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Pathogenic fungi constitute a vast and diverse kingdom of

eukaryotic organisms that interact with an equally vast and

diverse collection of hosts. Despite this extraordinary diversity,

unrelated fungi have strikingly similar needs and interests:

nutrient acquisition, growth, niche establishment, and reproduc-

tion. To support these activities, fungi have evolved remarkably

sophisticated mechanisms for interacting with host organisms,

and modulating the speed, timing, and magnitude of these

interactions. In the case of opportunistic human fungal

pathogens, these mechanisms have often emerged as a conse-

quence of the expansion of specific gene families and clusters that

confer flexibility in nutrient acquisition, host recognition, and

adhesion. These evolutionary adaptations do not generally

support the destruction of the host, but rather, modulate

homeostasis in the host to the advantage of the fungus

(Figure 1). This scenario is analogous to what happens in plant

pathogens as well. Biotrophs, which do not kill their hosts and

require living cells for growth, co-opt homeostasis in the host to

create an advantage for the fungus. Understanding the mecha-

nisms by which fungi modulate biological activities in both plant

and animal hosts remains an area of significant research interest

and practical importance. Here, we describe four themes that

emerge from a consideration of common mechanisms by which

plant and animal fungi resist, subvert, or evade host defenses to

ultimately thrive.

Toxins Are Not Always Toxic

Toxic metabolites produced by fungi and other microbes have

been noted and characterized for more than a half century [1].

Treatment of host tissue with these compounds alone often

recapitulates symptoms elicited by the pathogen. While toxins

clearly can have harmful properties, our understanding of the

precise manner by which toxins mediate pathogen virulence and/

or compromise host defenses is in many cases incomplete. An

emerging theme from various pathosystems suggests that the mode

of action of several fungal toxins is based on the modulation of

signaling pathways in the host as a means to achieve pathogenic

success.

The broad host range necrotrophic fungal phytopathogen

Sclerotinia sclerotiorum serves to illustrate. This fungus secretes the

non-host selective toxin and key pathogenicity determinant

oxalic acid (OA). This ‘‘simple’’ organic acid is toxic to host

tissue, inducing cell death upon addition to various plants.

However, Sclerotinia effectively uses OA for a range of processes

including enzyme activation, guard cell regulation, and

signaling for pathogenic (sclerotial) development. Importantly,

these effects of OA on host tissue cannot be mimicked by

treatment with other organic acids, including HCl, succinic

acid, and citric acid [2]. Moreover, additional studies show that

OA acts as a signaling molecule to induce a genetically

regulated apoptotic-like programmed cell death (PCD) in host

plant tissue [2]. Thus, the fungus tricks the host into generating

nutrient-rich dead cells that are of sole and direct benefit to the

fungus.

Fusarium spp. are rich sources of mycotoxins and other

secondary metabolites. Fumonisin (FB1), for example, is a

sphinganine analog and mycotoxin produced by Fusarium

verticillioides, a maize endophyte associated with stalk rot disease.

This toxin alters sphingolipid biosynthesis [3], modulates protein

kinase C activity [4,5], and also promotes disease in livestock and

humans when ingested. Intriguingly, fumonisin induces apoptosis

in human kidney cells [6], and in tomato and corn cells [7].

However, the toxin does not appear to be required for disease

progression in plants. Rather, this toxin, and other fungal

metabolites, may function to protect the fungus from predators

and competitors in its environmental niche [8]. The activities of

mycotoxins produced by some fungal pathogens of animals also

possess unexpected activities. For example, Aspergillus fumigatus, the

causative agent of aspergillosis in humans, produces the non-

ribosomal immunotoxic dipeptide gliotoxin. This compound

exerts pleiotropic effects in host tissue, including inhibiting

macrophage phagocytosis, T cell proliferation, and mast cell

activation [9].

Oxygen: Can’t Live with It, Can’t Live without It

Everything must be in balance. This is both a philosophical

tenet and a biological fact of life. The outcomes of host–microbe

interactions are dependent, at least in part, on oxygen homeosta-

sis. Membrane perturbation, a common early event in plant/

animal–pathogen interactions, results in the induction and

accumulation of reactive oxygen species (ROS), which include

superoxide radicals (O2
2), hydrogen peroxide (H2O2), and

hydroxyl radicals (OH.). Thus, both host and pathogen must

adapt quickly to changing environmental conditions or risk death.
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As a result, microbes, plants, and animals devote a significant

portion of their cellular workload to tightly controlling their

intracellular and perhaps extracellular redox environments [10]

through the synthesis, regulation, and release of antioxidants (both

enzymatic and non-enzymatic), which buffer and balance a

potentially unstable environment [11].

This induction and accumulation of ROS, often called the

oxidative or respiratory burst, is generally mediated by NADPH

oxidases. In animals, the oxidative burst constitutes an important

weapon used by host cells to eradicate pathogens following

engulfment by macrophages. In humans, for example, defects in

superoxide anion lead to the development of chronic granuloma-

tous disease, an illness characterized by recurrent life-threatening

bacterial and fungal infections [12]. In plants, the oxidative burst is

an early, universal response to microbial attack that is correlated

with several defense responses ranging from direct microbial

toxicity to defense-associated enzyme activation, cell wall rein-

forcement, and the hypersensitive response (HR), a PCD that

restricts pathogen spread. On the other hand, the detoxification or

suppression of host-generated ROS is regarded as a defense

mechanism by which pathogens evade the host immune response

and survive inside hosts. In several fungal pathogens of plants and

animals, the expression of redox homeostasis regulators (e.g.,

catalase, which detoxifies H2O2) has been implicated in counter-

acting the respiratory burst by protecting cells from death resulting

from oxidative stress. It is also notable that fungi undergo oxidative

bursts during development [13]. For instance, the oxidative burst

is crucial for endophytes such as Epichloe festucae to establish

symbiotic relationships with its plant host, rye grass [14], and also

for sclerotial development in S. sclerotiorum [2] and for vegetative

growth and development in Neurospora crassa [15].

Oxidative homeostasis is thus a focal point in host–pathogen

interactions. Organisms have adapted to the presence and

generation of ROS and have evolved processes to manipulate

the oxidative environment by perturbing the balance between

production and scavenging. When this balance is tipped, disease

often occurs.

Dirty Deeds

While plants and animals share several strategies for combating

attacks by fungal pathogens, plants do not possess antibody-

mediated immunity, and thus rely on innate mechanisms for

immune defense. These mechanisms exploit Toll-like receptors

(TLRs), pattern recognition receptors (PRRs), and receptor-like

kinases (RLKs) that recognize pathogen-associated molecular

patterns (PAMPs) to activate host defense programs. In the case

of animals, these molecules also regulate phagocytosis [16]. The

production of intercellular signaling molecules, such as pro-

inflammatory mediators in the case of animal infection, and the

plant hormones jasmonic acid, ethylene, and salicylic acid in the

case of plant infection, also accompany pathogen recognition.

Not surprisingly, pathogenic fungi have co-evolved mechanisms

to evade host defenses. These dirty deeds include the secretion of

components that mask extracellular PAMPs and the synthesis of

physical barriers and other molecules that suppress phagocytic

recognition, uptake, and killing [17]. In addition, pathogenic fungi

can direct the reprogramming of metabolic and signaling networks

to evade or subvert host defenses [18]. Some pathogenic fungi,

including Candida albicans [19] (human) and Cladosporium fulvum

(tomato), also release metabolites that impair host innate immune

function [20]. However, despite these subversive activities, these

Figure 1. Tipping the balance for control in host–pathogen interactions; generalized schematic. To become established in plants or
animals, fungal pathogens attempt to disrupt host cell homeostasis while avoiding and/or suppressing host recognition. The host has sophisticated
surveillance systems that are poised to rapidly recognize non-self and counter disruptive attempts by pathogens. Signals activated by these
surveillance systems can initiate a myriad of host defenses, including the release of reactive oxygen species and hydrolytic enzymes, which thwart the
activities of fungal pathogens. The activation of host defense mechanisms also often culminates in the programmed death of host cells or tissue,
which limits pathogen spread or dissemination. If attempts by the pathogen to co-opt, subvert, or avoid these host recognition and signaling
mechanisms succeed, then the pathogen ‘‘wins’’ the battle for control of the interaction, and disease ensues. If the host wins this battle, then disease
is averted.
doi:10.1371/journal.ppat.1002324.g001
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fungal pathogens cannot always successfully evade or circumvent

host defenses.

Death Means Life

Plants mount physical and chemical responses to attacks by

fungal pathogens. They thicken their cell walls, produce anti-

microbial compounds, and trigger HR, a process resulting in the

delimitation of pathogen spread via activation of PCD at the site of

infection. Thus, plants in essence altruistically sacrifice a few cells

for the sake of the whole. However, certain plant pathogens can

manipulate these cell death pathways to enhance plant coloniza-

tion and promote disease. Besides Sclerotinia, the necrotrophic plant

pathogen Botrytis spp. induces host cell death to secure nutrients

[21]. Moreover, several toxin-producing fungi also impact PCD

pathways. For example, Cochliobolus victoriae produces the host

selective toxin victorin, which induces an apoptotic-like PCD and

plant defense responses by targeting specific host proteins [22].

The complex polysaccharide galactoxylomannan, produced by the

animal pathogen Cryptococcus neoformans, activates host apoptotic

pathways through interactions with glycoreceptors on T cells,

which, in turn, contribute to the immunosuppression that

accompanies cryptococcosis [23,24,25]. C. albicans can also

activate caspase-dependent apoptotic pathways during early stages

of the infection process, which contributes to host cell death [26].

Thus, the manipulation of host cell death by fungal pathogens

promotes disease progression and pathogen dissemination in

fungal pathogens of plants and animals. Finally, it should be noted

that some plant pathogens suppress PCD for pathogenic success.

For example, the oomycete Phytophthora infestans, the causal agent of

late blight in potato, expresses suppressor of necrosis 1 (SNE1)

during biotrophic growth within host plants. This protein

suppresses PCD signaling in the host and inhibits the PCD

induction activities of its own proteins [27]. Bax inhibitor-1 (BI-1),

identified in a screen for mammalian proteins that inhibit pro-

apoptotic Bax, is one of few proteins conserved across kingdoms

that impact PCD. BI-1 has been found in many plants, as well as

yeast, and like its mammalian brethren, is a cytoprotective survival

gene. This has not gone unnoticed by biotrophic fungi, where it

has been shown that RNA interference of barley BI-1 resulted in

plants that were less susceptible (more resistant) to powdery

mildew than wild-type plants. Barley Bl-1 is targeted by the fungus

and is required for complete susceptibility to barley powdery

mildew fungus. Thus, barley BI-1 is viewed as a susceptibility

factor for powdery mildew. We will likely see others in the future

[28,29]. In mammals, BI-1 expression is down-regulated as

chronic liver damage progresses [30]. The high levels of mRNA

observed in the early stages of liver disease may protect virus-

infected cells against apoptosis, while progressive down regulation

may facilitate hepatocellular carcinogenesis.

Conclusions

The fight for control of a given host–pathogen interaction is not

black and white, but rather highly context dependent. The speed,

timing, and magnitude of the responses of the combatants, amid

the lifestyle of the pathogen, all contribute to who wins the day in

the battle during pathogen attack. Several strategies used by

pathogens to get the upper hand are shared even though hosts are

distinctly different. In the end, the outcome of interactions

between fungal pathogens and their plant or animal hosts reduces

to a simple question: Who’s in control? If the pathogen or host

wins the battle over the control of oxidative stress, PCD, and

‘‘defense’’ gene responses, that combatant will prevail.
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