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Abstract

Designing targeted treatments for breast cancer patients after primary tumor removal is nec-

essary to prevent the occurrence of invasive disease events (IDEs), such as recurrence,

metastasis, contralateral and second tumors, over time. However, due to the molecular het-

erogeneity of this disease, predicting the outcome and efficacy of the adjuvant therapy is

challenging. A novel ensemble machine learning classification approach was developed to

address the task of producing prognostic predictions of the occurrence of breast cancer

IDEs at both 5- and 10-years. The method is based on the concept of voting among multiple

models to give a final prediction for each individual patient. Promising results were achieved

on a cohort of 529 patients, whose data, related to primary breast cancer, were provided by

Istituto Tumori “Giovanni Paolo II” in Bari, Italy. Our proposal greatly improves the perfor-

mances returned by the baseline original model, i.e., without voting, finally reaching a

median AUC value of 77.1% and 76.3% for the IDE prediction at 5-and 10-years, respec-

tively. Finally, the proposed approach allows to promote more intelligible decisions and then

a greater acceptability in clinical practice since it returns an explanation of the IDE prediction

for each individual patient through the voting procedure.

Introduction

Breast cancer is one of the main causes of death worldwide [1]. For this reason, the manage-

ment of breast cancer patients has always been a topic of great interest within the scientific

community. Surgery of various types followed by adjuvant therapies, such as chemotherapy,

hormonotherapy, radiotherapy alone or in combination, represents the primary breast cancer

treatment [2, 3]. Despite great progress has been made to improve cancer survival [4], the

choice of which adjuvant therapy must be performed for preventing the occurrence of invasive
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disease events (IDEs) after the primary tumor, such as recurrence, metastasis, contralateral

and second tumors, still remains challenging [5, 6]. Clinical experts make their decisions for

each single patient following relevant guidelines [2], after having collected and evaluated a

series of measurements of clinical and histological parameters. So far, several research works

have demonstrated the central role of breast cancer subtypes on both tumor prognosis and

therapy efficacy [7, 8]. The first level breast cancer subtype classification involves immunohis-

tochemistry-based subtypes, namely, Luminal-like, HER2-positive and Triple Negative tumors

[9]. According to the identified subtype, patients eligible for a specific adjuvant treatment fol-

lowing surgery can be selected, thus sparing some other patients from unnecessary and/or

potentially toxic treatments. However, due to the molecular heterogeneity of this disease, pre-

dicting the outcome and the efficacy of the adjuvant therapy tailored for each individual

patient is very hard. Tools based on molecular biomarkers, such as mRNA biomarkers or

genes, have also developed [10], complementing traditional histopathology methods. How-

ever, they are expensive and not all centers are provided with laboratories performing these

types of analyses. Within this emerging scenario, the need of predictive models which make a

trade-off between reliable predictions of therapy results and cost-effectiveness is urgent. In

recent years, due to great advancements in the field of artificial intelligence applied to biomedi-

cine, the design and development of machine learning models to support clinical decision-

making processes in breast cancer treatment, have been extensively investigated in the state-

of-the-art [11, 12]. Their best potential consists of learning data models automatically without

a prior hypothesized knowledge about variable interactions. Interdependence and complex

nonlinear relationships among clinical data can be recognized [13]. Several studies based on

machine learning have attempted to predict breast cancer recurrence/metastasis by solving a

classification task [14, 15] or developing survival models [16]. The prediction of composite

events, namely IDEs, can play a relevant role within the adjuvant clinical trial setting for breast

cancer [17]. Indeed, it is known that chemotherapy treatments may cause second tumors [18].

However, there is a lack of research studies focusing on IDE prediction. The occurrence of

IDEs in breast cancer patients has been recently predicted by a Chinese research team, only in

terms of survival rates [19]. In this work, a novel ensemble machine learning approach has

been developed to address the IDE prediction as a binary classification task: breast cancer

patients for which IDEs have or have not occurred at both 5- and 10-year follow-ups were dis-

cerned. The respective classes of belonging were indicated as IDE and non-IDE. The model

was based on voting among multiple models [20]. When a coherent prediction among the

models was obtained for a given patient, the patient was finally classified into one of the two

class, IDE or non-IDE, and a final classification score was assigned. Conversely, when no

coherence was found among the multiple models, no answer was given for that patient. In this

last case, the ensemble model did not express a decision for that patient. Data from a cohort of

529 patients referred to Istituto Tumori “Giovanni Paolo II” in Bari, Italy, were used to train

and validate the proposed approach.

Materials and methods

Experimental data

This study was conducted according to the guidelines of the Declaration of Helsinki and

approved by the Scientific Board of Istituto Tumori ‘Giovanni Paolo II’–Bari, Italy. The num-

ber of the Protocol approved by the Scientific Board of Istituto Tumori ‘Giovanni Paolo II’

(Bari, Italy) was 6629/21). Written consent was not required from subjects, as it is retrospective

study and involves minimal risk. All data were fully anonymized before analysis.
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The experimental data analyzed in the current paper refer to a cohort of patients who were

registered to Istituto Tumori “Giovanni Paolo II” in Bari, Italy, for a first breast tumor diagno-

sis in the period 1995–2019. Patients who underwent a neoadjuvant chemotherapy for breast

cancer and/or had metastasis ab initio and/or had carcinoma in situ and/or followed up less

than 10 years, while no clinical events have occurred in the meantime, were excluded from this

study. A total of 28 features related to the primary breast tumor and the performed therapy

was collected for 529 patients, who respected the eligible criteria. The clinical information

included age at diagnosis (abbr. age), presence of previous tumors (abbr. prev. tumor, values:

Yes/No), tumor diameter (abbr. diameter, values: T1a, T1b, T1c, T2, T3, T4), multiplicity

(abbr. multiple, values: Yes/No) histological subtype (abbr. hist. type, values: ductal, lobular,

other), type of performed surgery (abbr. surgery, values: quadrantectomy/mastectomy), estro-

gen receptor (abbr. ER, % value), progesterone receptor (abbr. PgR, % value), cellular marker

for proliferation (abbr. Ki67, % value), histological grade (abbr. grading, values according to

Elston–Ellis scale: G1, G2, G3), human epidermal growth factor receptor-2 (abbr. HER2,

value: Pos/Neg), HER2 score (abbr. HER2/neu+, values: 0,1,2,3), in situ component (abbr. in

situ comp., values: absent, present but not typed, G1, G2, G3), lymphovascular invasion (abbr.

LVI, values: absent, present but not typed, focal, extensive), lymph nodes status (abbr. status l.,

values: N0, N1, N2, N3), sentinel lymph nodes (abbr. sentinel l., values: Negative/Not done/

Positive), lymphadenectomy (abbr. dissection l., values: Yes/No), the number of eradicated

lymph nodes (abbr. eradicated l.), the number of metastatic lymph nodes (abbr. metastatic l.).

For those patients who were affected by bilateral or multiple tumors, the data referred to the

greatest receptor expression were attributed. The data expressing the performed therapy were

reported as in the following: chemotherapy (abbr. CT, values: Yes/No), hormone therapy

(abbr. HT, values: Yes/No), trastuzumab (values: Yes/No), CT scheme (values: absent, Anthra-

cycline (Anthra) + taxane, Anthra, taxane, CMF, other), HT scheme (values: absent, Tamoxi-

fen (Tam), luteinizing hormone-releasing hormone analogues (LHRHa), Tam + LHRHa,

aromatase inhibitor (AI), Tam + AI, LHRHa + AI, other), therapy combination (abbr. ther.

comb, values: No, HT, CT, CT + HT, CT + trastuzumab, CT + HT + trastuzumab). Finally,

information about CT duration expressed in months (abbr. CT months), time elapsed between

the year of the first tumor diagnosis and surgery expressed in months (abbr. diag.—surg.

months) and time elapsed between surgery and therapy initiation expressed in months (abbr.

surg.- ther. months), were also collected. All the features’ distributions are summarized in

Table 1. Absolute values as well as percentage values are reported for categorical variables,

whereas median values and first (q1) and third (q3) quartiles are specified for continuous val-

ues. Missing data are indicated as NA. Before data analysis, missing data of a given patient

were replaced with the corresponding values of the patient with complete data whose feature

vector had minimum Euclidean distance from the feature vector of the given patient [21].

Problem formulation

In this study, machine learning was used to predict the occurrence of invasive disease events at

both 5- and 10-years in breast cancer patients who have shown a first infiltrating breast cancer.

The term IDEs refer to composite clinical events, such as local and distant recurrence, contra-

lateral invasive breast cancers, second primary tumors and death [17]. Two binary classifica-

tion tasks to discriminate patients for which IDE have or have not occurred depending on

whether the follow-up was fixed either at 5-years or at 10-years were formulated. The label IDE
class indicated those patients for whom an event occurred within 5 or 10 years from the first

tumor diagnosis date. A total of 142 patients of our database has shown an IDE within 5-years

from the first tumor diagnosis, out of which 111 recurrence, 21 contralateral tumors and 10
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Table 1. Features’ distributions of the collected patients.

Features Distribution Features Distribution

Overall (abs.; %) 529; 100% N2 (abs.; %) 41; 7.8%

Age N3 (abs.; %) 21; 4.0%

Median; [q1, q3] 51; [45, 60] NA (abs.; %) 9; 1.7%

Previous Tumors Lymphadenectomy

Yes (abs.; %) 16 (3.0%) No (abs.; %) 52; 9.8%

No (abs.; %) 513 (97.0%) Yes (abs.; %) 466; 88.0%

Tumor Diameter NA (abs.; %) 11; 2.2%

T1a (abs.; %) 19; 3.6% Sentinel Lymph Node

T1b (abs.; %) 45; 8.5% Not Done (abs.; %) 438; 82.8%

T1c (abs.; %) 227; 42.9% Positive (abs.; %) 33; 6.3%

T2 (abs.; %) 187; 35.4% Negative (abs.; %) 52; 9.8%

T3 (abs.; %) 14; 2.6% NA (abs.; %) 6; 1.1%

T4 (abs.; %) 21; 4.0% Eradicated lymph nodes

NA (abs.; %) 16; 3.0% Median; [q1, q3] 19 [14,24]

Multiplicity NA (abs.; %) 18; 3.7%

Yes (abs.; %) 108; 20.4% Metastatic lymph nodes

No (abs.; %) 419; 79.2% Median; [q1, q3] 0 [0,2]

NA (abs.; %) 2; 0.4% NA (abs.; %) 29; 6.0%

Histologic Subtype Chemotherapy

Ductal (abs.; %) 468; 88.5% No (abs.; %) 148; 28.0%

Lobular (abs.; %) 43; 8.1% Yes (abs.; %) 379; 71.6%

Other (abs.; %) 18; 3.4% NA (abs.; %) 2; 0.4%

Type of Surgery Hormonotherapy

Quadrantectomy (abs.; %) 339; 64.0% No (abs.; %) 157; 29.7%

Mastectomy (abs.; %) 190; 36.0% Yes (abs.; %) 370; 69.9%

ER NA (abs.; %) 2; 0.4%

Median; [q1, q3] 44 [0,80] Trastuzumab

NA (abs.; %) 5; 1.0% No (abs.; %) 465; 87.9%

PgR Yes (abs.; %) 63; 11.9%

Median; [q1, q3] 21 [0,70] NA (abs.; %) 1; 0.2%

NA (abs.; %) 6; 1.2% CT scheme

Ki67 Absent (abs.; %) 148; 28.0%

Median; [q1, q3] 22 [10,40] Anthra. + taxane (abs.; %) 82; 15.5%

NA (abs.; %) 11 22.6% Anthra. (abs.; %) 123; 23.2%

Grading taxane (abs.; %) 3; 0.5%

G1 (abs.; %) 48; 9.1% CMF (abs.; %) 100; 18.9%

G2 (abs.; %) 231; 43.6% other (abs.; %) 68; 12.9%

G3 (abs.; %) 229; 43.3% NA (abs.; %) 5; 1.0%

NA (abs.; %) 21; 4.0% HT scheme

HER2 Absent (abs.; %) 157; 29.7%

Negative (abs.; %) 336; 63.5% Tamoxifen (abs.; %) 29; 5.5%

Positive (abs.; %) 85; 16.1% LHRHa (abs.; %) 4; 0.8%

NA (abs.; %) 108; 20.4% Tamoxifen + LHRHa (abs.; %) 85; 16.1%

HER2/neu+ AI (abs.; %) 163; 30.8%

0 (abs.; %) 162; 30.7% Tamoxifen + AI (abs.; %) 28; 5.3%

1 (abs.; %) 99; 18.7% LHRHa + AI (abs.; %) 13; 2.5%

2 (abs.; %) 61; 11.5% other (abs.; %) 44; 8.3%

(Continued)
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second tumors, whereas 207 patients have shown an IDE within 10-years from the first tumor

diagnosis, out of which 157 recurrence, 32 contralateral tumors and 18 second tumors. The

label non-IDE class indicated the control cases defined as follow. For the 5-year IDE prediction

model, patients with at least 10-year follow-up and without an event within that timeframe

were considered as control cases (374 patients). Patients followed up less than 10 years, while

no events were happened in the meantime, were not considered in the non-IDE class to avoid

biases and noise, since they could develop an event shortly after 5-years. Under the same ratio-

nale, for the 10-year IDE prediction model, patients with at least 14-year follow up and without

an event within that timeframe were identified as control cases (322 patients).

Machine learning ensemble approach rationale

A predictive approach to give a prognostic prediction of IDE occurrence separately at 5- and

10-year follow-ups was designed. Its architecture consists of a machine learning-based ensem-

ble approach which exploits the concept of voting among multiple models [20]. In other

words, the proposed approach combines, according to specific rules described in S1 File, the

predictions of three baseline models (Fig 1), named as Model 1, Model 2, Model 3. The

approach was developed and evaluated on the entire dataset according to a 10-fold cross vali-

dation scheme in order to observe the performance over the entire dataset. In this way, train-

ing and test sets were created ten times independently by means of random sampling stratified

with respect to the real class of belonging (IDE class/non-IDE class). Each test set was com-

posed by the 10% of the total number of patients. In the following, the ten test sets are referred

as ten independent tests. For each of the ten times, Model 1 took in input all the collected 28

features of the training set. In Fig 1 it is named as original model since it exploits the raw data.

By starting from the training set of Model 1, a so-called cleaning up procedure, was performed

Table 1. (Continued)

Features Distribution Features Distribution

3 (abs.; %) 71; 13.4% NA (abs.; %) 6; 1.0%

NA (abs.; %) 136; 25.7% Therapy combination

In Situ Component No (abs.; %) 4; 0.8%

Absent (abs.; %) 405; 76.6% HT (abs.; %) 157; 29.7%

G1 (abs.; %) 22; 4.2% CT (abs.; %) 116; 21.9%

G2 (abs.; %) 15; 2.8% CT + HT (abs.; %) 187; 35.3%

G3 (abs.; %) 16; 3.0% CT + trastuzumab (abs.; %) 24; 4.5%

present, not typed (abs.; %) 69; 13.0% CT + HT + trastuzumab (abs.;%) 39; 7.4%

NA (abs.; %) 2; 0.4% NA (abs.; %) 2; 0.4%

Lymphovascular Invasion CT months

Absent (abs.; %) 339; 64.1% Median; [q1, q3] 3; [0, 5]

Focal (abs.; %) 101; 19.1% NA (abs.; %) 14; 2.9%

Extensive (abs.; %) 29; 5.5% Diag.–surg. months

present, not typed (abs.; %) 60; 11.3% Median; [q1, q3] 0 [0,0]

Lymph Node Stage Surg.–ther. months

N0 (abs.; %) 271; 51.2% Median; [q1, q3] 1; [1, 1]

N1 (abs.; %) 187; 35.3% (Continued) NA (abs.; %) 18; 3.7%

Absolute and percentage counts are reported in round brackets. For age, ER, PgR, Ki67, eradicated l. and metastatic l., CT months, diag.–surg. months, surg.–ther.

months, the median value and first (q1) and third (q3) quartiles of the distribution are indicated in squared brackets. The number of missing values (NA) is also

specified.

https://doi.org/10.1371/journal.pone.0274691.t001
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thus obtaining another two models, Model 2 and Model 3. The details about the cleaning up

procedure are reported in S1 File. The procedure is represented in S1 Fig. Basically, cleaning
up procedure is based on four standard machine learning algorithms which classified the

patients of the training set as IDE or non-IDE patients. All the patients marked as “misclassi-

fied” by all the classifiers were considered as confounding samples. By removing these patients

from the training set, a model without confounding patients, Model 2, was then created. On the

other hand, all the neglected patients were collected to define a new model, Model 3, with con-
founding patients only. The rationale under the concept of confounding patients is better clari-

fied in the first sub-section of the Results section. Each of the three models was based on the

same inner functioning procedure. First, a nested feature selection via Boruta technique has

been applied on the training set through a 20 5-fold cross validation scheme rounds. Then, the

selected features on the training set were used to train a machine learning classifier, eXtreme

Gradient Boosting (XGBoost) [22], which returned a classification score for each patient of the

test set (named as score s1,s2,s3 for Model 1, Model 2, Model 3, respectively; see Fig 1). A

patient of the test set was assigned by XGBoost classifier to the IDE-class if the predicted score

exceeded a threshold, which was computed separately for each of the three models (and indi-

cated as th1, th2, th3, respectively) as the ratio of the IDE-patients of the training set over the

total amount of patients of the same set. As final step, an ensemble model was constructed by

combining the classification scores obtained in correspondence of the three models according

to the rules which are described in S1 File, and represented in S3 Fig. After the application of

the rules, when a consensus among the three baseline models was obtained, the patient was

finally classified into one of the two class, IDE or non-IDE, and a final classification score was

assigned. Conversely, when no coherence among the three scores was judged by the rules, no

answer was given for that patient. In this last case, the ensemble model did not express a deci-

sion for that patient. The rules at the basis of the ensemble model required the setting of 8

parameters that were computed from the distributions of scores returned by the three models

on the ten training sets (see S1 File and S1 Table). A large set of trial solutions was examined

by combining five trials for each of the parameters. A total of 58 = 390625 parameter

Fig 1. Workflow representing the diverse baseline models composing the proposed ensemble machine learning approach. Model 1 represents the original

model which inputs the raw features referred to the training set. Model 2 is a model obtained after having applied a cleaning up procedure on the training set of

Model 1: it does not involve the so-called confounding patients identified by means of the cleaning up procedure. Model 3 uses all the identified confounding

patients as training set. The inner functioning of the three models consists of a feature selection by Boruta technique and, subsequently, of the training of an

XGBoost (XGB) classifier, which is validated on an independent test set. The scores obtained by the three models are then combined according to specific rules,

thus obtaining an ensemble model, which finally returns a prediction about the IDE occurrence. All the procedure is performed ten times independently and

separately at 5-and 10-year follow-ups.

https://doi.org/10.1371/journal.pone.0274691.g001
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combinations across the ten independent tests were explored. To the aim, the solutions was

drawn from a regular grid in the model space: this procedure was called grid search. A more

detailed explanation of the grid search procedure in S1 File. All the experimental simulations

were implemented using the R Software (v. 4.1.1, R Foundation for Statistical Computing,

http://www.r-project.org/) and MATLAB R2019a (MathWorks, Inc., Natick, MA, USA) soft-

ware. The models’ performance were evaluated in terms of the Area Under the receiver operat-

ing Curve (AUC) and, once the optimal threshold was identified by Youden’s index on ROC

curve [23], standard metrics, such as accuracy, sensitivity and specificity were also computed:

Accuracy ¼ ðTPþ TNÞ=ðTPþ TNþ FPþ FNÞ ð1Þ

Sensitivity ¼ TP=ðTPþ FNÞ ð2Þ

Specif icity ¼ TN=ðTNþ FPÞ ð3Þ

where TP and TN stand for True Positive (number of IDE cases correctly classified) and True

Negative (number of non-IDE cases correctly classified), while FP (number of non-IDE cases

identified as IDE cases) and FN (number of IDE cases identified as non-IDE cases are False

Positive and False Negative ones, respectively. In the case of performance evaluation of the

ensemble model, patients for which no prediction was given were not counted in any of the

four categories (TP, TN, FP, FN), thus the number of “no answers” were computed [24, 25].

Results

Confounding patients

Starting from the initial dataset, the classification tasks (at 5- and 10-years) were performed

through Model 1, i.e., the original model taking in input the raw data. Model 2 was constructed

from Model 1 by means of the implementation of the so-called cleaning up procedure based

on four standard machine learning algorithms, such as XGB [22], Random Forest [26], Naïve

Bayes [27] and SVM [28] (see S1 File). Confounding patients were identified as those patients

marked as “misclassified” by all the classifiers. They were then excluded in the development of

Model 2, whereas they were used to define Model 3. These patients were considered as con-

founding in model-independent way, since they appeared as indistinguishable with respect to

the considered features for all the employed classifiers. Specifically, they presented similar clin-

ical feature values to other patients of the database but belonged to opposite class. For this rea-

son, it was not possible to define a unique model able to discern confounding patients to other

patients. Fig 2 shows the consensus maps among the four classifiers computed in terms of

Cohen’s kappa (κ) coefficient [29] between pairs of classification scores (e.g., XGBoost vs RF)

before and after the cleaning up procedure applied for the 10-year IDE prediction (Fig 2A and

2B, respectively). The κ coefficient values range in the interval [-1;1]. The higher the κ coeffi-

cient, the greater the consensus is. Overall, the consensus among the classifiers increased after

the cleaning up procedure (brighter values within the color map), thus meaning that by

excluding confounding patients, the characteristics among the remaining patients are more

homogeneous. The same behavior has been observed for the 5-year IDE prediction, but it is

omitted to not burden the discussion.

Performances of the baseline models composing the ensemble model

The ensemble model proposed here, relies on the concept of voting among three baseline mod-

els. Here, the main results achieved by the three baseline models separately were discussed. For
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each of the three models, the statistical frequency of the features selected by means Boruta

technique over each of the ten training sets though a 20 5-fold cross validation rounds for the

5-year follow-up and 10-year follow-up are depicted in Fig 3A and 3B, respectively. The most

important features for Model 1 at both 5- and 10 follow-ups (with a percentage statistical fre-

quency equal to 100% for all the ten training sets) are ER and Ki67, whose role is well known

to be crucial in the decision of what therapy path to perform [8] (upper panels of Fig 3A and

3B). Other important features, selected especially for the 5-year follow up, are grading, the sen-

tinel lymph node, the number of both eradicated and metastatic lymph nodes, lymphadenect-

omy, which, in the state-of-the-art, have been proven to be prognostic factors of recurrence

[30, 31]. While grading reveals to be as an important feature for the 5-year follow up, in situ

component, which has been recently recognized as a significant risk factor for intramammary

recurrence [32], emerges as one of the most selected features for the 10-year follow-up. The

number of selected features with a percentage statistical frequency of 100% increased for

Model 2 at both 5- and 10-year follow-ups (central panels of Fig 3A and 3B). With respect to

therapies, while HT scheme feature is mostly selected for the 5-year follow-up, the CT scheme

is identified with a greater statistical frequency for the 10-year follow-up. The multiplicity fea-

ture emerges as important for the 5-year follow-up, whilst LVI and in situ component reach

higher percentage statistical values for the 10-year follow-up. Finally, the most discriminative

features for Model 3 at both the follow-ups (lower panels of Fig 3A and 3B) are represented by

all the features related to lymph nodes. For the 10-year follow-up, other features, such as in

situ component, ER and Ki67 reveal to be frequently selected. Table 2 highlighted the classifi-

cation performances of the three baseline models, i.e., Model 1, Model 2, Model 3, over the ten

training sets after having performed a nested feature selection by means of Boruta and trained

a XGB classifier according to 20 5-fold cross-validation rounds scheme. The percentage

median value as well as the percentage first and third quartile values of all the evaluation met-

rics were computed. Model 1 shows the lowest performances (a median AUC value of 68.1%

and 68.0%, a median accuracy value of 66.8% and 64.3% for the 5-year follow-up and 10-year

follow-up, respectively), whereas Model 2 as well as Model 3 achieved greater performances (a

median AUC value of 94.8% and 83.8%, and a median accuracy value of 88.8% and 75.8% for

the 5-year follow-up; a median AUC value of 94.4% and 89.9%, and a median accuracy value

Fig 2. Consensus maps among each pair of the four classifiers, Random Forest (RF), Support Vector Machine (SVM), XGBoost (XGB) and Naïve Bayes (NB),

(a) before and (b) after the cleaning up procedure applied for the 10-year IDE prediction. Consensus is measured by computing the Cohen’s kappa (κ)

coefficient between each pair of classifiers on training sets and then averaged over 20 5-fold cross validation rounds.

https://doi.org/10.1371/journal.pone.0274691.g002
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of 87.0% and 82.4% for the 10-year follow-up). Table 3 summarizes the percentage median,

first and third quartile values of all the evaluation metrics achieved by all the three models on

the ten independent tests. The AUC values reached by Model 2 decreased up to around 14%: a

median AUC value of 70.5% and 70.7% were obtained for the 5-year and 10-year follow-up,

Fig 3. Maps representing the statistical frequency of features selected in nested cross-validation over the ten training sets for Model 1,

Model 2 and Model 3. (a) at 5-year follow-up and (b) at 10-year follow-up. The statistical frequency is expressed in percentage values on the

color bar: lower values correspond to dark colors; higher values correspond to brighter colors. The 28 collected features are disposed on the y-

axis, whereas the training set identifiers from 1 to 10 are disposed on the x-axis.

https://doi.org/10.1371/journal.pone.0274691.g003
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respectively. As emerged from Table 3, Model 3 was not able to obtain satisfying results when

tested on a set of patients involving not only confounding patients (the reached median AUC

values are equal to 34.3% and 34.8% for the 5-year follow-up and 10-year follow-up, respec-

tively). Conversely, Model 1 achieved stable performances when validated on the independent

tests: median AUC values of 65.8% and 67.9% were obtained for the 5-year follow-up and

10-year follow-up, respectively.

Performances of the proposed machine learning ensemble approach

Despite being stable between the training and the test sets, the results achieved by Model 1 do

not make this model as being utilized in the actual clinical practice. Experimental results

shown that a hidden pattern could be identified both by excluding confounding patients

(Model 2) and by considering all confounding patients only (Model 3), but their performances

show a gap when applied on the test sets. By merging the decisions of the three models, an

ensemble approach that reached promising results was obtained, thus enabling its application

in the actual clinical practice. Here, the performance achieved by the optimal ensemble model

(in terms of AUC value) with a unique combination of parameters valid for all the ten inde-

pendent test by imposing a percentage median value for the “no answers” given by the model

over all the sets of patients as maximum 25% was presented. The percentage median values as

well as the first and the third quartile values of all the evaluation metrics for both 5- and

10-year follow-ups are summarized in Table 3: a median AUC value of 77.1% and 76.3%, a

median accuracy value of 75.5% and 71.3% were achieved for the 5-year follow-up and the

Table 2. Summary of the performances for the 5- and 10-year follow-ups achieved by Model 1, Model 2, and Model 3 over the ten training sets after applying a 20

5-fold cross validation procedure.

Follow-up Model AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Model 1 68.1 [66.8–69.4] 66.8 [65.9–68.1] 52.8 [50.8–55.0] 72.3 [71.1–73.6]

5 years Model 2 94.8 [93.7–95.7] 88.8 [87.7–90.0] 81.9 [78.7–84.6] 91.2 [90.1–92.0]

Model 3 83.8 [79.5–86.8] 75.8 [71.6–79.1] 77.1 [71.4–81.3] 73.7 [69.6–78.6]

10 years Model 1 68.0 [66.7–69.6] 64.3 [62.9–65.3] 58.0 [55.9–60.1] 68.0 [66.3–69.4]

Model 2 94.4 [93.9–95.5] 87.0 [85.6–88.2] 83.5 [81.5–85.2] 88.9 [87.4–90.3]

Model 3 89.9 [86.0–92.3] 82.4 [78.5–85.1] 84.0 [79.6–87.6] 80.0 [73.5–84.4]

The performances are evaluated in percentage median values of AUC, accuracy, sensitivity, and specificity. The percentage first and third quartile values are also

computed and reported in brackets.

https://doi.org/10.1371/journal.pone.0274691.t002

Table 3. Summary of the performances for the 5- and 10-year follow-up achieved by Model 1, Model 2, and Model 3 over the ten independent test sets.

Follow-up Model AUC (%) Accuracy (%) Sensitivity (%) Specificity (%)

Model 1 65.8 [63.1–68.9] 65.1 [63.4–70.6] 49.2 [42.8–57.1] 70.7 [67.6–74.3]

5 years Model 2 70.5 [67.7–73.4] 71.1 [67.3–74.5] 50.1 [42.9–63.7] 77.3 [69.3–81.2]

Model 3 34.3 [29.1–40.6] 35.9 [32.7–40.4] 35.5 [35,3–57.1] 31.9 [28.2–35.1]

Ensemble Model 77.1 [69.3–78.6] 75.7 [70.3–77.5] 64.0 [55.6–66.6] 75.5 [73.9–84.0]

10 years Model 1 67.9 [59.8–70.3] 63.2 [58.5–67.9] 62.2 [56.0–66.7] 62.1 [58.8–71.9]

Model 2 70.7 [59.6–76.7] 66.0 [62.3–69.8] 51.3 [47.6–57.9] 75.8 [64.7–80.6]

Model 3 34.8 [31.7–43.6] 41.5 [37.7–47.2] 50.0 [42.1–52.4] 38.5 [32.3–46.4]

Ensemble Model 76.3 [62.8–76.8] 71.3 [68.0–74.9] 66.0 [50.0–71.8] 81.9 [61.3–87.5]

The performances are evaluated in percentage median values of AUC, accuracy, sensitivity, and specificity. The percentage first and third quartile values are also

computed and reported in brackets. For each metric, the best performances are highlighted in bold.

https://doi.org/10.1371/journal.pone.0274691.t003
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10-year follow-up, respectively. The model was optimized in terms of the AUC metric since it

is the only metric not depending on the threshold identified by the computation of Youden’s

index. Anyway, the ensemble model outperformed all the three baseline models with an overall

improvement for all the other evaluation metrics. A direct comparison with the original

model, i.e., Model 1, is also reported in the following. The upper panels of Fig 4A and 4B depict

the AUC value achieved by the proposed ensemble model over all the ten independent tests

separately (orange lines) alongside the AUC values obtained by Model 1 on the same sets (blue

lines) for the 5-year follow-up and the 10-year follow-up, respectively. In the lower panels of

Fig 4A and 4B, the percentage of the “no answers” returned by the ensemble model over all the

independent test sets for the 5-year follow-up and the 10-year follow-up is shown, respectively.

The median values of “no answers”, which are 23.4% and 23.6% for the 5-year follow-up and

10-year follow-up, respectively, are also reported as black dotted lines. An overall improve-

ment of AUC values over all the independent test sets was obtained, especially for the 5-year

follow-up. Here, a direct comparison of the ensemble model with Model 2 and Model 3 was

neglected since they were derived from Model 1, which is also the most stable model with

respect to the evaluation on the training and test sets.

Fig 4. Comparison of the AUC values achieved by applying either the proposed ensemble model (orange lines) or the original model (blue lines) and the

percentage number of no answers over each of the ten independent tests (a) at the 5-year follow-up and (b) at the 10-year follow-up.

https://doi.org/10.1371/journal.pone.0274691.g004
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Discussion

An accurate prediction of breast cancer recurrence and analogous events could aid doctors in

making better decisions about adjuvant treatment planning with an improvement in cost

reduction and prevention of excessive treatment [33, 34]. Therefore, predicting the occurrence

of recurrence in term of survival or classification has become a major issue in the current

research on breast cancer. The 5-year follow-up is the most common benchmark in the breast

cancer research field [16]. However, since breast cancer patients often experience events in a

longer time and then longer-term therapy effect (e.g., the effect of hormone therapy) needs to

be probed [35], also a 10-year follow-up is also frequently considered. PREDICT and Adju-

vant! Online are two of the most popular tools at international level [36, 37], which are able to

give prediction about the occurrence of recurrence probability for breast cancer patients in

terms of survival, as they have been validated on diverse cohort of breast cancer patients in

both United States and Western Europe. The subject of IDE prediction, despite being less

investigated in the state of the art, is of great interest in the adjuvant clinical trial setting [17].

Treatment-related causes may play a role in the occurrence of second tumors or contralateral

breast cancers [18, 38]. To date, results are inconclusive and, hence, the prediction of occur-

rence of composite events, i.e., IDEs, need to be investigated. The IDE prediction has been

recently probed for the first time by Fu et al. [19]. They developed a 5-year survival model

based on XGBoost which made use of patients’ characteristics related to demographics, diag-

nosis, pathology, and therapy. In this work, we wanted to make a contribution in the field of

breast cancer IDE prediction. We developed a novel ensemble machine learning approach,

based on the concept of voting among multiple models, which is able to predict in terms of

classifications the occurrence of invasive disease events after the primary tumor, such as recur-

rence, metastasis, contralateral and second tumors at both 5- and 10-years follow-ups. The

developed method has revealed to obtain promising performances on ten independent tests

for both the follow-ups: a median AUC 77.1% and 76.3%, a median accuracy value of 75.5%

and 71.3% were achieved for the 5-year follow-up and the 10-year follow-up, respectively. The

method was also able to outperform the original predictive method, which took in input all the

raw data of the entire dataset and returned a median AUC value of 68.1% and 68.0%, a median

accuracy value of 66.8% and 64.3% for the 5-year follow-up and 10-year follow-up, respec-

tively. A fundamental peculiarity of the proposed model is the ability to identify the so-called

confounding patients and exploit them to define a consensus-based model. To the best of our

knowledge, the proposed model is the first ensemble model within the field of IDE prediction,

thus proposing an innovative angle from which probe and address the IDE prediction task.

The concept of voting on which the model is based allow us to obtain better clarifications

about the decision made by the classifier than standard machine-learning models, that, even if

based on sophisticated mathematical underpinnings, usually share the common trait to fail in

explaining in transparent and easy ways how a specific decision is achieved, thus hindering

their applicability in clinical practice. The achieved promising results make this work as a first

effort towards the implementation of a more intelligible method. However, at this step, the

proposed model cannot be implemented in clinical practice yet since it required a validation

on a wider cohort of patients, preferably including data collected across multiple centers.

Moreover, this study has the limitation to have analyzed a heterogeneous sample population,

since the period of the first tumor diagnosis was over 20 years (from 1995 to 2019). During

this period, several pharmacological and treatment generations are being succeeded with a

great impact on the predicted outcome. As example, the introduction of regimens containing

anthracycline and taxane administered sequentially or in combination has resulted in a reduc-

tion of 16% of the risk of recurrence [39]. Randomized clinical studies within the adjuvant
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treatment framework, such as HERA, NSABP B-31, NCCTG N9831 and BCIRG 006, have also

demonstrated how the addition of Trastuzumab to the typical therapy schemes has dramati-

cally changed the natural history of HER2/neu+ breast cancer patients [40]. However, the

developed model has learned to recognize even the effects of the first-generation drugs such as

CMF, which, even if more rarely, are still used in clinical practice alongside new generation

drugs. As future works, a wider cohort of patients will be used to evaluate the model generaliz-

ability and robustness alongside to the development of a tool that is able to distinguish the spe-

cific typology of the invasive disease event (recurrence, contralateral breast cancer and second

tumor). The addition of radiomic features extracted by primary tumor diagnostic imaging

exams, e.g., ultrasounds or mammograms, could be also investigated [41, 42].

Conclusions

The current work presents a novel ensemble machine learning approach that, based on voting

among three baseline models and grid search procedure, was able to predict the occurrence of

5- and 10-year invasive disease events in breast cancer patients. When a coherent prediction

among the baseline models was obtained, the model returned a specific prediction for a given

patient. Conversely, when no consensus among the baseline models was reached, the ensemble

model remained unexpressed about that patient. The identification of confounding patients as

well as the definition of an ensemble method, that returned a decision only when a consensus

among the inner classifiers is reached can be considered as innovative aspects with respect to

IDE prediction challenge. In the vein of the bursting concept of explainable artificial intelli-

gence within the biomedical field, this ensemble model is able to return more intelligible

choices as it is based on the concept of voting among multiple models. This aspect is particu-

larly important for an easier clinical applicability of a decision support system that, just as the

model proposed here, shows promising results. A greater interpretability of the results could

lead clinicians to be more prone to adopt medical artificial intelligence methodologies in the

actual clinical practice.
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S1 File. Details about model design.

(DOCX)

S1 Fig. Overview of the cleaning up procedure.

(TIF)

S2 Fig. Examples of distributions of the scores associated with the corrected classification

within the non-IDE and IDE classes (indicated as ok-non-IDE and IDE, respectively), and

the wrong classifications (indicated as wrong). They were computed for the 10-year IDE pre-

diction by means of the XGB classifier after implementing a 20 5-fold cross validation round

scheme over one out of the ten training sets.

(TIF)

S3 Fig. Workfolw of the rule process at the basis of the ensemble model. The scores si, sj, sk
are the scores of Model 1, Model 2 and Model 3, with i,j,k 2 {1,2,3}, the score s is the final pre-

diction of the ensemble model.

(TIF)

S4 Fig. Distributions of AUC values reached for the 5-year IDE prediction to varying each

of the possible values that each of the eight parameters can assume for each of the ten inde-

pendent tests separately. The word av. stands for average. The word q stands for quantile.
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The order of each q is also specified.

(TIF)

S5 Fig. Distributions of AUC values reached for the 5-year IDE prediction to varying each

of the possible values that each of the eight parameters can assume for each of the ten inde-

pendent tests separately. The word av. stands for average. The word q stands for quantile.

The order of each q is also specified.

(TIF)

S6 Fig. Best performances reached by the ensemble model for the 5-year IDE prediction.

(a) Comparison of the best AUC values achieved by applying the proposed ensemble model

(orange line) with the AUC values reached the original model (blue line) over each of the ten

independent tests (left panel), and percentage number of no answers over each of the ten inde-

pendent tests (right panel). (b) Distribution of the eight parameters for which the grid search

procedure was performed across the ten independent test sets.

(TIF)

S7 Fig. Best performances reached by the ensemble model for the 5-year IDE prediction.

(a) Comparison of the best AUC values achieved by applying the proposed ensemble model

(orange line) with the AUC values reached the original model (blue line) over each of the ten

independent tests (left panel), and percentage number of no answers over each of the ten inde-

pendent tests (right panel). (b) Distribution of the eight parameters for which the grid search

procedure was performed across the ten independent test sets.

(TIF)

S1 Table. Summary of the parameters appearing in the rules of the ensemble model. For all

the parameters, a brief description is reported in the second column. The range of variation

represents all the possible values that a specific parameter could assume, whilst the step indi-

cates the distance between two subsequent values within that range. The parameters th1, th2

and th3 do not require a range of variation since they were automatically computed on each of

the ten training sets separately, as reported in the second column. Except for these three last

parameters, the other eight parameters can assume five possible values and their optimal

parameter combination under set conditions was identified by implementing the grid search

procedure. Since these parameters were computed for the ten training sets separately, for each

of them, a distribution was obtained, and the quantiles of certain order were computed. The

extremes of the respective ranges were obtained by averaging the quantiles of specific order

over the ten training sets. The number following the word quantile indicates the order of that

quantile.
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