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Yuzhuo Wang,2,5 Rong Yin,5 Juncheng Dai,2,6 Lin Xu,5 Hongxia Ma,2,6,7 Zhibin Hu,2,6 Guangfu Jin,1,2,6,*

Meng Zhu,2,6,* and Hongbing Shen1,2,3,7,9,*

SUMMARY

Chronological age only represents the passage of time, whereas biological age
reflects the physiology states and the susceptibility to morbidity and mortality.
The association between biological age and lung cancer risk remains controver-
sial. Hence, we conducted a prospective analysis in the UK Biobank study and
two-sample Mendelian randomization analysis to investigate this association.
Biological aging was evaluated by PhenoAgeAccel, derived from routine clinical
biomarkers. Independent of chronological age, PhenoAgeAccel was positively
associated with the risk of overall and histological subtypes of lung cancer. There
was a joint effect of PhenoAgeAccel and genetics in lung cancer incidence. In
Mendelian randomization analysis, the genetically predicted PhenoAgeAccel
was associated with the increased risk of overall lung cancer, small cell, and squa-
mous cell carcinoma. Our findings suggest PhenoAgeAccel is an independent risk
factor for lung cancer, which could be incorporated with polygenic risk score to
identify high-risk individuals for lung cancer.

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide, with an estimated 2.2 million new cancer cases

and 1.8million deaths in 2020.1 Apart from smoking, aging is one of themost important determinants of risk

for lung cancer.2 Although everyone ages, the rate at which aging occurs is heterogeneous, and between-

person variations in the pace of aging mostly manifest as differences in biological aging and susceptibility

to disease.3,4 Hence, chronological age alone is not sufficient to reflect the state of biological aging.

A novel multi-system-based aging measure, namely Phenotypic age (PhenoAge), has been developed and

widely validated to be a surrogate for biological aging in recent studies.5,6 PhenoAge was derived from 9

multi-system clinical chemistry biomarkers. Phenotypic age acceleration (PhenoAgeAccel), which indicates

the difference between biological age and chronological age, has been proven to be an effective

biomarker to differentiate risk for several health outcomes. Previous studies have showed that biological

aging measured by telomere length or DNA methylations was associated with the risk of lung cancer,

but these findings remain arguable.7–9 However, these molecular biomarkers are unlikely to be routinely

used in large populations due to expensive and time-consuming testing. Hence, PhenoAgeAccel, derived

from routinely collected clinical biomarkers, could provide a powerful tool to predict and monitor health-

span as well as age-related illnesses such as type 2 diabetes.10–13 Since different indicator of biological ag-

ing capturing distinct underlying senescence mechanisms, the role of PhenoAgeAccel in the development

of lung cancer needed to be further evaluated.

Genetics also plays an important role in the development of lung cancer. Polygenic risk score (PRS),

which was derived from genome-wide associations studies (GWAS) by combining means of weighted

sum of allele counts, has been proven to be effective tools to quantify individuals’ genetic risk of lung

cancer in recent studies.14,15 The association between PhenoAgeAccel and lung cancer risk in different ge-

netic risk groups, and the potential interactions, as well as joint effects were also needed to be further

evaluated.
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In this study, we first investigate the association between PhenoAgeAccel and lung cancer risk based on the

UK Biobank cohort study, and then assess whether PhenoAgeAccel could provide an additional predictive

value of lung cancer risk independent from chronological age. Furthermore, the joint and interactive effects

between PhenoAgeAccel and PRS on the risk of lung cancer were also analyzed. To further account for re-

sidual confounding, reverse causation, or regression dilution,16 we also used two-sample Mendelian

randomization (MR) to investigate the causal association between PhenoAgeAccel and lung cancer risk.

RESULTS

Study characteristics

Of 385,074 participants in the UK Biobank cohort, 1,775 lung cancer incident events were diagnosed over a

median follow-up of 7.2 years (interquartile range: 6.4–7.7). Although the average chronological ages of the

two groups were almost similar (56.3 years for both biologically younger and biologically older group), an

average of 7.9 years difference in clinically measured biological aging were observed between these two

groups (Table 1).

Association between PhenoAgeAccel and lung cancer risk

Figure 1A shows that individuals with incident lung cancer had higher PhenoAgeAccel than those without

lung cancer during follow-up. After adjusting for chronological age and other covariates, per 5-year in-

crease in PhenoAgeAccel was associated with an increased risk of lung cancer by 31% (hazard ratio

(HR) = 1.31, 95% confidence intervals (CI): 1.26–1.37, p < 0.001) (Table 2). There was a significantly gradient

increase in lung cancer risk from decile 1 to 10 of PhenoAgeAccel with Ptrend<0.001 (Figure 1B). Figure 1C

shows that compared with biologically younger group, biologically older group was associated with a

higher risk for lung cancer (HR = 1.62, 95%CI: 1.46–1.80, p < 0.001). Furthermore, compared with partici-

pants of low accelerated aging (the bottom quintile of PhenoAgeAccel), those of intermediate (quintiles

2–4) and high accelerated aging group (the top quintile) had higher risk of lung cancer, with HR of 1.42

(95%CI: 1.21–1.67, p < 0.001) and 2.24 (95%CI: 1.88–2.66, p < 0.001), respectively (Figure 1D). Subgroup

analysis showed the significant dose-response trend between PhenoAgeAccel and lung cancer risk was

consistent across different histological subtypes of lung cancer (Table S1). Table S2 shows that stronger

associations were observed among men than women and among previous/current smokers than never

smoking. In sensitivity analysis, these results were robust by the exclusion of individuals with incomplete

covariates (Table S3) and those with lung cancer event within the first two years of follow-up (Table S4),

as well as under competing risk of death (Table S5). Further adjusting for additional smoking-related

information or other lifestyle factors, PhenoAgeAccel was still positively associated with lung cancer risk

(Tables S6 and S7).

PhenoAgeAccel provides additional information in the prediction of lung cancer independent

of age

We then evaluated the impact of PhenoAgeAccel on the prematurity of lung cancer incidence using the

rate advancement period (RAP). Biologically older group was expected to advance their risk of lung cancer

about 4.51 years (RAP 95% CI: 3.49–5.53) comparing with biologically younger group (Table 2 & Figure S2).

For instance, a biologically older participant at 50.0-year-old almost had the same lung cancer risk as a bio-

logically younger participant at 54.5-year-old. Subgroup analysis also showed the association between

PhenoAgeAccel and lung cancer risk was consistent across different age groups (Table S2). These findings

indicated that PhenoAgeAccel, independent of chronological age, could provide additional information

on the association between biological aging and lung cancer risk. Furthermore, we observed that

participants with higher PhenoAgeAccel levels had a higher 5-year absolute risk of lung cancer than their

peers with lower PhenoAgeAccel levels (Figure 2A). Besides, adding PhenoAgeAccel to the basic model

(chronological age and smoking status) could improve the predictive performance (area under the ROC

curve (AUC) = 0.83 vs AUC = 0.82, p < 0.001; continuous net reclassification index = 10.5%, 95%CI:

2.1%–12.9%) (Figure 2B).

The joint impact of PhenoAgeAccel and genetic risk

The PRS was constructed and significantly associated with the risk of lung cancer in our dataset (Figure S3).

Compared to participants with low genetic risk, the multivariable HR among participants with high genetic

risk was 1.48 (95%CI, 1.32–1.66, p < 0.001) (Table S8). Besides, there was weak correlation (r = 0.08) between

PRS and PhenoAgeAccel (Figure S4). When combining PhenoAgeAccel and genetic risk, we observed the
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Table 1. Baseline characteristics of participants

Overall (N=385,074)

Biologically younger

(N=210,582)

Biologically older

(N=174,492)

PhenoAgeAccel, yearsa 0.0 G 5.1 �3.6 G 2.5 4.3 G 3.9

Chronological age, years 56.3 G 8.1 56.3 G 8.0 56.3 G 8.3

Sex, n (%)

Women 202,643 (52.6) 125,122 (59.4) 77,521 (44.4)

Men 182,431 (47.4) 85,460 (40.6) 96,971 (55.6)

Ethnicity, n (%)

Non-White 17,325 (4.5) 8,528 (4.1) 8,797 (5.0)

White 362,370 (94.1) 199,225 (94.6) 163,145 (93.5)

Unknown 5,379 (1.4) 2,829 (1.3) 2,550 (1.5)

Education, n (%)

No degree 255,080 (66.2) 133,541 (63.4) 121,539 (69.7)

Degree 125,409 (32.6) 74,850 (35.5) 50,559 (29.0)

Unknown 4,585 (1.2) 2,191 (1.1) 2,394 (1.3)

Townsend deprivation index �1.3 G 3.1 �1.6 G 3.0 �1.0 G 3.2

BMI, kg/m2 27.4 G 4.8 26.4 G 4.0 28.7 G 5.2

Smoking status, n (%)

Never 210,874 (54.8) 123,124 (58.5) 87,750 (50.3)

Former 131,699 (34.2) 72,087 (34.2) 59,612 (34.2)

Current 40,592 (10.5) 14,494 (6.9) 26,098 (15.0)

Unknown 1,909 (0.5) 877 (0.4) 1,032 (0.6)

Family history of lung cancer, n (%)

No 337,833 (87.7) 185,296 (88.0) 152,537 (87.4)

Yes 47,241 (12.3) 25,286 (12.0) 21,955 (12.6)

History of asthma, n (%)

No 340,667 (88.5) 188,988 (89.8) 151,679 (86.9)

Yes 44,407 (11.5) 21,594 (10.2) 22,813 (13.1)

History of allergy and/or eczema, n (%)

No 295,729 (76.8) 160,244 (76.1) 135,485 (77.7)

Yes 89,345 (23.2) 50,338 (23.9) 39,007 (22.3)

History of emphysema and/or bronchitis, n (%)

No 378,847 (98.4) 208,391 (99.0) 170,456 (97.7)

Yes 6,227 (1.6) 2,191 (1.0) 4,036 (2.3)

Albumin, g/L 45.2 G 2.5 45.8 G 2.4 44.6 G 2.5

Alkaline phosphatase, U/L 82.9 G 22.5 79.4 G 20.7 87.2 G 23.8

Creatinine, umol/L 72.2 G 14.2 68.8 G 12.4 76.3 G 15.2

Glucose, mmol/l 5.1 G 1.0 4.9 G 0.5 5.4 G 1.2

C-reactive protein, mg/dL 0.3 G 0.3 0.2 G 0.2 0.4 G 0.4

Lymphocyte percent, n (%) 28.9 G 7.1 30.9 G 6.8 26.6 G 6.8

Mean cell volume, fL 91.1 G 4.3 91.0 G 3.8 91.3 G 4.8

Red cell distribution width, n (%) 13.5 G 0.9 13.1 G 0.5 13.9 G 0.9

White blood cell count, 1000 cells/ul 6.9 G 1.7 6.3 G 1.4 7.5 G 1.8

Abbreviation: BMI, body mass index; PhenoAgeAccel, Phenotypic age acceleration.

Data are presented as mean G SD for continuous variables and n (%) for categorical variables.
aPhenoAgeAccel represents the residual of PhenoAge regression on chronological age. The average PhenoAgeAccel in the biologically younger group was

�3.6G 2.5 years, suggesting 3.6 years younger than chronological age. The mean PhenoAgeAccel in the biologically older group was 4.3G 3.9 years, indicating

4.3 years older than chronological age.
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joint effect of PhenoAgeAccel and PRS on the development of lung cancer. Specifically, compared to par-

ticipants with low genetic risk and biologically younger, those with high genetic risk and biologically older

had the higher risk of lung cancer (HR = 2.42, 95% CI: 2.01–2.90, p < 0.001) with 8.16 years advancement in

lung cancer occurrence (RAP 95% CI: 6.37–9.95) (Figure 3). A similar joint impact was noted in sensitivity

analyses (Tables S9 and S10 and Figure S5), while there was no interaction between PhenoAgeAccel and

PRS (Table S11).

Causal association between PhenoAgeAccel and lung cancer risk

To further confirm the association between PhenoAgeAccel and lung cancer risk, we used the genetic

variants of PhenoAgeAccel as instruments to perform MR analysis. After removal of the outliers that was

identified by Radial MR plots (Figure S6), neither heterogeneity (p = 0.204) or unbalanced pleiotropy

(P for MR-PRESSO Global Test = 0.198) was observed (Table S12). Based on the remaining 82 genetic var-

iants, we found that genetically predicted PhenoAgeAccel was associated with lung cancer risk (IVW

method: OR = 1.02, 95% CI: 1.00–1.04, p = 0.041) (Table 3). In the subgroup analysis according to histopath-

ological type, the MR analyses demonstrated that PhenoAgeAccel was causally associated with the

increased risk of small-cell lung cancer (IVW: OR = 1.06, 95% CI: 1.01–1.12, p = 0.013) and squamous cell

lung cancer (IVW: OR = 1.07, 95% CI: 1.04–1.10, p < 0.001). Leave-one-out sensitivity analysis also showed

the similar results (Figure S7).

Figure 1. Distribution of PhenoAgeAccel and association between PhenoAgeAccel and lung cancer

(A) The distribution of PhenoAgeAccel across non-lung cancer and lung cancer; (B) Individuals were split equally into ten

groups based on PhenoAgeAccel, and the HR was estimated for each group in comparison with the first group

(P trend<0.001); (C) (D)The standardized cumulative incidence of rate among participants with biologically older and

younger, as well as individuals with low accelerated aging (the bottom quintile of PhenoAgeAccel), intermediate

accelerated aging (quintiles 2–4), and high accelerated aging (the top quintile). Abbreviation: PhenoAgeAccel,

Phenotypic age acceleration.
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Table 2. Association between PhenoAgeAccel and lung cancer risk

N (cases) Person-Years

HR (95% CI)

Model 1

RAP (95% CI)

Model 2

p value RAP (95% CI)p value HR (95% CI)

Per 5-year increase 385,074 (1,775) 2,718,602 1.49 (1.44–1.55) <0.001 3.91 (3.43–4.39) 1.31 (1.26–1.37) <0.001 2.53 (2.09–2.97)

Categorya

Biologically younger 210,582 (613) 1,497,199 Ref. Ref. Ref. Ref.

Biologically older 174,492 (1,162) 1,221,402 2.14 (1.94–2.37) <0.001 7.36 (6.24–8.48) 1.62 (1.46–1.80) <0.001 4.51 (3.49–5.53)

Categoryb

Low accelerated aging 77,015 (182) 550,275 Ref. Ref. Ref. Ref.

Intermediate accelerated aging 231,044 (906) 1,633,407 1.68 (1.43–1.98) <0.001 5.03 (3.43–6.63) 1.42 (1.21–1.67) <0.001 3.30 (1.76–4.84)

High accelerated aging 77,015 (687) 534,920 3.51 (2.96–4.16) <0.001 12.13 (10.26–14.00) 2.24 (1.88–2.66) <0.001 7.51 (5.79–9.23)

P trend <0.001 <0.001

Abbreviation: HR, hazard ratio; CI, confidence interval; RAP, rate advancement period; BMI, body mass index.

Model 1: Adjusting for chronological age, sex, ethnicity, center, education, Townsend deprivation index, and BMI.

Model 2: Additionally adjusted for smoking status, family history of lung cancer, history of asthma, history of allergy and/or eczema, and history of emphysema and/or bronchitis.
aBiologically older and younger respectively represent PhenoAgeAccel >0 and <0.
bLow accelerated aging refers to the bottom quintile of PhenoAgeAccel (quintile 1: <�4.15 years); intermediate accelerated aging refers to quintiles 2–4 (�4.15 to 3.69 years); high accelerated aging refers to

the top quintile groups (quintile 5: 3.69 to 39.64 years).
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DISCUSSION

In this large-scale prospective cohort, our study found a positive association between PhenoAgeAccel and

the risk of overall lung cancer and histological types. Compared with biologically younger group at the

same chronological age, biologically older group had a higher 5-year absolute risk of lung cancer.

PhenoAgeAccel could provide additional information on the association between biological aging and

lung cancer risk independent of chronological age. Furthermore, there was a joint effect of

PhenoAgeAccel and genetic risk in lung cancer incidence. Finally, two-sample Mendelian randomization

analysis demonstrated that genetically predicted PhenoAgeAccel was associated with the increased risk

of overall lung cancer, small-cell, and squamous cell carcinoma.

The associations between aging and lung cancer risk were hypothesized to be a result of increasing accu-

mulation of unrepaired damage of exposure to carcinogens (e.g., nicotine),17 the age-associated decline in

the immune system,2 and increased cellular senescence.18 ‘‘Lung age’’ (derived from the first second of

forced expiration, body height, and age) has been proved to be an indicator of pulmonary obstructive

impairment and significantly associated with postoperative respiratory complications and survival in pa-

tients with lung cancer.19 Furthermore, previous cohort studies also indicated biological age acceleration

measured by DNA methylation or telomere length was associated with lung cancer risk.7,20,21 However, to

our knowledge, this is the first study to evaluate the association between clinically measured biological ag-

ing (PhenoAgeAccel) and lung cancer risk using observational studies and MR analysis simultaneously. Our

observational analysis showed that people who are biologically older have a higher risk of lung cancer than

those who are biologically younger although they are the same age. On the other hand, compared with

other aging indicators, PhenoAgeAccel is easily attainable and cost-effective, so it will have a broad clinical

application prospect in mass screenings for lung cancer.

The two-sample MR analysis further supported our observational analysis findings. There were causal as-

sociation between PhenoAgeAccel and the risk of overall lung cancer, as well as small-cell and squamous

cell carcinoma. This is partly consistent with previous MR analysis that reported telomere length measured

biological aging is a potential causal risk for overall lung cancer and adenocarcinoma.20 These findings

differed from the MR analysis that found that genetically predicted epigenetic clock may be protective

against lung cancer.22 These inconsistent findings are due to the different indicator of biological aging

capturing distinct underlying senescence mechanisms.23 For instance, PhenoAgeAccel incorporates nine

multi-system clinical chemistry biomarkers to predict all-cause mortality.10 PhenoAgeAccel-related sus-

ceptibility loci were enriched in immune-related pathways,6 which are closely associated with tumor devel-

opment. Besides, previous study observed that slowly aging naked mole-rats are particularly resistant to

cancer development, whereas, rapidly aging mice develop cancer within 2 years.24 Overall, these findings

would provide intuitive information for people on the potential benefit of delaying aging on lung cancer

prevention and could improve public awareness of health hazards of biological aging. Individuals could

slow down biological aging by quitting smoking, restricting caloric, exercising regularly, and other healthy

lifestyle behaviors,25–27 thereby preventing the development of age-related illnesses.

A B

Figure 2. PhenoAgeAccel could provide additional information for lung cancer risk assessment

(A) Absolute risk estimates of lung cancer by different PhenoAgeAccel; (B) Receiver operating characteristic (ROC) curve

and corresponding area under the ROC curve (AUC). Abbreviation: PhenoAgeAccel, Phenotypic age acceleration; ROC,

receiver operating characteristic.
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PRS, as an indicator of genetic risk, has been proved to effectively predict lung cancer risk.14,28 Aging

inequality was largely due to a comprehensive set of life course circumstances. For example, recent studies

have confirmed that traumas and adversities in childhood and adulthood affect the risk of disease in later

life, presumably via an acceleration of the aging process.29,30 Our gene-environment interaction analysis

indicated a joint effect of genetic susceptibility to lung cancer and biological aging. These results further

support the opinion that the development of lung cancer is the result of the interplay between genetic and

environmental risk factors and suggest that individuals at high genetic risk of lung cancer should pay more

attention to their biological aging.

Genetic and other biological markers, which capture biological signals representing susceptibility, could

aid early detection and secondary prevention for lung cancer by raising awareness and influencing positive

behavioral change among high-risk individuals; and facilitating targeted screening and prevention

strategies.7,31 Of note, PhenoAgeAccel, based on routine clinical chemistry biomarkers, has been proved

to be effective in differentiating risk for a variety of health outcomes within diverse subpopulation.10 Here,

we further confirmed the positive association between biological aging and lung cancer risk.

PhenoAgeAccel might be served as one of the concrete intermediate measures for behavior intervention

Low genetic risk
Subgroup N (cases) Person−Years HR (95% CI) P value RAP (95% CI)

Biologically younger

Intermediate genetic risk

High genetic risk

Reference

Biologically older

Biologically younger

Biologically older

Biologically younger

Biologically older

0.50     1.00            3.00

Reference69,759 (160) 495,581

56,949 (310) 398,466 1.70 (1.40−2.06) <0.001 4.88 (3.05−6.71)

<0.001

<0.001

<0.001

69,190 (194) 491,802 1.22 (0.99−1.50) 0.064 1.83 (−0.11−3.77)

57,637 (360) 403,444 1.88 (1.56−2.28) 5.84 (4.04−7.64)

69,245 (251)

57,686 (477)

493,716

404,716

1.55 (1.27−1.90)

2.42 (2.01−2.90)

4.07 (2.21−5.93)

8.16 (6.37−9.95)

Chronological age (years)
37 40 45 50 55 60 70 7365

0.0001

0.0002

0.0003

0.0005

0.0010

0.0020

0.0030
0.0040
0.0050

etar
draza

H
A

B

Biologically younger + intermediate genetic risk 
Biologically older + intermediate genetic risk

Biologically younger + high genetic risk

Biologically older + high genetic risk

Biologically younger + low genetic risk 
Biologically older + low genetic risk

Figure 3. Hazard risk and rate advancement period of incident lung cancer according to biological aging and

genetic categories

(A) The HR for lung cancer across each group was estimated via Cox regression model after adjusting for chronological

age, sex, ethnicity, center, education, Townsend deprivation index, BMI, smoking status, family history of lung cancer,

history of asthma, history of allergy and/or eczema, history of emphysema and/or bronchitis, the top 10 principal

components of ancestry, and genotyping batch.

(B) The dashed line is the RAP, assuming a constant disease rate during the follow-up period. The y axis is on the natural

log scale. Compared with individuals at biologically younger and low genetic risk group, the RAP of lung cancer

occurrence in the other groups. Abbreviation: PhenoAgeAccel, Phenotypic age acceleration; BMI, body mass index; RAP,

rate advancement period; ROC, receiver operating characteristic.
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instead of long-term outcome (i.e., the occurrence of lung cancer), and further clinical trials are needed to

confirm this. Taken together, these findings suggest that PhenoAgeAccel and PRS could be used in

discriminating subpopulations at high risk of lung cancer, whomight benefit from a practically feasible pre-

cision intervention and lung cancer screening program.

Limitations of the study

However, there were some limitations in this study. Firstly, we could not explore the association between

the change in biological aging and lung cancer risk, because the multiple biomarker measures were avail-

able on only a small fraction of participants.32 Secondly, there was no external cohort validation in this

study, which limited the generalizability of our findings. Hence, these findings should be verified in pro-

spective studies with more diverse and larger populations.

Overall, this study using observational and Mendelian randomization analysis has demonstrated that

PhenoAgeAccel (clinically measured biological aging) is associated with the increased risk of lung cancer.

Independent of chronological age, PhenoAgeAccel could provide additional information for lung cancer

risk assessment. Our findings show that PhenoAgeAccel is a potential biomarker for lung cancer risk. More-

over, biological aging and genetic risk jointly contributed to lung cancer incidence. Future research studies

need to verify the combined application of biological aging and PRS in risk assessment for lung cancer.
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Table 3. Mendelian randomization estimates for the effect of PhenoAgeAccel on overall lung cancer and histological types

Outcome SNPs IVW

p value

Weighted median

p value

MR-Egger

p valueOR (95% CI) OR (95% CI) OR (95% CI)

Lung cancer 82 1.02 (1.00–1.04) 0.041 1.04 (0.98–1.11) 0.206 1.03 (1.00–1.06) 0.082

Small-cell carcinoma 88 1.06 (1.01–1.12) 0.013 1.16 (1.01–1.34) 0.045 1.07 (1.00–1.14) 0.063

Adenocarcinoma 80 1.01 (0.98–1.04) 0.494 0.98 (0.90–1.05) 0.530 1.02 (0.98–1.07) 0.258

Squamous cell carcinoma 83 1.07 (1.04–1.10) <0.001 1.12 (1.02–1.22) 0.020 1.08 (1.03–1.13) 0.002

IVW, inverse-variance weighted regression (assumes there is no unbalanced horizontal pleiotropy); Weighted median allows there is up to 50% of the weights in

the Mendelian randomization analysis come from invalid instruments; MR-Egger, Mendelian randomization Egger regression (allows that all the genetic variants

come from invalid instruments).
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Hongbing Shen (hbshen@njmu.edu.cn).

Materials availability

The study did not generate any new materials.

Data and code availability

d The data used in this study are available at the UK Biobank repository, www.ukbiobank.ac. (Application

Number 48700)

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Observational analysis participants

The analysis data were obtained from UK Biobank, a large population-based cohort study in the United

Kingdom. Approximately 500,000 participants aged 40-70 were recruited during 2006–2010 in 22 assess-

ment centers. Details of study design, recruitment, and procedures were previously described.32 Briefly,

this cohort collects a wide range of information involving physical assessments, self-reported health

behavior, biological samples, and health-related conditions. Figure S1 shows the inclusion and exclusion

criteria for the study participants. Finally, a total of 385,074 individuals were included in the present analysis

of PhenoAgeAccel and lung cancer risk. We further excluded 4,608 participants without genetic data and

then filtered those with sex mismatch or high missingness, or excess heterozygosity, leaving 380,466 avail-

able participants for the joint and interactive effect analysis between PRS and PhenoAgeAccel.

The UK Biobank study received approval from the Multi-center Research Ethics Committee, the National

Information Governance Board for Health and Social Care in England and Wales, and the Community

Health Index Advisory Group in Scotland, as well as informed consent from all participants.

Data sources for two-sample MR analysis

We used two-sample MR to evaluate the causal association between PhenoAgeAccel and lung cancer risk

using GWAS summary statistics. The genetic instruments for PhenoAgeAccel were obtained from a large-

scale GWAS including 107,460 individuals of European ancestry,6 which identified 7,561 independent ge-

netic variants associated with PhenoAgeAccel (p < 5 3 10�8). The GWAS summary statistics of lung cancer

were derived from International Lung Cancer Consortium (ILCCO), which included 29,266 lung cancer

cases and 56,450 controls from European ancestry.33 We extracted the summary statistics for all these ge-

netic variants, and then filtered out SNPs in linkage disequilibrium (r2 > 0.001), palindromic SNPs and SNPs

with large influence on the MR findings (i.e., outliers). The Cochran Q statistics was used to assess the

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

UK Biobank https://www.ukbiobank.ac.uk N/A

Software and algorithms

R https://www.r-project.org N/A
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heterogeneity among the genetic variants. If there was evidence of heterogeneity, we used the Radial MR

plot to detect the outliers.

METHOD DETAILS

PhenoAge and PhenoAgeAccel calculation

Clinical chemistry data were measured by 10 immunoassay analysers [63 DiaSorin Liaison XL & 43 Beck-

man Coulter DXI 800 and 4 clinical chemistry analysers (23 Beckman Coulter AU5800 & 23 Siemens Advia

1800)]. To correct the skewness of distributions of clinical chemistry biomarkers, we set the bottom 1% of

values to the first percentiles and the top 1% to the 99th percentile.6

PhenoAge was calculated based on mortality scores from the Gompertz proportional hazard model

on chronological age and nine multi-system clinical chemistry biomarkers to predict all-cause

mortality.5 And PhenoAge has been generalized and applied in UK Biobank study.6,34 We calculated

PhenoAgeAccel after subtracting the effect of chronological age by regression residual and

PhenoAgeAccel indicated how much older (or younger) a person’s PhenoAge is than chronological

age. PhenoAgeAccel >0 and <0 was defined as biological age older and younger than chronological

age, respectively.

PRS calculation

Based on the cross-ancestry genome-wide meta-analysis,35 significant SNPs (p <5*10�8 for European

ancestry populations) in linkage disequilibrium (LD; r2 >0.1), the SNP with the lowest p value was included

in the PRS. Finally, we used 23 SNPs to calculate the lung cancer PRS based on the following equation:

PRS =
XM

j =1

bj 3 SNPj

where M denotes the total number of SNPs, and bj represents the per-allele log odds ratio (OR) for lung

cancer associated with SNPj, which is reported by the previous GWAS.35

In addition, we also used the samemethod to re-calculate PRS based on 18 SNPs from a lung cancer GWAS

of European descent as a sensitivity analysis.33 Previous findings have proved that the 18-PRS could

effectively predict lung cancer risk in the UK biobank database.14

Outcome

Lung cancer events (ICD-10 code C33-34) were obtained through the National Health Service central

cancer and death registries in England, Wales, and Scotland. The date of complete follow-up was October

31, 2015 for Scotland, as well as March 31, 2016 for England and Wales. Censoring referred to death, with-

drawal from the study, or failure to suffer from lung cancer at the end of follow-up.

Covariates

The association between PhenoAge and lung cancer incidence might be affected by demographic charac-

teristics, smoking, BMI, family and personal medical history, and socioeconomic factors.36 Chronological

age was computed by subtracting the date of birth from the baseline assessment. Besides, missing data

in continued covariates were imputed with the sex-specific mean value of each variable. Andmissing values

of categorical covariates were handled by assigning individual to an ‘‘unknown’’ category for each corre-

sponding variable.

QUANTIFICATION AND STATISTICAL ANALYSIS

Observational analysis

Multivariable Cox regression model was used to calculate HR and CI of lung cancer risk associated with

PhenoAgeAccel. We used Schoenfeld’s residuals to test the proportional hazard assumption. RAP mea-

sures the baseline age difference at which exposed participants reaching the same rate (risk) of disease

as unexposed participants.37 RAP is the ratio of adjusted log (HR) for the exposure and the adjusted log

(HR) for chronological age.38 We compared HR for participants at biologically younger and biologically

older group, as well as these of low accelerated aging (the bottom quintile of PhenoAgeAccel), interme-

diate accelerated aging (quintiles 2-4), and high accelerated aging (the top quintile) groups. To further
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evaluate the influence of PhenoAgeAccel on lung cancer risk at the same chronological age, we calculated

the 5-year absolute risk of lung cancer by different PhenoAgeAccel at the same chronological age. Further-

more, we also used receiver operating characteristic (ROC) curve analysis and the continuous NRI to assess

whether PhenoAgeAccel could offer additional predictive value to lung cancer risk evaluation, indepen-

dent of chronological age. Besides, the joint and interactive effects of biological aging (PhenoAgeAccel)

and genetic risk in lung cancer development were also evaluated. We tested the additive interaction of

PhenoAgeAccel and PRS by relative excess risk due to interaction (RERI) and attributable proportion

due to interaction (AP),39 and the multiplication interaction by likelihood ratio tests. The PRS was catego-

rized as low, intermediate, and high genetic risk groups based on the tertiles distribution of PRS among

non-lung cancer individuals.40,41

We further conducted subgroup analyses to assess the robustness of results and potential interaction using

the likelihood ratio test. Meanwhile, we carried out several sensitivity analyses to evaluate the robustness of

results: 1) restricting our analysis to individuals with complete covariates; 2) excluding patients with lung

cancer in the first two years of follow-up; 3) further adjusting pack-years and a squared pack-years term;

4) further adjusting for other lifestyle factors (i.e., alcohol status, alcohol intake frequency, physical activity,

and healthy diet score); 5) taking the competing risk of death into consideration; 6) reclassifying PRS based

on quintile; 7) re-analyzing the joint effect of PRS and PhenoAgeAccel just based on white British

population.

Two-sample MR analysis

In this study, two-sample MR analysis was mainly performed via inverse variance weighting (IVW). In addi-

tion, Mendelian randomization Egger regression (MR-Egger regression) was used to detect the potential

unbalanced pleiotropy, Given the lower accuracy and statistical power of MR-Egger regression, Mendelian

randomization pleiotropy residual sum and outlier (MR-PRESSO) was also performed to test for pleiotropic

biases.42 Weighted median model was conducted to assess the robustness of the results if there was a pro-

portion of invalid instruments.43 In addition, the MR analyses were also performed for three subtypes (small

cell, adenocarcinoma, and squamous cell carcinoma) of lung cancer, respectively. Finally, leave-one-out

sensitivity analysis was performed to assess the robust of MR findings by omitting one SNP in turn. The

MR analyses were conducted using the ‘‘TwoSampleMR’’ R package.

Two-sided P value of <0.05 was considered to be statistically significant. All Analyses Were Performed with

R Software Version 3.6.0-.
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