 3 functional groups. Two of these

groups associate new genes with known signalling networks while

the third group appears to represent at least one new signalling

network. Thus, our strategy allows newly identified genes to be

prioritized for future studies of either novel regulators of

degradation or modifiers of known signalling networks.

Results

RNAi feeding produces accurate functional data that are
largely reproducible

Compared to traditional genetic analysis [12], the use of RNAi

is relatively recent [17]. We were therefore concerned about

reproducibility and reliability of results obtained by RNAi [18].

From the 234 genes that affect muscle development and/or

physiology we identified 159 genes for which RNAi feeding vectors

were used in published large scale RNAi based screens [19,20,21].

We used these vectors and found false positive and negative rates

consistent with past suggestions for this RNAi technique [20];

,1% and 39% respectively, based upon consistency of behav-

ioural and/or developmental phenotype observed by RNAi and

the known mutant phenotype (Table S1). We next compared our

results for behavioural and/or developmental defects to those

obtained by others using the same vectors (Table S1). This analysis

revealed that the majority of our observations were consistent with

past reports (Fig. S1). However, a substantial number of genes for

which RNAi had not previously been reported to produce a

behavioural and/or developmental phenotype did produce a

phenotype in our experiments that was consistent with the known

mutant phenotype. Together, these results suggest that use of

RNAi feeding vectors that are known to produce a phenotype,

along with appropriate replicates and controls, can produce a low

false negative rate (3–5% in this study; Fig. S1). Given that 6% of

our results recapitulate a mutant phenotype but a different

developmental/behavioural phenotype was previously reported by

RNAi in a wild-type genetic background (Fig. S1), we suspect that

10% (false positives [,1%]+false negatives [3%]+phenotypic

divergence [6%]) is a realistic estimate for the lower limit of

observed experimental discrepancies of bacterial feeding vector

RNAi experiments in C. elegans. We will further address the issue of

incomplete knockdown below.

Identification of genes affecting sub-cellular muscle
compartments

Past work using transgene-coded reporter proteins in C. elegans

has shown that in some conditions that promote bulk protein

degradation in muscle cytosol, nuclear and myofibrillar proteins

are largely unaffected [7,8,9,10,22,23], while mitochondria are

affected in some cases but not others (LAJ & NJS unpublished

observations). This is similar to the situation in humans, where

distinct regulation of sub-cellular compartments in muscle is

suspected [24]. Therefore, in addition to cytosolic protein content,

we assessed myofibrillar and mitochondrial structure in response

to chronic (inter-generation) RNAi treatment throughout devel-

opment, and followed up positive findings with additional acute

(intra-generation) RNAi treatments in fully developed adults

(Fig. 1, Fig. 2, Fig. S2). An acute (intra-generation) effect of RNAi

implies that the gene product is required in adults to prevent these

abnormalities. Note that because the lacZ transgene used to study

cytosolic protein is only expressed until adulthood and the product

is not degraded for at least the next 72 hours [7,8,9,10,22,23],

changes in response to chronic RNAi treatment show a defect in

proteostasis without distinguishing synthesis from degradation,

whereas changes in response to acute RNAi treatment must be the

result of degradation alone. Using this approach we identified 101

genes as affecting sub-cellular muscle compartments (Fig. 2).

Cytosolic proteostasis is the most commonly affected
sub-cellular process

Both chronic and acute RNAi treatments result in muscle

compartment specific defects (Fig. 2, Fig. 3A). Strikingly, the

muscle cytosol is the compartment most likely to show an effect in

response to RNAi knockdown of one of these genes known to

affect muscle physiology and/or development (82/101). This

suggests that the biochemical prioritization in muscle treats the

soluble cytosolic proteins required to power contractions as more

dispensable for maintenance of organismal homeostasis than the

proteins that make up the contractile apparatus. This fits with the

hypothesis that proteostasis serves to provide a buffer against

individual genetic disruptions [3].

The majority of genes that affect sub-cellular muscle
compartments during development continue to do so in
fully differentiated muscle

As shown in Figure 3A, 70/101 genes identified as regulating

muscle development also appear to have a role in maintaining

terminally differentiated muscle (e.g. negatively regulating cyto-

solic degradation, myofibril disassembly, mitochondrial fragmen-

tation) as evidenced by muscle defects in response to acute RNAi

treatment. Intriguingly, more genes (23) are required for the

proper development of all three compartments than appear to be

Sub-Cellular Defects in C. elegans Muscle Mutants
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important for the maintenance of all three compartments in

terminally differentiated muscle (7 genes). This may suggest that,

in C. elegans, more genes have been subject to selection for proper

development than for proper maintenance of adult muscle and/or

that it is easier to genetically perturb muscle during development

than in adulthood. This is in apparent contrast to the function of

insulin-like signalling which is important for metabolic capacity

both during development and in adults [25].

RNAi feeding produces sub-cellular phenotypes even in
the absence of whole organism behavioural or
developmental phenotypes

Large-scale RNAi screens and gene knockout studies have

reported that disruption of many genes produces no effects visible

at the level of the whole organism. It is therefore important to ask

whether knockdown of many individual genes causes no overt

phenotype due to functional redundancy or compensation, or if

the phenotype resulting from knockdown is often subtle enough to

escape detection [3]. Since the genes in the set we have knocked

down are known to have visible behavioural and/or developmen-

tal defects when mutated, it seemed possible that the RNAi-treated

animals that did not display overt phenotypes might simply have

suffered incomplete knockdown, generating potential false nega-

tives. In 58/90 cases we, like others, found no gross phenotypic

effect in response to RNAi (Fig. S1). Gratifyingly, when we

examined sub-muscular defects and combined this data with our

data on behavioural/developmental defects (Fig. 2) we found that

the majority of RNAi treatments that did not induce behavioural

or developmental phenotypes did, in fact, induce sub-cellular

defects (Fig. S1). Thus, our results appear to support the notion

that many RNAi treatments produce phenotypes that are subtle

enough to escape detection. As these sub-cellular defects result

from gene knockdown, the lack of an overt phenotype may be due

to the quantitative extent of knockdown. The ability to resist the

negative consequences of decreases in gene expression would

appear to support the notion that biological systems are robust at

the organismal level. For example, individual genes may often be

important at the molecular level, but control only small changes in

overall fitness under non-selective conditions [3,26].

Behavioural phenotypes are associated with specific
patterns of sub-cellular defects

The set of genes known to affect muscle physiology was

originally identified based upon mutational effects on several

different behavioural phenotypes. Thus, we analysed the frequen-

cy of compartment specific defects associated with each gene class.

As shown in Figure 3B, unc genes (associated with movement

defects) were less likely than the other gene classes to be associated

with defects in sub-cellular muscle compartments, perhaps because

many unc genes act principally in the nervous system and were thus

unaffected by RNAi in a wild-type strain. Expression exclusively in

neurons may account for 89% of unc genes that gave no effect

when knocked down. It is also true that 74% of unc genes that did

show sub-cellular muscle defects upon RNAi knockdown are

expressed in neurons based on expression data in WormBase [27],

but these genes may also be expressed in muscle (about half are

already reported to be). Notably, the attachment and unc genes

showed a different distribution of sub-cellular compartment defects

than the other gene classes. The attachment genes encode

products that not only anchor the contractile apparatus, but also

provide structural interaction and communication with immedi-

ately adjacent cells, including other muscle cells. Knockdowns of

attachment genes were more likely to show defects in all three

compartments assayed, whereas the unc genes were more likely to

show diverse compartment specific and multi-compartment

defects. That is, disruption of muscle attachment is less well

tolerated by various sub-cellular processes than is disruption of

contraction. Consistent with this, acute RNAi knockdown of

attachment genes in adults is most likely to give an effect in fully

developed muscle and to disrupt the same compartments disrupted

Figure 1. Sub-muscular phenotypes produced by C. elegans RNAi feeding vectors. Examples of sub-cellular phenotypes scored. Cytosolic
protein content (left), myofibrillar morphology (middle), and mitochondrial morphology (right) were scored as normal (top) or abnormal (middle and
bottom); abnormalities were only scored if they were considered moderate or major (see Materials and methods for additional details). Separate scale
bars are used for each sub-cellular phenotype (cytosol: black bar, 100 mm; myofibril: white bar, 10 mm; mitochondria: yellow bar, 10 mm). Arrows
indicate gaps in the myofibrils (white) and mitochondrial networks (yellow). The large, circular, over exposed regions in the mitochondrial images are
GFP labelled nuclei, which are all normal. The large, rounded, over exposed regions in the major effect myofibril image are aggregates of myosin and
are not normal.
doi:10.1371/journal.pone.0024686.g001
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Figure 2. Genes that affect muscle protein synthesis, degradation and/or dystrophy. Effect of RNAi on sub-cellular compartments of
muscle are displayed with data colour coded to inset legend. Data are listed for each gene named to the left. Genes are broken into classes: A) eat
mutants; B) aex, exp, pbo, dec mutants; C) mua, mup, rol mutants; D) egl mutants; E) unc mutants. Genes within each class are clustered by which
compartment(s) are effected with the root order: cytosol, myofibril, and mitochondria. Priority in rooting is given to developmental effect and the
root ordering is reflected in the order of colours in the inset legend. For comparison, presence (yellow) of organismal level phenotypes is indicated to
the right and given last priority in rooting. In all cases white indicates lack of effect. Examples of sub-cellular phenotypes that were scored are
provided in Figure 1 and genes from the same classes that did not display sub-cellular defects are shown in Figure S2. Four genes (pbo-6, dpy-2, mua-
6, unc-51) were identified as potential false positives for RNAi inducing protein degradation; these genes are indicated with asterisks as RNAi against
them may produce variable results and/or be false positives for inducing degradation.
doi:10.1371/journal.pone.0024686.g002
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during development. This latter observation suggests that muscle

cell attachment complexes are dynamic structures even in fully

differentiated muscle, and that failure to maintain them has

catastrophic consequences for muscle. Conversely, our observa-

tions with the unc genes suggest that while it may be easy to perturb

contraction, there is robust protection against catastrophic

structural problems in muscle.

Integrating RNAi knockdown and mutational analysis
In order to assess how best to integrate RNAi experiments with

our existing methods, we directly compared the use of RNAi to a

traditional genetic approach. For the comparative analysis, we

selected all muscle mutant genes that had previously been placed

together with transgenic reporters of proteostasis as part of past

and on-going work, and another group of genes for which

dominant mutant alleles existed [28]. Since RNAi acts by reducing

the amount of wild-type gene product rather than altering the

function of the gene product, we anticipated that dominant

mutant alleles (which might produce hyperfunctional gene

products) would yield opposite effects. However, this was true

for only 8 of the 14 dominant mutant alleles examined by RNAi

(Table 1, Table S2). Of the 6 alleles that gave the same phenotypic

results as RNAi, one has been described as a loss of function allele

(egl-30) and one as a dominant negative allele (unc-27), so that

similar results of mutation and RNAi knockdown are expected. Of

the remaining four genes where neither gain-of-function mutations

nor RNAi produced overt effects on muscle proteostasis, in two

instances (egl-19 and unc-58) reduction-of-function alleles also did

not grossly perturb proteostasis. Combining the dominant alleles

with the broader set of muscle mutants (Table 1, Table S2), we

find that in the majority of cases, RNAi and mutants give

concordant answers in identifying genes that are required to

maintain muscle proteostasis. The RNAi experiments took roughly

one-third to one-quarter of the time required for the genetic

constructions, demonstrating a key strength of RNAi. Only three

genes were identified by mutation alone, all from dominant gain-

of-function alleles. This suggests that combined use of dominant

Figure 3. Distribution of sub-cellular compartments affected. A)
Global analysis of data presented in Figure 2. Number of genes whose
products are required to maintain proteostasis (Cytosol), myofibrillar
morphology (Myofibril), and/or mitochondrial morphology (Mitochon-
dria) during development, as assayed by the effect of chronic, inter-
generational, RNAi treatment (Chronic, left). Number of genes whose
knockdown affects protein degradation (Cytosol), myofibrillar mainte-
nance (Myofibril), and/or mitochondrial morphology (Mitochondria) in
fully developed adult muscles, as assayed by the effect of RNAi in adults
(Acute, right). Note that acute studies were only conducted on those
genes for which a chronic effect was observed. B) Gene class analysis of
data presented in Figure 2. Sub-cellular compartments that display
defects in response to RNAi are displayed as number of genes affecting
each compartment. Graphs are displayed by gene class (labels in
middle, total number of genes in class in parenthesis) with separate
graphs for defects observed in response to chronic RNAi treatment
(Chronic, left) or in fully developed adults (Acute, right). The gene
classes that correspond to the labels are as follows: Feeding mutants,
eat; Defecation mutants, aex, exp, pbo, dec; Attachment mutants, mua,
mup, rol; Egg laying mutants, egl; Movement mutants, unc. An inset
legend identifies the affected compartments. The colour codes are the
same for A and B. The root ordering from Figure 2 is used in Figure 3B
with effected compartments starting at the 12 o’clock position and
moving clockwise (e.g. cytosol only, myofibril only, etc.); the root
ordering and clockwise rotation are reflected in the order of the inset
legend. Note that if RNAi against a gene did not produce an effect
chronically, RNAi against the gene was not tested acutely.
doi:10.1371/journal.pone.0024686.g003
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alleles and RNAi offers a promising approach to epistasis

experiments. Seventeen genes were identified by RNAi alone

suggesting that RNAi may be a more sensitive tool. In one respect

RNAi does indeed appear to be a more sensitive tool: acute RNAi

treatment in adults can reveal negative regulators of degradation

alone. Past work with this system has required use of temperature

sensitive mutants to confirm a role in negative regulation of

degradation [7,8,9,10]. For example, we can only identify twk-18

as a negative regulator of protein degradation because we were

able to induce degradation in fully developed muscle by a

temperature shift of adults carrying a dominant temperature-

sensitive allele, whereas we identified 51 potential negative

regulators of degradation using RNAi alone.

Assigning genes to functional groups regulating muscle
protein degradation

Having used RNAi to identify 51 genes whose products appear

to negatively regulate bulk cytosolic protein degradation in C.

elegans muscles, we next classified these genes into groups that act

by common pathways or mechanisms. First, we used the data from

Figure 2 to group genes according to which muscle compart-

ment(s) were affected by acute RNAi treatment. Next, we

conducted additional experiments to determine if the degradation

we observed was related to the signalling pathways previously

identified as negatively regulating cytosolic muscle protein

degradation in C. elegans [7,8,9,10]. The groups were established

as follows: i) Lysosome-autophagy cluster: degradation blocked by

unc-51 reduction-of-function mutation [10]; MAPK signalling sub-

cluster, degradation blocked by mpk-1 reduction-of-function

mutation [9]; IGFR signalling sub-cluster, degradation blocked

by daf-18 reduction-of-function mutation [10]; ii) Proteasome

cluster: degradation blocked by proteasome inhibitor MG132 [7].

By this clustering methodology it appears that at least three distinct

proteolytic mechanisms are regulated by the known muscle

mutants (Fig. 4).

Consistent with past results, genes identified as negative

regulators of lysosome or proteasome based degradation infre-

quently (4/24 genes) showed acute defects in gross myofibrillar or

mitochondrial structure, suggesting that activation of bulk

cytosolic degradation via lysosomes and proteasomes does not

Table 1. Genes identified as affecting proteostasis by mutation versus RNAi.

gene name allele encodes
Proteostasis affected
in mutant

Proteostasis affected in
response to RNAi

aex-5 sa23 Kex2/subtilisin-like Y Y

egl-30 ad805dm Gq-alpha Y Y

unc-23 e324 Chaperone Y Y

unc-52 e669 Basement membrane HSPG Y Y

e669su250ts Y Y

unc-112 r367ts Mitogen inducible Y Y

twk-18 cn110ts,dm K channel Y N

unc-43 n498dm CaM kinase Y N

unc-105 n490dm Degenerin Y N

egl-1 a487 Cell death activator N Y

egl-2 n693dm K channel N Y

egl-5 n486 TF N Y

n945 N Y

egl-15 n484 FGFR N Y

n1477 N Y

n1783 N Y

egl-36 n728dm K Channel N Y

egl-43 n1079 Zn Finger N Y

exp-3 n2372dm Calcium activated K channel N Y

unc-5 e53 Netrin Receptor N Y

unc-24 e138 Stomatin N Y

unc-32 e189 Vac H-ATPase N Y

unc-36 e251 Ca channel N Y

unc-42 e270 TF N Y

unc-47 e307 GABA transporter N Y

*unc-51 e369 Kinase N Y

unc-103 e1597dm K channel N Y

rol-6 su1006dm Collagen N Y

sqt-1 sc13 Collagen N Y

*unc-51 was identified as a potential false positive for RNAi inducing degradation.
doi:10.1371/journal.pone.0024686.t001
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Figure 4. Identified genes negatively regulate muscle protein degradation via at least three functional clusters. Genes identified as
negative regulators of protein degradation were examined for reproducibility (wt) and lack of degradation in autophagy pathway mutants (UNC-51
kinase (unc-51), Fibroblast Growth Factor pathway (mpk-1), Insulin like pathway (daf-18)) or when the proteasome was inhibited (MG132). A separate
wild-type control was used in the autophagy and MG132 experiments. Displayed results indicate the result from two independent experiments or the
consensus result from three. Degradation is denoted by red, lack of degradation by green. Results from other acute effects on muscle are listed on
the right with dystrophies indicated in red and normal morphology indicated in green. Results are clustered based on putative degradation pathway:
autophagy (top), proteasome (middle), unknown pathway(s) (bottom). The autophagy pathway is further subdivided as going through unknown
pathway(s), going through the Fibroblast Growth Factor pathway but not Insulin like pathway, or going through both the Insulin like and Fibroblast
Growth Factor pathways.
doi:10.1371/journal.pone.0024686.g004
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necessarily cause problems with other sub-cellular compartments.

The lysosome-based cluster (15 genes) was completely non-

overlapping with the proteasome-based cluster (9 genes). While

this is in apparent contrast to the functional coupling between

proteasome and autophagic pathways in non-muscle cells where

inhibition of proteasome activity enhances autophagic activity

[29], for overlap to occur in our analysis a gene would need to be a

negative regulator of both the proteasome and autophagy (N.B.

When the dominant gene data are included we do find functional

coupling between the proteasome and autophagy: Calcium is a

negative regulator of the proteasome and a positive regulator of

autophagy (Fig. 5)). The partial overlap between the MAPK-based

cluster and the lysosome-based cluster identifies 9 genes that may

impinge on signaling upstream of MPK-1 MAP kinase [9] with 3

likely acting via IGFR based signaling upstream of Raf [10]. The 6

genes in the non-overlapping set may impinge on signaling

downstream of (or in parallel to) MPK-1, yet upstream of UNC-

51.

We also identified genes that do not appear to cluster with

regulators of lysosomal or proteasomal degradation; this was the

largest group of genes identified. These genes presumably regulate

at least one additional protease although a more complex scenario

is possible, such as dual regulation (with compensation) of

proteasomes and lysosomes. However, given that knockdown of

a gene in this group frequently affects the myofibrils and/or

mitochondria (15/23 genes) it seems likely that calpains and/or

caspases are being activated. The one new negative regulator

identified by mutation alone, twk-18, appears to be in the

proteasome cluster, since protein degradation is prevented by

MG132.

Bioinformatic analysis, using WormBase [27], of genes in each

of the groups suggests that there are specific regulatory networks

awaiting confirmation via additional experiments. As examples: In

the lysosome cluster, there are two Guanine nucleotide-binding

(G) protein coupled receptor genes and a Regulator of G-protein

Signalling (RGS) gene. In the proteasome cluster we found two

netrin receptor genes, a phospholipase C (PLC) gene and an

inositol triphosphate (IP3) receptor gene. In the third cluster are a

large number of genes that are known to be involved in muscle

attachment to the extracellular matrix and the Serum Response

Factor (SRF) gene (a gene linked to muscle defects in humans

[30]). A speculative model incorporating published data [7,8,9,10]

and our new dominant allele and acute RNAi data is shown in

Figure 5.

In these additional experiments we were unable to further

replicate results previously obtained for four genes (mua-6, unc-51,

dpy-2, pbo-6), a potential false positive rate of 8% (N.B. these may

be genes for which RNAi produces variable results). This

reinforces our belief that appropriate replicates and controls can

allow RNAi to be used very effectively in identifying genes that

negatively regulate cellular processes with well-defined pheno-

types.

Discussion

We have used a combination of forward-genetic (mutational)

and reverse-genetic (RNAi) approaches to interrogate a list of

known genes for novel functions. Reassuringly, we have found that

RNAi results are largely reproducible and match results from

mutants. Key strengths of RNAi appear to be speed of use and the

Figure 5. Preliminary model of control of degradation of bulk cytosolic protein in C. elegans muscle. Inferences from past [7,8,9,10] and
these studies are shown. Left (Blue): Degradation by an unidentified protease is negatively regulated by integrin based attachment complexes which
bind to Perlecan in the extracellular matrix. Middle (Pink): Degradation by the lysosomes is controlled by a balance of signal from Insulin/Insulin-like
Receptor (negative regulator, green lines) and autocrine Fibroblast Growth Factor signal (positive regulator, red lines). Calcium overload, signalling via
CaMKII, also promotes lysosome-based degradation. Right (Green): Intra-cellular calcium controlled by a combination of membrane depolarization
and G-protein signalling events is required to negatively regulate proteasome-based degradation. N.B. Genetic disruption of the pathway in the left
section typically yields dystrophic myofibrils, whereas disruption of the pathways in the middle or on the right typically does not.
doi:10.1371/journal.pone.0024686.g005
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ability to acutely knock down gene function in fully differentiated

adult muscle. However, a weakness of the RNAi approach appears

to be the need for more stringent controls and/or replicates in

order to achieve a high level of confidence that a gene has been

correctly identified as relevant, before proceeding to more costly

and time-consuming mechanistic studies. An important open

question is whether more controlled and reproducible dsRNA

dosing can be achieved by bacterial feeding, as this may reduce the

variability of results obtained by RNAi. A combined approach

utilizing mutants and RNAi should help offset these weaknesses, as

previously suggested [18]. For example, once genes are identified

and verified by RNAi and mutations, mutants can be used in

combination with RNAi for epistasis experiments.

Based upon studies in mammals, we would anticipate a

minimum of four regulatory subnetworks controlling protein

degradation in C. elegans muscle: one each for the proteasome,

lysosomes, calpains, and caspases. Previous work with C. elegans

established at least one subnetwork for the ubiquitin-proteasome

system [7] and the lysosomes [8,9,10]. Here we have identified

additional genes that either fit within these existing subnetworks,

or represent additional subnetworks controlling the same prote-

ases. We have also identified a group of genes that represent at

least one additional signalling system controlling at least one

additional protease, presumably calpains and/or caspases. Current

estimates suggest that there are from 1300 [31] to 8000 [32] genes

that are enriched in C. elegans muscle. Similarly there are greater

than 1000 genes for which RNAi yields an Unc phenotype, as

indexed in WormBase [27]. Since the unc genes displayed the

greatest variability in distribution of sub-cellular defects, it is

possible that further examination of genes in this class will reveal

more regulatory mechanisms than further examination of genes

for which RNAi knockdown produces phenotypes associated with

the other muscle mutant classes. Given that roughly a quarter of

the unc genes we analysed displayed protein degradation upon

knockdown, the regulation of degradation may be far more

complex than initially suspected. However, it currently seems

unlikely that these complex subnetworks regulate more than a

handful of key proteases. Thus, it may be that despite large

numbers of specific genes whose products impinge on these

subnetworks, there are a limited number of general themes by

which this network functions.

Fundamental metabolic pathways are largely conserved from

single celled organisms to mammals [33] and the attachment and

development of myofibrils is largely conserved between C. elegans

and man [34]. Thus, it may be heuristically useful to conjecture

that the general themes and some of the specific molecular

mechanisms of regulation of muscle proteostasis are also largely

conserved (even though it is already clear that the signal-

transduction systems of C. elegans are considerably simpler).

Nutritional status and use are well known to control human

muscle size. However, we know surprisingly little of how this

occurs at the molecular level. Our results point to some of the

complex molecular signals that regulate muscle size in response to

both activity and nutritional status. As altered contact with the

extracellular matrix does not appear to impinge upon the key

proteolytic systems (lysosomal, proteasomal), it may be that

mechanotransduction per se [35] does not directly contribute to

controlling degradation based muscle size changes in response to

use even though attachment to the matrix is important for growth

and maintenance/repair of muscle. This may suggest that earlier

signals, in developmental terms, provide the framework upon

which other, later signals can function to control muscle size.

Calcium would appear to be a key player in terminally

differentiated muscle, mediating the abilities to grow and shrink

in response to use (it has also previously been identified as a

regulator of proteostasis [36,37,38]). Factors that control depolar-

ization of the muscle plasma membrane, including but not limited

to contractile signal from nerves, control calcium release from the

sarcoplasmic reticulum, which in turn negatively regulates

proteasome-based protein degradation. It is an open question

whether there are specific targets of calcium, and/or if calcium

release from the sarcoplasmic reticulum (in)directly affects

proteostasis [38]. Conversely, calcium overload triggers protein

degradation via autophagy, which also is controlled by growth

factors. Given that growth factor signalling can control both

autophagy and protein synthesis via mTOR [39], one attractive

model is that CaMKII coordinates calcium overload signal

upstream of TOR, thereby allowing muscle to directly integrate

control of muscle proteostasis in response to both nutritional status

and activity. This model also suggests that there is a key temporal

element to maintenance of muscle size, since calcium overload,

and consequent protein degradation, are likely to be transient.

This is consistent with the observation in humans that protein

degradation goes up transiently following exercise [40]. Thus, our

data suggest that further mechanistic work is required in C. elegans,

and that even if identical signals are not acting in human muscle,

orthologous ones are likely to be important. More broadly, as

calcium [41], and other [42], channels can be degraded, in non-

muscle cells by the proteasome to prevent trafficking to the plasma

membrane and can also be degraded by the endosome-lysosome

system once at the plasma membrane, our results raise the

question of whether we have uncovered a fundamental, feedback

controlled, mechanism of control of proteostasis: plasma mem-

brane polarization.

Materials and Methods

Nematode handling and genetics
Nematode strains were maintained and grown at 20uC as

described [23]; temperature sensitive mutants were routinely

maintained at 16uC. All alleles used in this work are listed in

Tables 1 and S2. The transgene used for assessing muscle-specific

proteostasis and protein degradation was ccIs55 (unc-54::lacZ) with

histochemical staining for LacZ activity as described [23]. The

transgene used for assessing the myofibrils was jIs01 (myo-3::GFP), a

translational fusion of the full-length myo-3 (myosin heavy chain A)

gene to GFP, with epifluorescence microscopy as described [22].

The transgene used for assessing the mitochondria and nuclei was

ccIs4251 (Pmyo-3::MitGFP; Pmyo-3::NLS::GFP-lacZ) with epifluores-

cence microscopy as described [17]. Many strains containing one

of these transgenes and mutant alleles of ‘‘muscle genes’’ were

constructed specifically for this work, while others were earlier

constructed in the Jacobson lab. All strains were constructed using

standard techniques [12]. Full details of constructions and strain

genotypes are available upon request.

RNAi screening of behavioural, developmental and sub-
cellular phenotypes

RNAi using bacterial feeding vectors was performed essentially

as described [19,20] using PD55 (ccIs55 V), PJ727 (jIs01; ccIs55 V),

and CB5600 (ccIs4251 I; him-8(e1489) IV). RNAi feeding vector

clones used in these studies are listed in Table S1. Chronic RNAi

exposure experiments were conducted by placing 3–4 L4-stage

hermaphrodite worms onto NGM RNAi plates containing seeded

bacteria expressing dsRNA for each gene and then incubating for

72–96 hours at 20uC. Progeny were then scored for developmen-

tal phenotypes with young adults scored for muscle dystrophies

and cytosolic protein levels by LacZ staining. An additional
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examination of muscle dystrophies and cytosolic protein levels

were made in adults again 24 hours later. L4 hermaphrodites from

the F1 generation were then transferred to newly seeded NGM

RNAi plates with the same bacteria for examination of the F2

generation as above. Developmental/behavioural phenotypes

scored were: Unc (uncoordinated movement), Rol (rolling

movement), Bmd (abnormal body morphology), Dpy (short fat

appearance), Pvl (protrusion from the vulva), Rup (rupture from

the vulva), Ste (sterile), Egl (egg laying defective), and Gro (long

period of development and/or growth arrest). Developmental

phenotypes were recorded if .10% of worms on the plate showed

a phenotype and also if the same phenotype was observed in both

generations, even in fewer than 10% of total worms. Sub-cellular

phenotypes scored were: Cytosolic protein content (normal,

abnormal), myofibrillar morphology (normal, abnormal), mito-

chondrial morphology (normal, abnormal); see Fig. 1 for examples

of normal and abnormal. In all cases abnormalities deemed minor

(e.g. not appreciably different from vector control) were scored

normal and abnormal if moderate and/or severe (in comparison to

the vector control) in at least 20% of worms on the slide. Defects,

within an individual worm, were classed as moderate as follows: i)

cytosolic protein content: at least a 30% loss of stain (e.g. intensity);

ii) myofibrillar morphology: at least 2 disorganized or broken

myofibrils in at least two muscles; iii) mitochondrial morphology:

loss of at least 25% of the mitochondrial network in at least two

muscles. Defects, within an individual worm, were classed as major

as follows: i) cytosolic protein content: at least a 90% loss of stain

(e.g. intensity); ii) myofibrillar morphology: at least a 90% lack of

recognizable myofibrils in at least two muscles; iii) mitochondrial

morphology: at least an 80% lack of networked mitochondria

network in at least two muscles. Genes that were identified as

negatively regulating muscle dystrophy or cytosolic protein content

in chronically treated animals were then examined for effects of

acute RNAi exposure. For acute RNAi exposure, worms were

roughly age synchronized [23] and grown to young adulthood on

non-RNAi bacteria at 20uC (approximately 48 hours). Young

adult animals were manually transferred to NGM RNAi plates

and maintained at 20uC. A group of adults was examined for

muscle dystrophies and cytosolic protein degradation at adulthood

and 24, 48, and 72 hours post adulthood. Dystrophies and

degradation were scored as positive if they appeared at any two

time points after introduction to RNAi, with particular attention to

progressive loss of cytosolic protein between the 48 and 72 hour

time points. Comparisons with previously published phenotypes

using the same RNAi clone were made using WormBase

(phenotypes: RNAi details).

Clustering genes into pathways
Mutants and drugs for clustering identified genes were as

described [7,8,9,10]. Acute RNAi experiments as described above

were conducted in wild-type, mutant and drug treated worms

carrying appropriate transgenes. Degradation was scored as above

in two independent experiments; in case of discrepancy a third

experiment was run.

Supporting Information

Figure S1 Reproducibility of developmental and/or
behavioural phenotypes produced by C. elegans RNAi
feeding vectors. A) Analysis of overall ability to observe a

consistent phenotype in our study vs. past studies using the same

feeding vectors [19,20,21]. The total number of genes examined in

this study was 159. Fractional analysis uses number of genes on the

left or percentage of 159 genes on the right (top line). Observations

were scored as consistent if any of the past reported phenotypes

were observed in this study. This analysis reveals a general

agreement but with a substantial number of inconsistencies

between this study and past studies. B) Analysis of the nature of

consistent developmental/behavioural phenotypes reported in this

and past studies. This analysis reveals the majority of consistent

phenotypic observations were the lack of a visible phenotype. C)

Analysis of the nature of inconsistent phenotypes reported in this

and past studies. Observations were scored as inconsistent if none

of the past reported phenotypes were observed in this study. This

analysis reveals that the majority of genes for which our

observations are not consistent with past observations using these

same clones we actually observed a phenotype and this observed

phenotype was consistent with the known mutant phenotype. This

analysis also reveals an inability to find convergence in phenotypes

produced 6% of the time and a known false negative rate of 3%.

D) Analysis of if RNAi clones that do not produce a

developmental/behavioural phenotype do produce a sub-cellular

defect in muscle. This analysis reveals that the majority of genes

for which RNAi treatment does not produce a phenotype (Figures

from the last lines of B and C are considered together), RNAi

treatment does produce a sub-cellular defect.

(TIF)

Figure S2 Genes that do not affect muscle protein
synthesis, degradation and/or dystrophy. Effect of RNAi

on cytosolic proteostasis, degradation, myofibrillar development,

myofibril maintenance, mitochondrial development, and/or

mitochondrial maintenance was not observed for these genes.

Each gene is named to the left. Genes are broken into classes: A)

eat mutants; B) aex, exp, pbo, dec mutants; C) mua, mup, rol mutants;

D) egl mutants; E) unc mutants. Genes within each class are

clustered by whether an organismal level phenotype was observed

(yellow) or not (white). Examples of sub-cellular phenotypes that

were scored are provided in Figure 1 and genes from the same

classes that displayed sub-cellular defects are shown in Figure 2.

(TIF)

Table S1 Comparison of developmental and behaviour-
al phenotypes observed with those previously reported.
All genes for which RNAi was used to study the effects of

decreased gene expression are listed. Alternative names for the

genes, where indexed in WormBase, are listed. The RNAi clone

used in this study is listed. Clones starting with a Roman numeral

are from the MRC library while clones starting with an Arabic

number are from the Open Biosystems library. A brief summary of

what the gene is thought or known to encode is provided based

upon the information in WormBase. Developmental and/or

behavioural phenotypes scored by us or others are listed. Details

of phenotypes scored by us can be found in Material and methods.

Details of phenotypes scored by others can be found in the

indicated references. For comparison the known mutant pheno-

type, as indexed in WormBase is provided.

(XLS)

Table S2 Genes not identified as affecting proteostasis
by mutation versus RNAi. All genes for which we failed to

detect decreased protein synthesis or increased protein degrada-

tion, by decreased level of transgenic reporter protein (see

Materials and methods), are listed. Specific alleles tested are

indicated. Five genes, where dominant alleles existed, were tested

by mutation alone. This table is a companion to Table 1, in the

main text, which displays all genes for which we did detect

decreased protein synthesis and/or increased protein degradation.

(XLS)
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